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Abstract

This thesis considers two topics in the area of linear stochastic systems.

The first topic is the construction of approximate finite dimensional linear time

invariant (LTI) models for classical wide sense stationary stochastic signals with

a non-coercive and non-rational spectral density, utilizing the recently developed

theory of degree constrained rational interpolation. Non-coercive means that the

spectral density has zeros on the unit circle or the imaginary axis (depending on

whether the stochastic process is in discrete or continuous time, respectively),

while non-rationality implies that the underlying system generating such a signal

is infinite dimensional. As one example, spectral densities of this type appear

when measurements are taken of signals that have traversed through the earth’s

turbulent atmosphere, such as light from a distant star captured by astronomical

telescopes on the ground. The operation of obtaining an LTI model from a spec-

tral density is known in the literature as spectral factorization and has played an

important role in both deterministic and stochastic linear systems theory. The

non-rational and non-coercive spectral densities which are considered herein are

known to be difficult to factorize numerically. The most general algorithms for

spectral factorization, such as the maximum entropy method, converge slowly for

these spectral densities, and can lead to approximate models of degree higher than

is necessary. The first part of this thesis establishes some new results in the the-

ory of degree constrained rational interpolation and then proposes and analyzes

a new approach to spectral factorization, based on so-called rational covariance

extensions. A new spectral factorization algorithm is then introduced. In a num-

ber of simulations, which include some physically motivated spectral densities, it

is demonstrated that the new algorithm gives lower degree approximations than

the well-known maximum entropy method.

The second topic is the issue of physical realizability of a given system repre-

sented by linear quantum stochastic differential equations (QSDEs) on a quantum

probability space. Physical realizability here means that the QSDEs should rep-
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resent the dynamics of some meaningful physical system. For example, it could

be that they represent the dynamics of the position and momentum operators of

an optical cavity, a well-known device in quantum optics. Physical realizability

is a very important issue from an engineering point of view since only imple-

mentable quantum systems, built from real physical devices, are of interest in

real-life applications.

In the classical (non-quantum) setting, the question of realizability of de-

terministic and stochastic linear (time invariant) systems has been extensively

studied, for example within the context of the theory of electrical networks, and

is well understood. In principle, once all the coefficients are known, classical

systems can be regarded as always being realizable, at least approximately, via a

network of electrical, electronic and/or mechanical devices. For quantum stochas-

tic systems, however, there are additional constraints that must be satisfied by

the QSDEs to be physically meaningful, constraints which are not required of

classical stochastic systems represented by a system of linear stochastic differen-

tial equations on a classical probability space. Among these constraints, physical

systems are characterized by the preservation of canonical commutation rela-

tions (CCR) among certain canonical operators. The second part of the thesis

introduces a formal notion of physical realizability for quantum linear stochas-

tic systems, as well as deriving explicit necessary and sufficient conditions for

preservation of the CCR and physical realizability. These conditions are relevant

for extending the controller synthesis techniques of modern linear control theory,

such as the LQG and H∞ synthesis techniques, to the setting of quantum linear

systems. The realization ideas are applied to a quantum H∞ synthesis frame-

work to show that controllers obtained from this synthesis can always be made

to be physically realizable by appropriately adding a number of quantum noise

channels. Moreover, the controllers can be freely chosen to be fully quantum (no

classical components), fully classical (no quantum components), or a mixture of

quantum-classical components.
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Chapter 1

Introduction

Disturbances of a random or stochastic nature appear naturally in engineering

practice and real-life applications. Noises in electrical and other devices, the er-

ratic movement of prices in the stock market, turbulence that one experiences

when travelling on an aircraft, are some examples of random disturbances which

can be observed in the real-world. When these random effects are significant and

cannot be neglected, it is more appropriate to consider the system of interest, be

it a device, the stock market or an aircraft, as being stochastic, as opposed to

being deterministic. Human endeavor to understand and to be able to quantita-

tively describe random processes in nature, so that its effects may be controlled

to some degree or used to our advantage, has led to the development of the math-

ematical theory of stochastic processes which in turn provides the foundation for

stochastic systems theory and stochastic control. For some systems, randomness

is an indispensable part of its description. One case in particular are quantum

mechanical systems which behave according to the laws of quantum mechanics.

This is because randomness is an inherent feature built into the foundation of

quantum mechanics, and quantum phenomena are most appropriately described

using a probabilistic language.

This thesis considers two topics in the broad area of linear stochastic systems.

One topic lies in the domain of traditional stochastic systems on a classical proba-

bility space, while the second topic is in the domain of quantum stochastic systems

on a quantum probability space, an emerging area of research in engineering which

is gaining more importance. The first topic is the construction of approximate

finite dimensional linear time invariant models for classical stationary stochastic

signals with a spectral density which is both non-coercive and non-rational. The

second topic is physical realizability of linear quantum systems represented by

1



CHAPTER 1. INTRODUCTION 2

linear quantum stochastic differential equations. This chapter serves to give an

overview of both topics and a summary of the contributions of the thesis. We

now start with an overview of the first topic.

1.1 Approximate finite dimensional models for

stochastic signals

Wide sense stationary (WSS) processes form an important class of stochastic

processes. Stochastic signals which are system inputs or outputs are modelled as

sample functions of stochastic processes, but in engineering contexts as here, the

terms are loosely used interchangeably. Wide sense stationary stochastic processes

are characterized as stochastic processes with time invariant first and second order

statistical properties, that is, the mean and covariance respectively. Typically

one sets the mean to be zero by adding an appropriate constant so that a WSS

process may be assumed to be completely described by its covariance function.

An equivalent complete description can be given in terms of the so-called spectral

distribution of the process, which in most cases of practical interest is simply

the Fourier transform of the covariance function. If the spectral distribution

is absolutely continuous then its derivative is called the spectral density or the

spectrum of the process. A striking result from the theory of WSS processes is

that such processes having a spectral density (i.e., the spectral distribution is

absolutely continuous) can always be modelled as the output of a linear time

invariant (LTI) system (referred to as a “shaping filter”) driven by a white noise

input [1]. This provides a universal model of WSS processes as well as a practical

way of generating them, i.e., by identifying an appropriate shaping filter.

The operation of obtaining an LTI model from a spectral density is known

in the literature as spectral factorization and plays an important role in both

deterministic and stochastic linear systems theory. More generally, spectral fac-

torization and the results presented in this thesis are not only of interest for

modelling of stochastic signals and systems, but also for the optimal control of

some classes of deterministic infinite dimensional/distributed parameter systems.

For such systems, spectral factorization has been developed in the literature as

one technique for synthesizing optimal controllers [2, 3, 4]. A more detailed dis-

cussion of WSS processes and spectral factorization will be given in Chapter 2.

In the thesis we will mainly be concerned with discrete time wide-sense sta-

tionary processes with a spectral density, defined on the unit circle, which is
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non-coercive and non-rational. Non-coercive means that the spectral density has

one or more zeros on the unit circle, while non-rationality implies that the un-

derlying system generating such a signal has infinite dimension (also known in

the literature as distributed parameter systems). Nonetheless, our results can

also be applied to continuous time processes by application of a standard bilinear

transformation which maps the imaginary axis onto the unit circle.

An attribute of the class of spectral densities mentioned above, which we

shall shortly elaborate upon, is that, in general, their spectral factors are difficult

to compute numerically. Given such a scalar spectral density W , a particular

rational spectral density Wn, known as a maximum entropy spectrum, can be

constructed whose first n terms of the covariance sequence matches those of W

[5, 6]. Matching of partial covariance sequences is a natural approach since, as

mentioned briefly in the previous paragraph, every spectral density is associated

to a unique covariance sequence, and both give a complete and equivalent char-

acterization of some purely non-deterministic wide sense stationary stochastic

process [7, 1]. Hn, the canonical spectral factor of Wn, can be constructed re-

cursively via the Szegö-Levinson algorithm, see, e.g., [8, 7], and it is well-known

that as n ↑ ∞, Hn converges to H, the canonical spectral factor of W , in H2, the

Hardy space of functions square-integrable on the unit circle and having vanish-

ing negative Fourier coefficients. Therefore, also Wn converges to W in L1, the

space of integrable functions on the unit circle. However, Hn obtained in this way

is an all-pole transfer function. Since Hn has no zeros, it has long been observed

that H1, H2, . . . converges slowly to H when the latter has zeros on or close to the

unit circle, some examples can be found in, e.g., [9, Section IV], [5, pp. 214-217]

and [6, Section 6]. Intuitively, this is due to the inability of Wn to reproduce

valleys of W (i.e., points for which W has a small value) for small or medium

n. Similar slow convergence is also true when the matrix generalization of the

Szegö-Levinson algoritm (see [10, 11]) is applied to a matrix-valued spectrum W

with transmission zeros on or close to the unit circle [10]. More formally, it was

shown in [12, 9] that if W is scalar and rational, then its zeros that are close to

or on the unit circle decreases the rate of decay of the Schur parameters of W :

convergence rate decreases as a zero approaches the unit circle (see also [13]). In

particular, when W has roots on the unit circle, the rate of convergence is no

longer geometric. Consequently, good approximations can only be achieved for

large n.

The limitation of the maximum entropy spectra motivated research into devel-

opment of rational spectral densities which 1) matches the first few terms of the
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covariance sequence of W and 2) has zeros at specified locations on the complex

plane. A new theory of rational covariance extension with degree constraint was

later developed which makes possible the construction of such spectra. Indeed, it

has been demonstrated in [5, 6] that a finite dimensional spectrum constructed

via the new theory, by suitably placing zeros on the unit disc, is a better estimate

than the corresponding maximum entropy estimate, in the sense that it is able

to better capture features of the true spectrum.

The first part of the thesis (Chapters 2-6) establishes some new results for de-

gree constrained rational covariance extension and interpolation, a general prob-

lem with ties to many applications in systems and control [14], and then develops

a new approach to spectral factorization of a spectral density W , based on con-

structing a sequence of rational approximations {Wn} with freely specified zeros

and which match partial covariance sequences of W . The construction is achieved

by taking advantage of a recent result on continuity of the spectral factorization

mapping given in [15] and the theory of degree constrained rational covariance

extensions [12, 9, 16, 5, 6, 17, 18]. We derive theoretical results on convergence

of this scheme for continuous W , and conditions on the zeros for convergence to

be achieved, under further mild assumptions on W . Convergence of covariance

matching approximations with freely specified zeros have not been studied in the

literature; convergence results have only been established for the case where Wn

has no zeros, i.e., the maximum entropy method/Szegö-Levinson algorithm. In

particular, our results weaken some conditions previously derived by Anderson

[19], Caines and Baykal-Gürsoy [20], and Mari et al [13] for convergence of {Hn}
to H in H2 and H∞, respectively, where H∞ denotes the space of functions which

are analytic and bounded on the open unit disc. Then in the penultimate section

of Chapter 6, several numerical examples are given that demonstrate the advan-

tage of the proposed approach over the popular maximum entropy method: lower

degree approximations with lower approximation error (to be defined in a certain

sense).

From an applications side, non-coercive and non-rational spectral densities are

of particular interest in optics, astronomy and flight research. As one example,

spectral densities of this type appear when measurements are taken of signals that

have traversed through the Earth’s turbulent atmosphere, such as light from a

distant star captured by astronomical telescopes on the ground. In the literature,

analytical derivations based on the so-called Taylor frozen hypothesis [21] show

that signals captured by wavefront sensors on telescopes are continuous time sig-

nals with non-coercive (for continuous time this means that the spectral density
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has zeros on the imaginary axis) and non-rational temporal spectral densities,

see [22] and the references cited therein. These properties agree with empirical

observations reported in, for example, [23, 24, 25]. Knowledge of the temporal

spectra is of interest for estimating and improving the performance of various

high resolution imaging systems which compensate for abberation of images re-

ceived on a telescope due to atmospheric turbulence [22, 25]. One such image

enhancing system which has gained a significant amount of attention in recent

years are adaptive optics control systems [21, 26, 27]. In adaptive optics, de-

formable mechanical mirrors are shaped according to some control algorithm to

correct the phase of the wavefront of the incident light, which has been distorted

from its original planar profile by atmospheric turbulence, before an image is

formed on the telescope. As another relevant example, the spectral densities of

the components of wind turbulence velocity are also modelled to be of the non-

coercive and non-rational type [28, 29]. Wind turbulence models are important

for computer-based simulation of flight conditions in the design of aircrafts and

its sub-systems, including the flight controller. Typical approximate models that

are used in current applications are low order ones which give a good fit to the

spectral density only in a limited frequency range [29, 26, 27], whereas the method

proposed here allows one to obtain higher degree models which give a better fit

across a wider range. The choice of the appropriate higher degree model would

then be application specific, depending on the particular constraints present, such

computational constraints.

In summary, the ideas and results presented in the first part of the thesis may

be useful in applications in which spectral factorization plays a prominent role

such as in computation of approximate solutions of algebraic Riccati equations

(ARE’s) in optimal control of linear systems, or in which signals with non-rational

power spectra is a central theme (e.g., control of aircraft subject to windgust and

adaptive optics as discussed above, and also in laser scintillation [30]). They may

also prove to be useful in spectral estimation and system identification research.

1.2 Physical realizability of quantum linear stochas-

tic systems

The second topic addressed is the issue of physical realizability of a given system

represented by linear quantum stochastic differential equations (QSDEs) on a

quantum probability space.
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Physical realizability here means that the QSDE represents the dynamics of

some meaningful physical system. For example, it could be that the QSDE repre-

sent the dynamics of the position and momentum operators of an optical cavity,

a well-known device in quantum optics. Physical realizability is a very impor-

tant issue from an engineering point of view since only implementable quantum

systems, built from real physical devices, are of use in real-life applications.

The realization question for classical (i.e., non-quantum) linear systems rep-

resented by a system of ordinary linear differential equations is a central one

in engineering and has been extensively studied in the literature. In electrical

engineering, this question is addressed in the context of synthesis of electrical

networks, at first using classical complex function theory and later with mod-

ern state-space methods [31]. However, the results for electrical networks can,

by analogy, be adapted to other kinds of networks. For a comprehensive treat-

ment of the state-space approach for synthesis of electrical networks, see [31].

According to the theory, we may, in principle, always regard linear deterministic

or stochastic linear (time invariant) systems as being realizable via a network of

electrical, electronic and, possibly, mechanical devices. This is not the case for

quantum linear stochastic systems. There are additional constraints, not present

in the non-quantum context, that must be satisfied by the QSDEs for them to

be physically meaningful. One such constraint is the requirement that certain

canonical commutation relations (CCR) between canonical conjugate variables

of the QSDEs should be satisfied at all times. The purpose of the second part

of this thesis is to introduce a formal notion of physical realizability for quan-

tum linear stochastic systems and to derive necessary and sufficient conditions

for preservation of the CCR and physical realizability. Our setting includes the

interesting and important case of systems which may have both classical and

quantum degrees of freedom, and includes linear models which are of interest in

quantum optics.

With the recent advances, both theoretical and experimental, in the control

of objects at the nano scale, such as control of an atom by using a modulated

laser, and potential benefits that may be offered by quantum information and

signal processing system over their classical counterparts, quantum control has

become a significant topic which has recently attracted more attention. Due to

the important role that linear systems has played in the development of classical

control theory, a similar theory for quantum linear systems could be beneficial

for better understanding of quantum control theory. The results of the second

part of this thesis takes a step in that direction by building a connection between
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abstract physical concepts with realizability issues which are important from an

engineering perspective. In particular, the ideas developed are applied in the

context of an H∞ synthesis framework due to James and Petersen [32] to show

that the controllers which result from this synthesis can always be made to be

physically realizable.

1.3 Summary of contributions of the thesis

The original contributions of this thesis are as follows:

• Some new results on degree constrained rational interpolation are estab-

lished for the case where the parametrizing pseudopolynomial has spectral

zeros on the unit circle. This completes the analysis for the dual side of the

primal-dual convex optimization approach pioneered by Byrnes et al [5, 6].

The results include:

1. A necessary and sufficient condition for a degree constrained rational

interpolant to be bounded on the unit disc (Chapter 3).

2. A characterization of the denominator polynomial of all degree con-

strained rational interpolants, including unbounded ones having a pole

of the unit circle (Chapter 4). This leads to several corollaries, includ-

ing one which establishes a homeomorphism between the numerator

and denominator polynomials of an interpolant and its pair of partial

covariance sequence and parametrizing pseudopolynomial.

• It is shown that a numerically stable homotopy continuation method, orig-

inally proposed by Enqvist for computing degree constrained rational co-

variance extensions which are bounded and strictly positive real, is actu-

ally applicable for all interpolants including those that are unbounded or

non-strictly positive real (Chapter 5). This establishes that the algorithm

provides a complete computational method, and it has the potential to be

extended to interpolation problems beyond rational interpolation.

• A new approach to spectral factorization of a class of spectral densities is

introduced (Chapter 6) based on a sequential continuity property of the

spectral factorization mapping and the ideas and techniques developed in

Chapters 3 and 4. A new spectral factorization algorithm is also introduced
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and analyzed. Several numerical simulations are provided to indicate the

performance of the algorithm.

• A notion of physical realizability for a class of quantum linear stochastic

systems is developed, and characterizations of physical realizability are de-

rived (Chapter 7).

• In the context of H∞ synthesis, it is shown that physically realizable ro-

bust controllers (Chapter 8) always exist. Moreover, it is shown that the

controllers may be freely specified to consist of either purely quantum de-

grees of freedom, purely classical degrees of freedom, or a mixture of both

quantum and classical degrees of freedom.

1.4 Organization of the thesis

The organization of this thesis is as follows. It is divided into two main parts,

with Part I dealing with the first topic (chapters 2 to 6) and Part II (Chapters 7

and 8) dealing with the second topic.

In Chapter 2, we review some concepts from wide sense stationary processes to

motivate spectral factorization. In particular, we show the relationship of spectral

factorization to the prediction theory of stationary processes and to innovation

and modelling filters. We also discuss the so-called Szegö-Levinson algorithm for

solving the prediction problem and its generalization, the (generalized) Schur al-

gorithm which is the basis for the Darlington synthesis procedure in circuit theory.

We point out some limitations of the Schur algorithm for spectral factorization.

In Chapter 3 we give an exposition on the rational covariance extension problem

with degree constraint (RCEP) and its bounded solutions. Chapter 4 continues

the development in Chapter 3 by analyzing all solutions of the RCEP, including

unbounded ones, and showing a homeomorphic correspondence between pairs of

partial covariance sequence and non-negative pseudopolynomials data with pos-

itive real rational functions of a bounded degree. In Chapter 5, results from

Chapter 4 are exploited to establish that a numerical homotopy continuation al-

gorithm originally due to Enqvist is in fact also applicable for computing degree

constrained rational interpolants corresponding to parametrizing pseudopolyno-

mials with spectral zeros on the unit circle, a case which has not previously been

studied for this algorithm. Then in Chapter 6 we introduce a new framework for

spectral factorization for a certain class of spectral densities based on results from
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[15] and ideas developed in Chapters 3 and 4. The class allows for the possibility

of non-coercive spectral densities (i.e., those having zeros on the unit circle) which

are known to be particularly difficult to factorize for many spectral factorization

algorithms. A new spectral factorization algorithm is also introduced and con-

vergence results provided. The effectiveness of the algorithm are demonstrated

in a number of numerical examples. In two examples, we apply the algorithm

to compute approximate spectral factors of the “physically derived” non-coercive

and non-rational von Karman and Kolmogorov spectral densities which arise in

the study of atmospheric turbulence.

In Chapter 7, we develop a notion of physical realizability for quantum linear

stochastic systems which are of interest in quantum optics, and derive charac-

terizations of physically realizable quantum linear stochastic systems. Then in

Chapter 8, we describe an H∞ controller synthesis framework for quantum lin-

ear stochastic systems which gives a partial description of a controller and show

that such a partial description may always be completed such that the resulting

controller is physically realizable in the sense of Chapter 7. Synthesis examples

in the context of quantum optics are given in which different types of controllers

are realized, including a fully quantum controller (with no classical component),

a fully classical controller (with no quantum component), and a mixed quantum-

classical controller.



Part I

Topics in Classical Linear

Stochastic Systems

10



List of Notation and Terminology

for Part I

Notation

R The set of real numbers

C The set of complex numbers

D The unit disc {z ∈ C | |z| < 1}

T The unit circle {z ∈ C | |z| = 1}

col(a1, . . . , an) [a1 . . . an]
T

A Depending on the context, denotes either the closure or com-

pletion of A, or the elementwise complex conjugation of a com-

plex matrix A

∂A The boundary of a topological set A

A∗ The conjugate transpose of a complex matrix A

ℜ{A} ℜ{A} = A+ A∗, the hermitian part of a complex matrix A

Z The set of integers . . . ,−3,−2,−1, 0, 1, 2, 3, . . .

N The set of natural numbers 1, 2, 3, . . .

µ The Lebesque measure on T

‖A‖p The (Schatten) p-norm a matrix A ∈ Cm×n defined as:

‖A‖p =

{

(

Tr
{

(A∗A)p/2
}

)
1
p

if 1 ≤ p <∞,

supv∈Cn,‖v‖≤1 ‖Av‖ if p = ∞.

11



12

Lpm×n,1 ≤ p ≤ ∞ The space of measurable functions mapping from T to Cm×n

with a finite ‖ · ‖p norm defined by:

‖f‖p =

{

(

1
2π

∫

T
‖f(z)‖ppdµ

)
1
p if 1 ≤ p <∞

ess supz∈T ‖f(z)‖∞ if p = ∞
If n = 1, then Lpm×n is denoted simply as Lpm

Hp
m×n, 1 ≤ p ≤ ∞ The subspace of functions in Lpm×n having an analytic contin-

uation from T to D. If n = 1, Hp
m×n is denoted simply as

Hp
m

H∗ The parahermitian conjugate of a Cm×n-valued complex func-

tion H defined by H∗(z) = H(z∗−1)∗

Terminology

Outer function A function H ∈ H2
n×n, n ∈ N, such that the set {Hρ |

ρ is a Cn-valued polynomial in C} is dense in H2
n×n

Pseudopolynomial A complex function of the form

f(z) = a0 +
n
∑

k=1

(

a∗kz
−k + akz

k
)

,

where 0 ≤ n < ∞, an 6= 0 and (a0, a1, . . . , an) ∈
R × C

n. n is the order or degree of the pseudopolyno-

mial f (the order is zero if f is a constant function). A

matrix-valued pseudopolynomial may also be defined

by letting (a0, a1, . . . , an) ∈ Rl×l×Cl×l× . . .×Cl×l for

some integer l > 1

Spectral density A function W in L1
n×n, for some n ∈ N, satisfying

W (eiθ) = W (eiθ)∗, W (z) ≥ 0 for almost all z ∈ T, and
∫

T

| log detW (z)|µ(dz) <∞

Spectrum Another term for spectral density



Chapter 2

Wide-Sense Stationary Processes

and Spectral Factorization

2.1 Introduction

The purpose of this chapter is to give a brief review of the theory of wide-sense

stationary (which we shall again abbreviate as WSS as in Chapter 1) processes.

Of particular importance is the relationship between prediction theory of WSS

processes, spectral factorization and the so-called Darlington synthesis procedure

of circuit theory. We shall explain why some of the more popular and general

methods for spectral factorization are inadequate for “harder” spectral densities

which have zeros close to or on the unit circle. For a comprehensive treatment of

the topics of this chapter we refer the reader to texts such as [33, 1, 34, 7] and

the papers [8, 35, 36, 37, 9, 38].

2.2 Second order and wide-sense stationary pro-

cesses

By second order processes, we actually mean discrete time second order stochastic

processes. In the literature, second order stochastic processes are studied in both

continuous and discrete time, but our main interest will be the discrete time

setting. Although the continuous time theory is essential for theoretical study

of real-life processes, in applications filtering and control algorithms are typically

implemented on digital devices, such as microprocessors and high-speed digital

signal processors (DSPs), which inherently operate in discrete-time.

13
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Let R, C, D and T denote the real numbers, complex numbers, the unit

disc {z ∈ C | |z| < 1} and the unit circle {z ∈ C | |z| = 1}, respectively.

A second order process is defined as a sequence of Cn-valued random variables

{Xk}k∈Z (Z denotes the set of all integers) defined on some probability triplet

(Ω,F , P ), i.e., Ω is the set of events, F is a σ-algebra of subsets of Ω and P is a

probability measure on F , satisfying Tr{E(Xk − EXk)(Xk − EXk)
∗} <∞ for all

k ∈ Z (we assume that elements of Cn are represented as column vectors), where

EY denotes the expectation of a random variable Y with respect to P and ∗

denotes conjugate (or Hermitian) transposition of a matrix. Define m(k) = EXk

and R(k, l) = E(Xk −m(k))(Xl −m(l))∗. Then R(k, l) is called the covariance

function of the process {Xk}k∈Z. It is easy to see that R(l, k) = R(k, l)∗, and

R(k, l) possesses the non-negative definite property in the sense that:

m
∑

k=1

m
∑

l=1

a∗kR(ik, il)al ≥ 0,

for any positive integer m and for any arbitrary collection i1, . . . , im of integers

and any arbitrary collection of complex numbers a1, . . . , am. If R(k, l) ≡ 0 then

we say that Xk and Xl are (mutually) orthogonal or uncorrelated. We write this

as Xk ⊥ Xl.

WSS processes form a special, yet important, class of second order processes.

This special class has the additional property that EXk = c ∀k ∈ Z, c being

a complex constant, and R(k, l) = r(k − l) for some bounded matrix-valued

function r defined on Z satisfying r(−k) = r(k)∗. For WSS processes we say that

r(0), r(1), . . . is the covariance sequence of the process. It is straightforward to

check that |Tr{r(k)}| ≤ Tr{r(0)} for all k ∈ Z, and it is also non-negative definite

in the sense that:
m
∑

k=1

m
∑

l=1

a∗kr(ik − il)al ≥ 0,

for any positive integer m and for any arbitrary collection i1, . . . , im of integers

and any arbitrary collection of complex numbers a1, a2, . . . , am. Moreover, there

will be no loss in generality in assuming that c = 0, so for convenience we shall

make this assumption for the remaining of this chapter.

The special properties of WSS processes allows the development of a rich

mathematical theory for these processes. We shall now give a review of this theory

starting with a discussion of the Hilbert space structure of WSS processes.
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2.3 Hilbert space structure of WSS processes

For the ease of discussion, we shall assume for the time being that {Xk}k∈Z is a

scalar WSS process. First, we may interpret EXkX
∗
l as a complex inner-product

between Xk and Xl. The inner product is also well defined for any finite linear

combination of the Xk’s. Denoting the inner product as 〈·, ·〉X , we have:

〈 m
∑

k=1

αkXik ,

m
∑

l=1

βlXil

〉

X

= E

(

m
∑

k=1

αkXik

(

m
∑

l=1

βlXil

)∗)

,

=
m
∑

k=1

m
∑

l=1

αkβ
∗
l EXikX

∗
il
,

=
m
∑

k=1

m
∑

l=1

αkβ
∗
l 〈Xik , Xil〉X .

Let h(X) denote the span of {Xk}k∈Z over C, i.e., the set of all possible finite

linear combinations of the Xk’s over the field C. Then the inner product 〈·, ·〉X
induces a norm ‖ · ‖X on h(X) defined by ‖Y ‖X = 〈Y, Y 〉

1
2

X . By continuity of the

inner product, it can be linearly extended from h(X) to H(X) = h(X), where

h(X) denotes the completion of h(X) with respect to the norm ‖ · ‖X . Then

H(X) is a complete normed space with inner product 〈·, ·〉X [1], i.e., H(X) is

a Hilbert space. This allows one to conveniently analyze WSS processes within

a purely geometric framework. In particular, optimization becomes simple since

the projection of an element Y onto any closed subspace of H(X) is uniquely

defined. The Hilbert space structure of WSS processes led H. Wold to formulate

the Wold decomposition. This decomposition is of fundamental importance in

time series analysis and will be discussed in the next section.

For vector-valued (or even matrix-valued) processes only some simple adap-

tations are necessary. Suppose that Xk is a Cn-valued random variable for each

k and let us write Xk = col(Xk,1, . . . , Xk,n), where Xk,j is a scalar random vari-

able for 1 ≤ j ≤ n. Since {Xk}k∈Z is a stationary process, it follows by the

same arguments as in the scalar case that H(X) = span{∪k∈Z{Xk,1, . . . , Xk,n}}
is also a Hilbert space. Therefore, exactly as in the scalar case, we may apply

operations such as taking the unique projection of any element of Y ∈ H(X)

onto some closed subspace of H(X), e.g., taking the projection of X1,1 onto

span{X1,n1
, X2,n2

, . . . , Xk,nk
}, where the nk’s may be assigned arbitrary values in

{1, . . . , n}.
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2.4 The Wold decomposition, prediction of sta-

tionary processes and spectral factorization

Let {Xk}k∈Z be a WSS process. We once again assume that the process is scalar.

However, note that most of the ideas and results to follow carry over to vector-

valued processes (see, for example, the classical papers [39, 40, 41, 42]).

Define Hk(X) = span{Xl}l≤k and H−∞(X) = ∩k∈ZHk(X). Then we say

that {Xk}k∈Z is deterministic if X0 ∈ H−1. Otherwise, the process is non-

deterministic. The Wold decomposition theorem, due to H. Wold, says that

any non-deterministic stationary process can be decomposed into the sum of two

mutually uncorrelated deterministic and purely non-deterministic (PND), to be

defined shortly, processes. To be precise:

Theorem 2.4.1 Any non-deterministic process {Xk}k∈Z has the following de-

composition:

Xk = Uk + Vk,

where Vk ∈ H−∞(X) ∀k and {Vk}k∈Z is a deterministic process, Uk ⊥ Vl ∀k, l and

Uk =
k
∑

l=−∞

bk−lel, (2.1)

where el ∈ Hl(X) and ‖el‖X = σ > 0 ∀l ∈ Z, ei ⊥ ej ∀i 6= j, b0 = 1,
∞
∑

l=1

|bl|2 <

∞, and 〈ek, Xk+l〉X = σ2bl ∀l ≥ 0.

In the literature, the random variables . . . , e−1, e0, e1, . . . as defined in the

theorem are often referred to as innovations, and the process {ek}k∈Z as the

innovation process. Moreover, any process U which can be decomposed in the

manner of the right hand side of (2.1) is said to be a purely non-deterministic

process.

The significance of the Wold decomposition theorem was recognized by A. N.

Kolmogorov, who subsequently developed a comprehensive theory of prediction

of (scalar) stationary processes. The central theme of this theory is that of best

linear predictors/estimators, and the full generality of probability theory may be

dispensed of by working exclusively with Hilbert space theory. However, unless

the process follows a jointly Gaussian distribution, the predictors obtained by

this theory will not be optimal. This is because, in general, there will exist a

non-linear predictor that outperforms the best linear one.
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Kolmogorov observed that since ei ⊥ ej ∀i 6= j then the best linear estimator

of Xk in Hk−1(X) given {Xl}l<k must necessarily be Xk − ek for which the esti-

mation error is then given by ek. In his work on prediction theory Kolmogorov

showed the following:

Theorem 2.4.2 The following are equivalent:

1. {Xk}k∈Z is WSS.

2. There exists a unitary operator U on H(X) such that Xk = UkX0 ∀k ∈ Z.

Note that a unitary operator U is an operator satisfying U∗ = U−1, where U∗

denotes the adjoint operator of U satisfying the relation 〈Ux, y〉X = 〈x, U∗y〉X
∀x, y ∈ H(X). It is then shown that there exists a spectral measure E (see [7])

such that the unitary operator U can be conveniently expressed as:

U =

∫ π

−π

eiλdE(λ),

where the above integral is defined in the sense of the identity:

〈Ux, y〉X =

∫ π

−π

eiλ〈dE(λ)x, y〉X ,

∀x, y ∈ H(X). Then Ukx =

∫ π

−π

eikλdE(λ)x for any x ∈ H(X) and the spectral

representation of WSS processes can be established:

Theorem 2.4.3 For a WSS process {Xk}k∈Z there exists a process {Z(λ);−π <
λ ≤ π} with orthogonal increments (i.e., Z(λ2)−Z(λ1) ⊥ Z(λ4)−Z(λ3) for any

−π < λ1 < λ2 < λ3 < λ4 ≤ π) such that:

Xk =

∫ π

−π

eikλdZ(λ) ∀k ∈ Z, (2.2)

where the integral above is to be interpreted as a stochastic integral.

For details on the stochastic integral, see, e.g., [7, 1]. The integral representa-

tion of Xk in terms of the Z process in the theorem is referred to as the spectral

representation of Xk. From the representation we may show that:

〈Xk, Xl〉X =

∫ π

−π

ei(k−l)λ‖dZ(λ)‖2
X ,

=
1

2π

∫ π

−π

eikλe−ilλdFX(λ), (2.3)
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where FX is a measure called the spectral distribution of {Xk}k∈Z. FX has the

property that FX((−π, λ]) is a non-decreasing and right continuous function of

λ on (−π, π] with FX(π) = r(0). It also has the decomposition FX = FU + FV ,

where FU and FV are absolutely continuous and singular with respect to the

Lebesque measure on (−π, π], respectively. Therefore, dFU(λ) = fX(λ)dλ for

some function fX which in integrable on (−π, π]. Clearly, fX(λ) must be non-

negative definite on (−π, π]. If the process is PND then FV ≡ 0 and fX is referred

to as the spectral density of {Xk}k∈Z.

From (2.3) we have that:

〈 m
∑

k=1

arkXrk ,

m
∑

l=1

bsl
Xsl

〉

X

=
1

2π

∫ π

−π

(

m
∑

k=1

arke
irkλ

)(

m
∑

l=1

bsl
eislλ

)∗

dFX(λ),

(2.4)

holds true for all finite m and for all possible sequences r1, . . . , rm and s1, . . . , sm

taking values in Z and for any sequence a1, . . . , am and b1, . . . , bm taking val-

ues in C. Note that the right hand side of (2.4) defines an inner product on

p(F ) = span{eikλ}k∈Z. The linear map K defined via K : xk 7→ eikλ defines

an isomorphism form h(X) to p(F ) which preserves the inner product. In other

words, K is an isometry. Then by continuity of the inner product, K can be ex-

tended to an isometry from H(X) to P (F ) = p(F ). The isomorphism K is known

as the Kolmogorov isomorphism. It allows one to convert least squares minimiza-

tion problems in H(X) to least squares approximation problems in P (F ). There

are certain analytical properties of P (F ) which makes the latter convenient for

analyzing such problems and it is a key feature of Kolmogorov’s work on predic-

tion theory. The main results are as follows:

Theorem 2.4.4 Let {Xk}k∈Z be WSS. Then:

1. {Xk}k∈Z is a non-deterministic process if and only if

∫ π

−π

log fX(λ)dλ > −∞.

If, in addition, FV is the zero measure, then it is PND.

2. For a non-deterministic process, the one step ahead prediction error vari-

ance σ2 = ‖el‖X is given by:

σ2 = exp

(

1

2π

∫ π

−π

log fX(λ)dλ

)
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3. If ck = 1
2π

∫ π

−π
eikλ log fX(λ)dλ for k ∈ Z, then b1, b2, . . . in Theorem 2.4.1

satisfies:

σ(1 + b1z + b2z
2 + . . .) = ψ(z) = exp

{

c0
2

+
∞
∑

j=1

cjz
j

}

, |z| < 1,

where |ψ(eiλ)|2 = fX(λ).

Assuming that the process is PND, the function ψ defined in the last theorem

is called a spectral factor of fX . It can be shown that it must be an outer function

(i.e., it is analytic inside the unit disc and has no zeros there) and is unique up

to multiplication by a complex number of modulus one. The operation of finding

such a function ψ for a given fX is referred to as spectral factorization. The last

theorem gives us an important connection between spectral factorization and the

prediction theory of stochastic processes. More details on this relationship are

given in the next section.

2.5 Finite prediction and the Szegö-Levinson al-

gorithm

The work of Kolmogorov does not give formulas for the one step-ahead predictor

X̂k+1|∞ of Xk+1 in terms of all present and past observed values Xk, Xk−1, . . ., but

in terms of the unobservable innovations ek, ek−1, . . .. A method to approximate

the predictor is to compute the best (linear) estimate of Xk+1 given the partial

past Xk, Xk−1, . . . , Xk−n (i.e., the projection of Xk+1 onto Hk(X)\Hk−n−1(X))

and then letting n → ∞. Thus, one tries to solve a sequence of the following

problem:

Problem 2.5.1 Given a positive n ∈ Z, find the unique vector (an,0, an,1, . . . , an,n)

∈ Cn+1 which minimizes E|Xk+1 −
∑n

l=0 an,lXk−l|2.

By the Kolmogorov isomorphism the last problem is equivalent to the following:

Problem 2.5.2 Given a positive n ∈ Z, find the unique polynomial an(z) =

an,0z
n + an,1z

n−1 + . . .+ an,n of degree at most n which minimizes the integral

∫ π

−π

|ei(k+1)λ − ei(k−n)λa(eiλ)|2dFX(λ) =

∫ π

−π

|ei(n+1)λ − an(e
iλ)|2dFX(λ)
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For the corresponding n, let ân denote the solution to Problem 2.5.1 or Prob-

lem 2.5.2 (in the former problem ân would be a vector while in the latter it

would be a polynomial). N. Levinson showed that ân+1 in Problem 2.5.1 can be

computed recursively and efficiently by updating ân using new covariance data

r(n + 1). However, many years before G. Szegö had already given a recursive

solution to Problem 2 (hence by the isomorphism one automatically gets a re-

cursion for the other problem) in his study of polynomials which are mutually

orthogonal with respect to a distribution on the unit circle (known as Szegö’s

orthogonal polynomials). An exposition of orthogonal polynomials on the unit

circle can be found in [33, 43]. theory of

Now, let φn denote the n-th Szegö orthogonal polynomial with respect to the

distribution FX and write it as φn =
∑n

k=0 φn,kz
n−k. Some properties of φn are

as follows [33, 43]:

1. φn

φ0,n
minimizes the integral 1

2π

∫ π

−π
|a(eiλ)|2dFX(λ) over all monic polynomi-

als a of degree n (i.e., the coefficient of zn is 1). Moreover the minimum

value of this integral is 1
φ2

0,n
.

2. φn has all zeros inside the unit circle D.

3. limn→∞ ‖φn∗g − 1‖2 = 0, where g is a function in H2 satisfying g(0) > 0

and |g(eiλ)|2 = fX(λ) for almost all λ ∈ (−π, π].

Note that in the last property φn∗ denotes the parahermitian conjugate of φn∗

defined by φn∗(z) = φn(z
∗−1)∗. The last property shows that one may consider

1
φ∗

as an approximate spectral factor of fX(λ). Now we shall briefly look at the

relation between orthogonal polynomials and prediction theory of WSS processes.

It is well-known that the solution ân to Problem 2.5.2 is given by:

ân(z) = −
n
∑

k=0

u∗k+1z
n−k,

where the coefficients u1, u2, . . . , un+1 are defined via the relation:

vn(z) = 1 + u1z + u2z + . . .+ un+1z
n+1 = σn

n+1
∑

k=0

φk(0)∗φk(z)

=
φ(n+1)∗

φn+1,0

and σn is the minimum prediction error given by:

σn =
1

∑n+1
k=0 |φk(0)|2

.
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Therefore, by the Kolmogorov isomorphism X̂k+1|n, denoting the best linear least

squares predictor of Xk+1 given Xk, Xk−1, . . . , Xk−n, which solves Problem 2.5.1

can be written as:

X̂k+1|n = −
n
∑

j=0

u∗j+1Xk−j

= −
∫ π

−π

eiλ(vn(e
iλ)∗ − 1)dZX(λ).

Assume that FX is absolutely continuous with spectral density fX (hence X

is a PND process). Then it can be shown that as n ↑ ∞, X̂k+1|n converges in

H(X) to the optimal one step ahead predictor X̂k+1 given by:

X̂k+1 =

∫ π

−π

eiλ
(

1 − g(0)

g(eiλ)∗

)

dZX(λ),

where g is as defined before. The formula above gives an explicit relationship

between spectral factorization and best linear one step ahead prediction filters.

In engineering, the function g gives rise to two important filters. First of all,

g∗(z) has the interpretation as a modelling filter for the process X. This means

that g∗(z) is a causal and stable transfer function of a linear time invariant filter

which generates the stationary process X when it is driven by a white noise

sequence. Secondly, if g∗(z) does not have any roots on the unit circle then 1
g∗(z)

has the interpretation as the causal and stable transfer function of an innovation

filter for X. The innovation filter outputs a white noise sequence with unit

variance when driven by the process Xk. For details on time invariant filters for

WSS processes, see, e.g., [34, Section 4.10].

Summarizing our discussion so far, we have now seen the close relationship

that exists between prediction theory and spectral factorization. This relationship

between predictors and spectral factors have been exploited by researchers for

constructing prediction and innovation filters from spectral factors (this is usually

attributed to N. Wiener who originally proposed spectral factorization [44] as

an ingenious method for solving a so-called Wiener-Hopf integral equation in

linear estimation theory), and, conversely, to construct spectral factors from the

innovation filters as in [35, 36, 37]. Kolmogorov’s work on prediction theory

of scalar WSS processes was extended to multivariate/vector WSS processes by

Wiener and Masani [39, 40, 41], and also, independently of Wiener and Masani,

by Helson and Lowdenslager [42]. Although the analysis becomes much more
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complicated, most of the results we have discussed have an extension to the vector

case. A similar remark is also true for Szegö’s work on orthogonal polynomials,

it has been extended to the vector case by researchers in statistics and circuit

theory (see [45, 11, 10]).

2.6 ARMA models, Darlington synthesis and

generalization of the Szegö-Levinson algo-

rithm

A shortcoming of using 1
φn∗

as an approximate modelling filter for {Xk}k∈Z is

that it is an all-pole/autoregressive (AR) filter. Thus, its frequency response

tends to have a “flat” profile for small and medium values of n. It is desirable

to have autoregressive moving average (ARMA) modelling filters which have ra-

tional transfer functions with possibly some zeros inside or on the unit circle.

The theory of orthogonal polynomials does not provide obvious insights into how

the prediction theory can be modified to obtain ARMA filters. It was a surpris-

ing connection between the Szegö-Levinson algorithm and a certain Darlington

synthesis procedure in circuit theory, first reported in [8], which allowed the ex-

tension to be realized. The connection is that the Szegö-Levinson algorithm may

be viewed as a special case of Darlington synthesis, i.e., it corresponds to Darling-

ton synthesis with extraction of “sections” whose transmission zeros are all at the

origin (see [8]). Since the Darlington synthesis is actually a generalized version

of the classical Schur algorithm/recursion [46, pp. 101-104] applied to the graph

symbol of a “passive scattering function”, extension of the Szegö-Levinson algo-

rithm is facilitated by simply extracting sections corresponding to transmission

zeros which are not at the origin. Following [37], by passive scattering function

we mean a scalar function which is analytic on D (or on C\D as in [35], depending

on the setting on which one is considering the problem. This causes no confusion,

as long as one works consistently on either D or C\D) and is bounded there in

magnitude by 1. They are also known as Schur functions and we shall denote the

class of such functions by S. The Schur recursion (from this point onwards when

referring to the Schur recursion or algorithm we implicitly mean the generalized

version discussed in [8, 35, 37]) allows sections to be extracted in a sequential

manner, one after another, with one section corresponding to exactly one trans-

mission zero. In the development of the theory, an important role is played by
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the so-called J-lossless matrices. Indeed, each section will in fact be a J-lossless

matrix. In the scalar theory developed in [35, 37], these are complex C2×2-valued

functions Θ which satisfy:

1. Each element of Θ belongs to the Nevanlinna class of complex functions on

D which can be written as the ratio f
g

of two complex functions f, g which

are analytic and bounded on D.

2. Θ is J-contractive on D: Θ(z)JΘ(z) ≤ J for almost all z ∈ D.

3. Θ is J-unitary on T: Θ(z)JΘ(z) = J for almost all z ∈ T,

where J is the matrix:

J =

[

1 0

0 −1

]

,

and Θ denotes the elementwise complex conjugation of Θ.

Some important properties of J-lossless matrices are listed in [35, Theorem

2.1]. Although the key ideas for the extension are given in [8], their full exploita-

tion and comprehensive treatment of the ideas, including the connection with

(generalized) prediction of WSS processes and the related convergence results,

were given in [35] for the scalar case and in [36] for the vector case. The pa-

pers [35, 36] deal with extraction of sections with a transmission zero inside D

but not on T. Unlike the Szegö-Levinson algorithm, which outputs a polynomial

innovation filter (with no poles), the Schur algorithm produces a rational innova-

tion filter with pre-specified poles which coincide with the zeros of the extracted

sections. Therefore, the associated modelling filter will be rational having zeros

which coincide with transmission zeros of the sections. An exposition of how

sections with a transmission zero on T can be extracted was first given in [47],

but without any proofs. The theoretical analysis appears later in the paper [37].

The context of [37] is actually to solve what is known as the lossless inverse scat-

tering (LIS) problem, but as a bonus, thanks to a special embedding property

of J-lossless matrices, one obtains a solution to Problem 2.6.1, which is a gen-

eralized version of Problem 2.5.2, and an approximate rational spectral factor of

the associated spectral density. However, there are limitations of this approach

for the purpose of spectral factorization and this will be discussed in the next

section.

Problem 2.6.1 Let FX be the spectral distribution of a non-deterministic WSS

process. Given a positive integer n and a pre-specified polynomial hn of degree at
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most n such that all its roots are in C\D and
∫ π

−π
1

|hn(eiλ)|2
dF (λ) < ∞, find the

unique polynomial a(z) = an,0z
n + an,1z

n−1 + . . .+ an,n of degree at most n which

minimizes the integral
∫ π

−π

∣

∣

∣

∣

1 − a(eiλ)

hn(eiλ)

∣

∣

∣

∣

2

dFX(λ)

For the remainder of the discussion, we assume that the associated WSS

process is PND with a spectral density W defined on T (previously we have

defined spectral densities on (−π, π], but this causes no difficulty since the map

λ ∈ (−π, π] 7→ eiλ ∈ T is bijective). Then one may associate a unique function

Z ∈ S, referred to as the impedance function, to W such that Z∗ + Z = W on

T. The impedance function is related to W via the Herglotz representation:

Z(z) =
1

2π

∫ π

−π

eiλ + z

eiλ − z
W (eiλ)dλ ∀z ∈ D, (2.5)

and

Z(eiλ) = lim
r↑1

Z(reiλ) a.e. T.

In general, the right hand side of (2.5) cannot always be integrated explicitly.

Therefore, typically Z would have be evaluated numerically. The reason we have

introduced Z is because the Schur algorithm is actually applied to the passive

scattering function S defined by S = Z−1
Z+1

. Thus, to apply the algorithm for a

given spectral density W , S must first be constructed via Z. We shall now also

introduce, following [37], the notion of point of local losslessness (PLL). Formally,

a point b ∈ T is a PLL of order k if

∫ π

−π

W (eiλ)

|eiλ − b|2k dλ <∞

and
∫ π

−π

W (eiλ)

|eiλ − b|2k+2
dλ = ∞,

for an integer k ≥ 1. In the Schur algorithm described in [37] there are two types

of sections which can be extracted, depending on the location of the associated

transmission zero:

1. If the transmission zero is chosen in D then we may extract what is called

a Schur section which is analytic on D.

2. If the transmission zero is a PLL then one may extract a Brune section

which has a pole at a point on T.
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The Schur algorithm/Darlington synthesis procedure goes as follows. Given

S ∈ S as defined above which has been normalized such that S(0) = 0 (note that

this is equivalent to normalizing W such that 1
2π

∫ π

−π
W (eiλ)dλ = 1), we form the

vector [ 1 S0 ]⊤ with S0 = S . Then depending on whether the transmission

zero z1 is in D or on T, we may extract a Schur or Brune section θi (which is a J-

lossless matrix) to get [ A1 B1 ]⊤ = θi[ 1 S0 ]⊤. Defining S1 = B1

A1
then S1 will

again be in S and satisfies S1(0) = 0. Replacing S0 with S1 the procedure may

be iterated, by choosing z2, z3, . . . to obtain {θ2, A2, B2, S2}, {θ3, A3, B3, S3}, . . .,
and so on. Letting Θn = θnθn−1 · · · θ1, then Θn will be J-lossless and has the

structure:

Θn =

[

R−1
n∗ (1 + Zn) R−1

n∗ (1 − Zn)

F−1
n (1 − Zn) F−1

n (1 + Zn)

]

, (2.6)

where Fn∗Fn = RnRn∗ = Zn+Zn∗. Note that one may recover Fn and Rn (which

are both rational functions) from Θn using the relations Fn = (Θn,21 + Θn,22)
−1

and Rn = (Θn,11∗ + Θn,12∗)
−1. It can then be shown [35] that if one lets n → ∞

and chooses z1, z2, . . . ∈ D (hence only Schur sections are extracted) such that

it satisfies
∞
∑

n=0

(1 − |zn|) = ∞, F−1
n∗ converges to an innovation filter for a WSS

process with spectral density W , while Fn converges to a spectral factor of W

(i.e., a modelling filter for the process) in the sense that:

lim
n→∞

∫ π

−π

|Fn∗(eiλ)−1 − F∗(e
iλ)−1|2W (eiλ)dλ = 0.

If some Brune sections are also extracted (corresponding to a transmission zero

on T), no convergence results were given in [37], instead some explicit formulas

for the approximation error
∫ π

−π
|Fn∗(eiλ)−1−F∗(e

iλ)−1|2W (eiλ)dλ are derived. In

this case Fn∗ and 1
Fn∗

can still serve as useful approximate rational modelling and

innovation filters, respectively, if the transmission zeros are chosen appropriately

as to keep the approximation error small.

2.7 Limitations of the Schur algorithm

The Schur algorithm, although elegant and results from a beautiful combina-

tion of theoretical insights from circuit theory and harmonic analysis, has some

limitations which we shall elaborate upon in this section.

It has long been observed that the Szegö-Levinson algorithm converges slowly

when W is non-coercive (has zeros on the unit circle) or is almost non-coercive.
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This is also the case with all other spectral factorization algorithms that the

author is aware of. In the case of the Szegö-Levinson and assuming that W

is rational, an asymptotic analysis of this behavior is given in [12, 9] and goes

as follows. Let us write W as W (eiθ) = a∗(eiθ)a(eiθ)
b∗(eiθ)b(eiθ)

, where a and b are co-prime

polynomials having no roots in C\D with a(0) = 1. Let c0, c1, . . . be the covariance

sequence associated withW and let r0, r1, . . . be the (unique) corresponding Schur

parameters (for details see [7, 34, 12, 9]). Then in [12, 9] it was shown that a

certain almost recurrence relation on the sequence rk, rk+1, . . . can be established

for all k large enough. In particular, rk, rk+1, . . . is almost rational, and a will be

an almost recurrence polynomial, in the terminology of [12, 48], for the sequence.

To be precise, if a = 1+a1z+ . . . alz
l (al 6= 0) then for any given ǫ > 0 there exists

an integer K(ǫ) such that rk, rk+1, . . . , rk+l obeys the almost recurrence relation:

|rk+1 + a1rk+2 + . . .+ alrk+l| < ǫ max
k<m<k+l

{|rm|},

for all k > K(ǫ) (note that Schur parameters satisfy |rk| ≤ 1 for all k ≥ 0).

A consequence of the almost recurrence is that the asymptotic rate of decay

of the Schur parameters are dictated by the location of zeros of a. If the roots of

a are away from T, the rate of decay is geometric, but the rate steadily decreases,

although still geometric, as the location of the zeros come closer to the unit circle.

When there is a root on T then the geometric rate is lost. Since it is well known

that σn = Πn
k=0(1 − |rk|2) (σn is as defined in Section 2.5, see for example [12]),

we clearly see that the Szegö-Levinson algorithm converges at the same rate as

the rate of decay of rk. Hence, when a has roots close to or on the boundary, rk

decays slowly and the Szegö-Levinson algorithm follows suit.

The same line of reasoning as given above also applies to the Schur algorithm

by using an interpretation of that algorithm given by Delsarte and Genin in [38].

The latter interpretation allows us to see more lucidly the connections of the

Schur algorithm to the Szegö-Levinson in terms of Toeplitz matrices. Suppose

that the transmission zeros z1, z2, . . . ∈ D are chosen such that zk = 0 for all

k large enough (thus
∑∞

k=1(1 − |zk|) = ∞). Let us define h0 = 1 and hn(z) =

Πn
k=1(1 − z∗kz) for n ≥ 1, and let Wn = W

|hn|2
. Suppose also that W is a bounded

rational spectral density and Wn is integrable on T for all n (this will be the

case if any zk on T is a PLL of W and the multiplicity of zk does not exceed

the order of the PLL). Denote the covariance sequence associated with Wn by

cn0, cn1, . . ., i.e., cnk = 1
2π

∫ π

−π
Wn(e

iλ)e−ikλdλ. Then the family of finite sequences

cn0, cn1, . . . , cnn for n = 0, 1, 2, . . . form what is referred to in [38] as a first degree
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Toeplitz family. To see this, we note that Wk = Wk−1

|z−zk−1|2
for all k ≥ 1 with

W0 = W . Then from [38, Eq. (7)] it is easy to see that the collection of partial

sequences ck0, ck1, . . . , ckk, k = 0, 1, . . . , n, will generate such a family of Toeplitz

matrices.

Let φn1, . . . , φnn be the first n sequence of orthogonal polynomials with respect

to the spectral density Wn (thus φnn may be computed with the Szegö-Levinson

algorithm). Thus, for fixed n, φnn∗

φnn,0
(here φnn,0 denotes the leading coefficient of

φnn) is the solution to Problem 2.5.2 given a WSS process {Xnk}k∈Z with spectral

density Wn or, equivalently, with covariance sequence cn0, cn1, . . ., for all n. As

shown in [38], φ00, φ11, φ22, . . . can be computed recursively, and this is exactly

what the Schur algorithm in [37] actually does. Therefore, 1
φnn∗

is an approximate

modelling filter for {Xnk}k∈Z while hn∗

φn∗

is an approximate modelling filter for a

process {Xk}k∈Z with spectral density W . In fact, hn

φnn
= Fn [37, pp. 654-656],

where Fn is as defined in Section 2.6. However, if W has roots almost at or on

T which are not exactly cancelled by a corresponding root of hn then, by the

almost recurrence property of the Schur parameters that we have just discussed,

Fn converges slowly to a spectral factor of W . The same reasoning applies to the

general case where zk is not necessarily zero for all k large enough, since for any

fixed n which is not large, the presence of uncancelled zeros of W in Wn implies

that φnk can only be a “good” approximate innovation filter for k much larger

than n.

In practice, exact cancellation of roots of W on T is of course not possible

to achieve due to approximation and numerical errors. However, this is not the

only problem that can be encountered. A more fundamental limitation is that in

some instances W may have a zero b ∈ T which is not PLL, i.e., there does not

exist any positive integer k such that
∫ π

−π
W (eiλ)
|eiλ−b|2kdλ <∞. An example of such a

spectral density is the following:

W (eiλ) =

√

1 + cosλ

1 + cosλ+ σ(1 − cosλ)
, σ > 0 (2.7)

which has a zero at b = −1 but which may be inspected not to be a PLL. Hence

it is not possible to extract a Brune section with transmission zero at b = −1 in

order to “cancel” that particular zero of W and accelerate convergence.

Therefore, we see that there are circumstances where the Schur algorithm

is inadequate for numerical spectral factorization. However, to the best of our

knowledge the Schur algorithm (of which the Szegö-Levinson algorithm is a special

case) seems to be the only algorithm which allows placement of desired zeros on
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D and applies to a reasonably large class of spectral densities, including non-

rational and non-coercive ones. For this reason, in Chapter 6 we propose a new

approach to spectral factorization which can be applied to derive approximate

rational spectral factors of spectral densities such as of the type given in (2.7)

with zeros on the unit circle which need not be PLL.



Chapter 3

Results on Bounded Solutions of

the Rational Covariance

Extension Problem

3.1 Introduction

In the last chapter we have explained the motivation of our work in the context

of wide sense stationary processes, and reviewed some related concepts, including

the notion of spectral factorization. In this chapter we shall describe the so-

called rational covariance extension problem with degree constraint (RCEP). Our

interest in the RCEP is as a tool for developing a new approach to spectral

factorization that will be proposed in Chapter 6 of the thesis.

Recent years have seen significant advances in the theory of analytic interpo-

lation on the open unit disc of the complex plane. Some major results are the

parametrization of all positive real rational functions interpolating a certain posi-

tive partial covariance sequence c0, c1, . . . , cn, in terms of desired “spectral zeros”

and the introduction of a convex optimization based approach to compute the so-

lution [9, 16, 5, 48, 6]. However, the convex optimization approach was originally

developed for the case where none of the spectral zeros lie on the unit circle. The

remaining case where there are spectral zeros on the unit circle is important not

only for the sake of completeness, but also due to the fact that placing or forcing

a zero on the unit circle is desirable, such as in the design of some filters. In this

chapter, we derive some new theoretical results for this special case based on con-

vex optimization. An alternative treatment based on solving non-linear equations

has been given in [49]. However, there are important new insights gained with the

29
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current approach. For example, we are able to derive a necessary and sufficient

condition for a solution to be bounded (have no poles on the unit circle). We also

assert, and demonstrate by numerical examples, that bounded solutions can be

computed using methods that have been developed for pseudopolynomials free of

zeros on the unit circle. In fact, building on the ideas developed in this chapter

and the next, we shall show in Chapter 5 that an earlier homotopy continuation

algorithm due to Enqvist [50] can compute all rational covariance extensions of

a bounded degree. This was not previously known and could be advantageous

in view of the current lack of theoretical convergence results for the algorithm of

[49] and the more general nature of the algorithm of [50] (to be discussed further

in Chapter 5).

More recently in [51], a theory of generalized interpolation with complexity

constraint has emerged as an extensive generalization of the convex optimization

approach first presented in [5]. The focus of [51] is on theoretical development

(rather than numerical development as in [49]) and applies to a general, possibly

abstract, class of interpolation problems with complexity constraint (a general-

ization of the notion of degree constraint). In particular, it also covers the case

where the parametrizing pseudopolynomial has zeros on the unit circle. Our anal-

ysis, which is also based on convex optimization, proceeds in a different manner

from [51]. Intrinsic and important differences between our work and [51] will be

discussed. In particular, we argue that our results do not follow obviously from

[51].

The discussion of this chapter is adapted from the papers [17, 52] (joint work

with A. Bagchi).

3.2 The rational covariance extension problem

(RCEP)

In this section we shall formally define the rational covariance extension problem

(RCEP).

Definition 3.2.1 A sequence of complex numbers c0, c1, . . . , cn (with c0 ∈ R) is

said to be a partial covariance sequence (PCS) if the Toeplitz matrix T= [cj−i]
n+1
i,j=1,

with c−|i| = c∗|i|, is positive definite.

Problem 3.2.2 (RCEP) Given a PCS c0, c1, . . . , cn (n ≥ 1), find all rational

functions f ∈ C of McMillan degree less than or equal to n such that the first
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n+ 1 coefficients of the Taylor series expansion of f about 0 is 1
2
c0, c1, . . . , cn.

The RCEP basically adds a new requirement of degree bound to the classical

Carathéodory extension problem which is traditionally solved by Schur’s algo-

rithm [12]. A drawback of Schur’s algorithm is that, in general, it does not give

a convenient parametrization of solutions of a bounded degree. The Carathédory

extension problem is related to the classical Nevanlinna-Pick interpolation prob-

lem which was solved by Nevanlinna by an algorithm similar to Schur’s [53],

sometimes known as the Nevanlinna-Schur algorithm.

In a series of papers [9, 16, 48], a complete parametrization of all solutions of

the RCEP has been established. We now state a pertinent result:

Theorem 3.2.3 For a given PCS and any polynomial η 6= 0 of degree ≤ n

with roots in C\D and normalized by η (0) = 1, there exists a unique pair of

polynomials (π, χ) of degree ≤ n such that χ(0) > 0, π + χ has all its roots in

C\D, the pair satisfies the relation

πχ∗ + χπ∗ = κ2ηη∗ (3.1)

for a fixed κ > 0, and f = π
χ

satisfies the requirements of the RCEP.

Remark 3.2.4 This theorem is stated slightly differently from [48, Theorem 2].

We have added the requirement χ(0) > 0 and κ fixed so that the pair (π, χ) is

unique. In [48], it is implicit that the uniqueness of (π, χ) is in the equivalence

class of graph symbols.

The parametrization given in the theorem may also be stated equivalently in

terms of so-called pseudopolynomials. By a pseudopolynomial we mean a complex

function of the form f(z) = a0 +
n
∑

k=1

(

a∗kz
−k + akz

k
)

, where 0 ≤ n < ∞, an 6= 0

and (a0, a1, . . . , an) ∈ R × C
n. Then n is said to be the order or degree of the

pseudopolynomial f (the order is zero if f is a constant function). Let Q (n,A)

denote the set of all pseudopolynomials of order at most n with (a0, a1, . . . , an) ∈
R×An where A ⊆ C. We induce a topology on this set by the maximum norm:

‖f‖∞ = max
z∈T

|f(z)|. We also define Q+(n,A) to be the set of all elements of

Q (n,A) which are strictly positive (> 0) on T. With pseudpolynomials having

been defined, we may equivalently state the parametrization of all solutions of

the RCEP in Theorem 3.2.3 in terms of elements d ∈ Q+ (n,C)\{0}, where

d = κ2ηη∗, and we can state a more specific problem, the particular rational

covariance extension problem (PRCEP):
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Problem 3.2.5 (PRCEP) Given a PCS c0, c1, . . . , cn (n ≥ 1) and a pseu-

dopolynomial Ψ ∈ Q+ (n,C)\ {0}, find the rational function f = a
b

∈ C of

McMillan degree ≤ n such that the first n + 1 coefficients of the Taylor series

expansion of f about 0 is 1
2
c0, c1, . . . , cn and ab∗ + ba∗ = Ψ.

A convex optimization method for computing solutions of the PRCEP for any

given real valued PCS c0, c1, . . . , cn and pseudopolynomial Ψ ∈ Q+(n,R) (i.e., Ψ

is free of roots on T) was first given in [5, 6], and was subsequently adapted to

solve the Nevanlinna-Pick interpolation problem with degree constraint in [14].

However, a specialized aspect of the theory which has received relatively less

attention is the case of solving the PRCEP when the pseudopolynomial has zeros

on the boundary. In this work, we extend the method of [5, 6] to the case where

the pseudopolynomial has zeros on the boundary. It turns out that this leads to

interesting new theoretical insights, including a necessary and sufficient condition

for a H∞ solution, as shown in the next section. A numerical treatment of the

problem was recently given in [49] based on solving non-linear equations. There

the orientation is towards computation of any real solution of the RCEP.

3.3 Main results

In this section we derive some properties of the solutions of the RCEP when the

parametrizing pseudopolynomial has zeros on T. In particular we show a neces-

sary and sufficient condition for a solution to be in H∞ and establish sequential

continuity of the map from Ψ to the minimizer of a certain functional JΨ (to be

defined below).

Define the mapping Q : R × Cn → Q(n,C) by:

Q(q0, q1, q2, ..., qn)(z) = q0 +
n
∑

k=1

1

2
(q∗kz

−k + qkz
k). (3.2)

Clearly Q is a bijection.

Remark 3.3.1 For shorthand, we shall write the integral 1
2π

∫ π

−π
f
(

eiθ
)

g
(

eiθ
)∗
dθ

as 〈f, g〉.

For any Ψ ∈ Q+(n,C)\ {0} we consider the functional JΨ : Q−1 (Q+(n,C)) →
R ∪ {∞} defined by:

JΨ (q) = ℜ
{

c∗q − 〈Ψ, logQ (q)〉
}

, (3.3)
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where c = col(c0, c1, . . . , cn) and q = col(q0, q1, . . . , qn). Here col(a1, a2, . . . , an)

denotes the column vector [a0 a1 . . . an]
T .

Note that JΨ can be viewed as an extension toQ−1(Q+(n,C)) of the functional

ϕ that was defined in [6, (4.1)] for the special case where Ψ ∈ Q+(n,R) and

c0, c1, . . . , cn is real-valued. It then follows by close inspection of the proofs that

certain key results in [6] can be easily extended to the current setting where

c0, c1, . . . , cn is complex-valued and Ψ ∈ Q+(n,C)\{0}. In particular, we state

the analogues of Lemma 4.2, Lemma 4.3 and Proposition 4.6 of [6] in the following

theorem:

Theorem 3.3.2 JΨ has the following properties for any Ψ ∈ Q+(n,C)\{0}:

• JΨ is finite and continuous at any q ∈ Q−1 (Q+(n,C)), except at zero. The

functional is infinite, but continuous, at q = 0. Moreover, JΨ((1−t)q0+tq1)

is a C∞ function w.r.t. t for any q0, q1 ∈ Q−1 (Q+(n,C)).

• JΨ is strictly convex on the closed, convex domain Q−1 (Q+(n,C)).

• For all r ∈ R, J
−1
Ψ (−∞, r] is compact. Thus JΨ is proper (i.e., J

−1
Ψ (A) is

compact whenever A is compact) and bounded from below.

• The functional JΨ has a unique minimum on Q−1 (Q+(n,C)).

We now state the first result on a solution of the RCEP corresponding to a

pseudopolynomial having zeros on T:

Theorem 3.3.3 If qmin ∈ Q−1 (Q+(n,C)) is a minimum for JΨ then the solution

of the PRCEP is: f = a
b

where bb∗ = Q (qmin) and ab∗ + ba∗ = Ψ. Conversely,

suppose that f = a
b

is the solution to the PRCEP with b being an antistable

polynomial (i.e., having roots strictly in C\D) and ab∗ + ba∗ = Ψ. Then qmin =

Q−1 (bb∗) is a unique minimum for JΨ.

Proof. By inspection of the proofs of [6, Theorems 4.7 and 4.8] and using the

directional derivative to replace the ordinary derivative, it follows those proofs

remain valid if the polynomial σ = zn + σ1z
n−1 + . . . + σn−1z + σn of degree

n defined in equation (2.18) of [6] is complex and not Schur (i.e., having roots

in D), but merely stable (i.e., having roots in D). Also note that σ∗σ can be a

pseudopolynomial of degree less than n if ∃m satisfying 1 ≤ m ≤ n, such that

σk = 0 for all k ≥ m. The main idea is that the minimizer of JΨ may be an

interior point even when Ψ = σ∗σ ∈ ∂Q+ (n,C) \ {0}. 2
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The minimizer of JΨ may then be found by a Newton descent type algorithm

which has been outlined in [5, 6, 14]. We illustrate this in the following example.

Example 3.3.4 Let the given partial covariance sequence be

{0.2115, 0.0728,−0.0396}.

We choose the pseudopolynomial Ψ(z) = z+2+z−1 which has two zeros on the unit

circle, i.e., both at z = −1, and seek a solution of the RCEP of degree 2. By using

a Newton gradient descent algorithm we obtain qmin = col (8.6250, 3.5000, 2.0000).

It can be checked that qmin is in the interior of Q−1 (Q+ (n,R)), and the solution

of the PRCEP is

f(z) =
0.09877 + 0.1111z + 0.01234z2

8 + 2z − z2
.

An interesting question now is: what could happen if the minimum of JΨ lies

on the boundary of Q−1 (Q+(n,C))? We first look at an insightful example.

Example 3.3.5 Consider the Carathèodory function

f(z) =
1

2

1 + z
2

1 − z
2

. (3.4)

The associated PCS is 1, 1
2
, 1

4
, . . .. We choose the pseudopolynomial Ψ(z) = z +

2 + z−1 having a double root at z = −1. By Newton gradient descent we find

qmin ≈ col(2, 0.66749,−1.3324). The roots of Q (qmin) are

{2.0013,−1.0061,−0.99396, 0.49967},

and the approximate solution is

f̂ =
0.3326 + 0.4978z + 0.1652z2

2.0135 + 0.9952z − z2
.

Note how two roots of Q(qmin) are close to z = −1. Assuming that were it not

for numerical discrepancies that both roots would be exactly −1 and cancel the

two corresponding roots of Ψ, we find: Ψ(z)
Q(qmin)(z)

= 1.5001

2.5010−(z+ 1
z )

which is the power

spectral density of the Carathèodory function

f̂(z) = 0.49948
1 + 0.4997z

1 − 0.49967z
,

a function close to the true function f given in (3.4). Observe that we have

deliberately chosen Ψ such that qmin is intuitively expected to lie on the boundary,
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in contrary to Example 3.3.4 in which qmin is in the interior. To see this, note

that f maybe written as f = a
b

with a = (1 + z
2
)(z+ 1) and b = 2(1− z

2
)(z+ 1) so

that a∗b + b∗a = Ψ and b∗b share a common double root at z = −1. In fact, the

purpose of this example is to illustrate a case where qmin is at the boundary and

also seems to be a stationary point, and to motivate the next theorem. We shall

consider this example again in Section V.

Remark 3.3.6 When qmin is close to or on the boundary, numerical problems

can arise when Newton descent is used to find qmin. To improve the situation

for qmin close to the boundary, the optimization problem can be reformulated and

numerically solved by a continuation method [50]. In certain circumstances, the

same also applies when qmin is at the boundary. This is discussed in Section 3.4.

As it turns out, the generality of the observation in Example 3.3.5 can be

formally proven. It is the content of the next theorem:

Theorem 3.3.7 The solution of the PRCEP is in H∞ if and only if JΨ has a sta-

tionary point in the interior or boundary of its domain. If Q (qmin) ∈ ∂Q+(n,C)

and qmin is stationary, then every root of Q (qmin) on T will also be a root of Ψ

on T, and the solution of the PRCEP is of order less than n. In this case the

solution is given by: f = a
b

where bb∗ = Q+ (qmin), ab∗ + b∗a = Ψ̃, and

1. Q+ (qmin) ∈ Q+(n,C) denotes the pseudopolynomial that is left behind after

all factors
(

z±1 − eiφ
)

corresponding to the roots of Q (qmin) on T have been

removed from Q (qmin).

2. Ψ̃ denotes the pseudopolynomial that is left behind after all factors
(

z±1 − eiφ
)

corresponding to the roots of Q (qmin) on T have been removed from Ψ.

Proof. We need only prove the initial statement that the solution of the

PRCEP is bounded if and only if JΨ has a stationary point in the interior or

boundary of its domain. The remaining statements of the theorem all follow

from the proof of the initial statement. Let q be such that Q(q) ∈ ∂Q+(n,C) and

such that all the roots of Q(q) on T are also the roots of Ψ on T. Let the set of

all q ∈ Cn+1 satisfying the previous two conditions be denoted by Mn,Ψ. First

we show that for any q ∈ Mn,Ψ ∪ Q−1(Q+(n,C)), the directional derivatives of

JΨ exist in all feasible directions. To this end, for any q0 ∈ Q−1(Q+(n,C)) we

define the directional derivative:

∇Jq0−q (q) = lim
h↓0

JΨ (q + h(q0 − q)) − JΨ(q)

h
.
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It is easy to check that if q + h(q0 − q) ∈ ∂Q+(n,C) for all 0 ≤ h < ζ and some

ζ > 0, then Q(q) and Q(q0) must share a root on T. Since all roots of Q(q) on T

are also roots of Ψ on T, it follows that Ψ
Q(q+h(q0−q))

is uniformly bounded a.e. on

T for all q0 ∈ Q−1(Q(n,C)) and for all h > 0. From the mean-value theorem of

calculus it follows that:

Ψ(eiθ)
logQ(q + h(q0 − q))(eiθ) − logQ(q)(eiθ)

h

=
Ψ(eiθ)Q(q0 − q)(eiθ)

Q(q)(eiθ) + η(h, eiθ)Q(q0 − q)(eiθ)
,

where 0 < η(h, eiθ) < h, for all θ except for a finite number for which Q(q)(eiθ) =

0. Since the right hand side of the last equality is uniformly bounded for almost

all (h, eiθ) ∈ [0, 1
2
] × T, we have that lim

h↓0
〈Ψ, logQ(q + h(q0 − q)) − logQ(q)

h
〉 =

〈Ψ, lim
h↓0

logQ(q + h(q0 − q)) − logQ(q)

h
〉 by the Lebesque Dominated Convergence

Theorem [54]. Therefore, for any q = col (q0, . . . , qn) ∈ Mn,Ψ ∪ Q−1(Q+(n,C))

and any q0 = col (q00, . . . , q0n) ∈ Q−1(Q+(n,C)) we get:

∇q0−qJΨ (q) = ℜ
{

c∗ (q0 − q) −
n
∑

k=0

〈 Ψ

Q(q)
, gk∗〉(q0k − qk)

}

= ℜ
{

n
∑

k=0

(

ck − 〈 Ψ

Q(q)
, gk〉

)∗

(q0k − qk)
}

.

where gk(z) = zk.

Now we are ready to prove necessity. By Theorem 3.2.3 and since the so-

lution of the PRCEP is bounded by hypothesis, we know that there is a unique

Ω ∈ Q+(n,C) such that 〈Ψ
Ω
, gk〉 = ck, for k = 0, 1, . . . , n and Q−1(Ω) lies in

Mn,Ψ ∪ Q−1(Q+(n,C)). Setting q = Q−1(Ω) then we have that ∇Jq0−q(q) = 0.

Hence that particular choice of q is a stationary point and it is the unique mini-

mizer of JΨ. This establishes the necessity.

We proceed to prove sufficiency. Let q be a stationary point of JΨ by letting

∇Jq0−q (q) = 0 for all q0 ∈ Q−1(Q+(n,C)). Then q ∈ Mn,Ψ ∪ Q−1(Q+(n,C)),

otherwise ∇q0−qJΨ(q) = +∞ ∀q0 ∈ Q+(n,C) (by the same arguments employed

in the proof of [5, Lemma 5.4]), and we have:

ℜ
{

n
∑

k=0

(

ck − 〈 Ψ

Q(q)
, gk〉

)∗

(q0k − qk)
}

= 0 (3.5)

Now, for any q ∈ Mn,Ψ∪Q−1(Q+(n,C)) we may write Q(q) = Q+(q)Q0 (q) where

Q0(q) is a pseudopolynomial with all its roots on T or is identically equal to 1
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if no such roots exist, while Q+(q) is a pseudopolynomial which does not have

roots on the boundary. Because all the roots of Q(q) which are on the boundary

are also roots of Ψ by hypothesis, we may write Ψ = Ψ̃(q)Q0(q), where Ψ̃(q) is

a pseudopolynomial defined by Ψ̃(q) = Ψ
Q0(q)

. After inserting the two identities

into (3.5) we obtain:

ℜ
{

n
∑

k=0

(

ck − 〈 Ψ̃(q)

Q+(q)
, gk〉

)∗

(q0k − qk)
}

= 0 (3.6)

However, equation (3.6) holds for all q0 ∈ Q−1(Q+(n,C)). Therefore by inspection

(e.g., see proof of [55, Lemma 5.1]) we must have

ck − 〈 Ψ̃(q)

Q+(q)
, gk〉 = 0 ⇐⇒ 〈 Ψ̃(q)

Q+(q)
, gk〉 = ck

for k = 0, 1, . . . , n. Therefore, there is a unique Carathèodory function f such

that (f + f∗)(e
iθ) = Ψ̃(q)(eiθ)

Q+(q)(eiθ)
, f satisfies the interpolation constraints, and f is

bounded. Hence we have shown sufficiency. Note the cancellation that takes

place if Q(q) has roots on the boundary. In this case the solution f will be of

degree less than n. 2

Therefore, stationarity of the minimizer of JΨ is essentially a trademark for

the boundedness of the solution: if it is stationary then the solution is bounded,

otherwise it is not. We may also show the following sequential continuity result:

Theorem 3.3.8 Let Ψ ∈ Q+ (n,C)\{0} and let {Ψk}k≥1 ⊂ Q+ (n,C)\{0} be a

sequence such that lim
k→∞

‖Ψ − Ψk‖∞ = 0. If

qmin = arg min
q∈Q−1(Q+(n,C))

JΨ (q) and qmin,k = arg min
q∈Q−1(Q+(n,C))

JΨk
(q) ,

then

lim
k→∞

‖qmin − qmin,k‖ = 0 and lim
k→∞

‖Q (qmin) −Q (qmin,k)‖∞ = 0.

Proof. For r > 0, define the compact sets

Br(qmin) = {q ∈ R × C
n : ‖q − qmin‖ ≤ r}

and Sr(qmin) = ∂Br(qmin). Also define the compact sets Xr(qmin) = Br(qmin) ∩
Q−1 (Q+ (n,C)) and Yr(qmin) = ∂Xr(qmin). We prove that given any ǫ > 0

small enough such that 0 /∈ Xǫ(qmin), there is a K (ǫ) ≥ 1 such that qmin,k ∈
Bǫ(qmin) ∀k > K (ǫ). First, we observe that

|JΨ(q) − JΨk
(q)| ≤ 〈|Ψ − Ψk| , |logQ (q)|〉

≤ ‖Ψ − Ψk‖∞ 〈1, |logQ (q)|〉 if q 6= 0,
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where 1 : z 7→ 1 ∀z∈T. If we define D = max
q∈Xǫ(qmin)

〈1, |logQ (q)|〉, we have that

∀q ∈ Xǫ(qmin):

|JΨ(q) − JΨk
(q)| ≤ D ‖Ψ − Ψk‖∞

or more explicitly,

JΨ(q) −D ‖Ψ − Ψk‖∞ ≤ JΨk
(q) ≤ JΨ(q) +D ‖Ψ − Ψk‖∞ (3.7)

For any r > 0, define Zr(qmin) = Yr(qmin) if qmin ∈ Q−1(Q+(n,C)) and

Zr(qmin) = Sr(qmin) ∩ Q−1(Q+(n,C)) if qmin ∈ ∂Q−1(Q+(n,C)). Notice that

Zr(qmin) is a compact set. Choose any ǫ > 0 small enough such that 0 /∈ Xǫ(qmin)

and such that Zǫ(qmin) ⊂ Q−1(Q+(n,C)) if qmin ∈ Q−1(Q+(n,C)). Next, for

any q 6= qmin define the unit vector uq = q−qmin

‖q−qmin‖
, and for any q ∈ Zǫ(qmin)

and any 0 < d < ǫ define the functions L1(q, d)=JΨ(q) − JΨ(qmin + duq) and

L2(q, d)=JΨ(qmin + duq) − JΨ(qmin). Clearly, from the strict convexity of JΨ,

L1(·, d) and L2(·, d) are continuous, positive-valued (> 0) functions on Zǫ(qmin).

Furthermore, define δi(d)= min
q∈Zǫ(qmin)

Li(q, d) for i = 1, 2. Observe that δi(d) > 0

for i = 1, 2, for if it is not then ∃q ∈ Zǫ(qmin) such that L1(q, d) = 0 and/or

L2(q, d) = 0, contradicting the fact that they are positive-valued on Zǫ(qmin). Let

us now choose a fixed d ∈ (0, ǫ). Choose Kd (ǫ) (note the dependence on d) large

enough such that ‖Ψ − Ψk‖∞ < min{δ1(d),δ2(d)}
3D

for all k > Kd (ǫ), then using (3.7)

one easily gets that for any q ∈ Zǫ(qmin):

JΨk
(qmin) < JΨk

(qmin + duq) < JΨk
(q) ∀k > Kd (ǫ) (3.8)

From (3.8) and the strict convexity of JΨk
for all k, it follows that qmin,k ∈

Xǫ(qmin)\Zǫ (qmin) for all k > Kd (ǫ).

Summarizing, we have shown that for every ǫ > 0 such that 0 /∈ X ǫ
2
(qmin),

∃K
(

ǫ
2

)

such that for all k > K
(

ǫ
2

)

, qmin,k ∈ X ǫ
2
(qmin) is in the interior of

Bǫ(qmin), or in other words, lim
k→∞

‖qmin − qmin,k‖ = 0. It follows immediately

that lim
k→∞

‖Q (qmin) −Q (qmin,k)‖∞ = 0. This concludes the proof. 2

Although one may view the last theorem as a corollary to [49, Theorem 3.1]

when Ψ and the PCS c0, c1, . . . , cn are real, it is an interesting result in its own

right. Notice that its proof is based solely on properties of JΨ (see Theorem

3.3.2) and is independent of Theorem 3.2.3. On the other hand, [49, Theorem

3.1] was derived based on Theorem 3.2.3. In fact, we claim that it is possible to

show the converse: Theorem 3.2.3 and [49, Theorem 3.1] can be derived using

Theorems 3.3.2 and 3.3.8. This interesting ramification of Theorem 3.3.8 presents

an alternative analysis of the RCEP, including unbounded solutions, which will

be treated in Chapter 4.
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3.4 Discussion, extensions, and application of

results

Our convex optimization based approach is reminiscent of the extensive and ab-

stract generalization of [5, 6] given in [51], but it may be inspected that the two

treatments are not identical and there are two important differences which we

shall now discuss.

First, the objectives of the two works are different. In [51], the objective is

to extend the convex optimization technique to generalize Theorem 3.2.3 to the

setting of a general class of interpolation problems with a so-called complexity

constraint, whereas in the present work we do not attempt to re-derive Theorem

3.2.3, but rather to use the theorem and/or properties of JΨ when Ψ has zeros on

T (to the best of our knowledge, we were the first to do this) to derive Theorems

3.3.3, 3.3.7 and 3.3.8. Secondly, our treatment is centered on analysis of bound-

ary properties of the functional JΨ when Ψ may have zeros on T. Although a

generalized version of JΨ was formulated in [51], its properties when Ψ has zeros

on T were not investigated. Instead, an alternative route was taken whereby the

case Ψ ∈ ∂Q+(n,C)\{0} is treated via analysis of a functional KΨ (see [51, eq.

(2.16)]) defined on a set of Schur functions (i.e., functions which are analytic on

D and bounded there in magnitude by one) satisfying a certain constraint. In

particular, it has been shown that the unique extremal point of KΨ (which, in

this case, is a maximizer) is always stationary (see the penultimate part of the

proof of [51, Theorem 1] on uniqueness of a solution, p. 13). On the other hand,

this is not the case for JΨ. As we have shown, the extremal point of JΨ (which is

a minimizer) need not be stationary. In fact, it is precisely this unique property

of JΨ over KΨ which led us to a characterization of H∞ solutions of the RCEP

as stated in Theorem 3.3.7.

Continuing further, we note that for Ψ positive definite on T, KΨ is obtained

from a transformation of the functional IΨ, the dual of JΨ (see [51, eq. (2.14)]).

To derive our results within the development of [51], some results relating KΨ

and JΨ need to be established for Ψ non-negative but not positive definite. Then

one should show that the maximizer f of KΨ satisfies ess inf
z∈T

|1+f(z)| > 0 (this is

equivalent to the RCEP having a bounded solution) if and only if the minimizer

of JΨ is stationary. These relations have not been considered in [51]. Thus, in

light of these facts, our results do not obviously follow from [51]. On the contrary,

it may be possible to generalize them to the setting of [51] by further analysis of
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the generalized version of JΨ. Indeed, we should keep in mind that our results

are specialized to the RCEP, while those of [51] apply to a more general, possibly

abstract, class of interpolation problems with a complexity constraint.

We now discuss some practical implications of Theorems 3.3.3 and 3.3.7. From

Theorem 3.3.3 we see that when Ψ has zeros on T and the minimizer of JΨ is in

the interior of Q−1(Q+(n,C)) and away from the boundary, the solution can be

computed rather quickly and easily by Newton descent. We have illustrated this

in Example 3.3.4. When the minimizer is close to the boundary, the continua-

tion method of [50] can be applied for good numerical results. For cases where

Theorem 3.3.7 is applicable, it ought to also be possible to compute solutions by

the continuation method. Example 3.3.5 indicates that even a standard Newton

descent method can yield an approximate solution, albeit a crude one. There-

fore, it is reasonable to expect the more robust continuation method to give good

numerical results for such cases or for ones which are similar (i.e., almost can-

cellations of insignificant poles lying close to the boundary). Indeed, to support

this claim we rework Example 3.3.5 using the continuation method:

Example 3.4.1 Let c0, c1, c2 and Ψ be as given in Example 3.3.5. Applying the

continuation method with step length parameter ε=0.01 (see [50, p.1196]) yields

b(z)=1.1547 + 0.5773z − 0.5774z2, a(z)=0.5774 + 0.8660z + 0.2887z2, and the

corresponding solution is

f(z)=
0.5774 + 0.8660z + 0.2887z2

1.1547 + 0.5773z − 0.5774z2
.

In fact, in Chapter 5 results will be developed that justify using the contin-

uation method for computing not only the bounded solutions discussed in this

chapter, but all solutions of the RCEP. Since convergence is better understood

for that method, this can be beneficial because at present there are no theoretical

convergence results for the alternative algorithm of [49]. Moreover, there are two

other attractive features of the continuation method. First is that the Hessian of

the modification of JΨ given in [50] can be inverted in a fast and efficient manner

because of its special Toeplitz-plus-Hankel (T+H) structure [56, 57]. This kind

of structure does not seem to be present in the latter algorithm. Secondly, it

can be naturally extended to the setting of more general analytic interpolation

and moment problems [58]. Further discussion of the continuation method will

be postponed until Chapter 5. Thus, our results have extended the utility of the

earlier methods of [6, 50].
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3.5 Concluding remarks

The contributions of this chapter are some new theoretical results on solutions

of the RCEP corresponding to Ψ ∈ ∂Q+(n,C)\{0}, i.e., the case where the

parametrizing pseudopolynomial has zeros on T. In particular, we show that for

a solution to be in H∞, it is necessary and sufficient that the minimizer of JΨ is

stationary. Furthermore, we have shown that some solutions for this case can be

computed using methods that have been developed for Ψ which is free of zeros

on T, extending the utility of those methods. We also establish the sequential

continuity of a certain map based solely on the properties of JΨ and independently

of the result on complete parametrization of all solutions of the RCEP (Theorem

3.2.3). Full exploitation of this result will be given in the next chapter.

We have also outlined the differences between our work and [51] which is also

based on convex optimization but applies to a more general class of interpolation

problems. We point out some interesting differences between the functionals JΨ

and KΨ, which are the main object of the analysis of, respectively, this chapter

and [51], and argue that our results do not obviously follow from [51] and that it

may be possible to generalize them to the setting of [51].

Note that although this chapter specifically treats the RCEP, the results pre-

sented here readily extends to the Nevanlinna-Pick interpolation with degree con-

straint as described in [14, 59, 60]. This more general setting will be taken up in

Chapter 5 when we further develop the method of [50] as a tool for computing

all degree constrained rational interpolants.



Chapter 4

Results on General Solutions of

the Rational Covariance

Extension Problem

4.1 Introduction

In this chapter, we continue to develop the ideas of Chapter 3, in which H∞ solu-

tions of the RCEP were studied, and derive new results relating to all solutions

of the RCEP, including unbounded ones. As in Chapter 3, our development will

be based on convex optimization, similar in spirit to [51], for the special case of

the RCEP (but readily extends to Nevanlinna-Pick interpolation case). Again,

our analysis proceeds differently from [51] and continues the partial extension of

[5] developed in the preceding chapter. We have already noted there are some

important differences between the approach of that chapter and [51]. For ex-

ample, results of Chapter 3, such as a certain necessary and sufficient condition

for boundedness of a solution, do not follow obviously from [51]. The analy-

sis in [51] is carried out by reposing the problem in the setting of contractive

functions on the unit disc via a certain bilinear transformation. This transfor-

mation effectively avoids complications or awkward details which may arise when

dealing with positive real functions. In connection with the last point, it was

mentioned in the last chapter that the functional KΨ studied in [51] always has

a stationary maximizer, whereas the minimizer of the functional JΨ investigated

in the present and previous chapter need not be stationary. This chapter tackles

the problem directly in the original positive-real setting, without recourse to the

space of contractive functions. A possible advantage of this, for the special case

42
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of the RCEP, is that the analysis is done purely on a complex Euclidean space

instead of a function space as in [51]. Moreover, we show that solving the RCEP

is essentially equivalent to finding the minimizers of a class of (strictly) convex

functionals defined on a subset of the complex Euclidean space. This is done

by establishing a new result on a bijective correspondence between denominator

polynomials of non-strictly-positive solutions of the RCEP and the minimizers of

the class of convex functionals associated with non-strictly-positive pseudopoly-

nomials (Theorem 4.2.2). As a corollary to that result, we obtain an alternative

and constructive derivation of Theorem 3.2.3, and a new proof of a homeomor-

phism which was established in [61] for the special case of real interpolators.

An analogous treatment of what we accomplish here for the RCEP (and degree

constrained rational interpolation in general) may also be possible in the general

setting of [51] by considering some appropriate sub-class of positive real functions

and establishing some additional results.

Later in Section 4.3, we generalize the homeomorphism result to also allow

variation in the covariance data. In connection with this last problem, a rele-

vant work in the literature is [62]. However, there are two features of our treat-

ment which contrast it to [62]. The first contrasting feature is that [62] derives

the unique pair of (normalized) partial covariance sequence and positive definite

bounded spectral density which minimizes a certain Kullback-Leibler divergence

criterion under some moment constraints, whereas here we are not interested in

such an optimal pair, but we show that pairs of partial covariance sequence and

pseudoplynomial data are in homeomorphic correspondence with the graph sym-

bols of positive real rational functions of a bounded degree. In particular, we may

perform a continuous coordinate transformation from the first pair to the latter

pair and vice-versa. Secondly, the case where the associated pseudopolynomial is

non-negative, but not positive definite, is not considered in [62]. Indeed, in this

case, the solution of the RCEP may be unbounded and not integrable, while [62]

restricts the solution to be integrable (see Eq. (6) therein). On the other hand,

we allow for non-negative, but not positive definite, pseudopolynomials and do

not impose integrability of the solutions. The importance of considering simulta-

neous variation of the covariance and pseudopolynomial data lies in the fact that

in practice, for example in spectral estimation, both data are typically unknown

and have to be estimated. Continuity implies that the resulting spectral density

estimate will be robust to small errors in the estimates of the pair of data.

We also mention the paper [63] which was brought to our attention by a

referee for the paper [18]. It solves a generalized moment problem with complex-
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ity constraint; however, the problem treated there is rather different since the

non-negative functions µ, which are monotone non-decreasing and of bounded

variation on a compact interval [a, b] of the real line, sought in [63] must satisfy

a finite set of moment conditions and can be expressed as dµ
dt

= P (t)
Q(t)

for some

functions P (t) and Q(t) which are non-negative for almost all [a, b] and for which

the ratio P (t)
Q(t)

is integrable on [a, b] (the latter conditions on dµ
dt

are also referred

to collectively as “complexity constraint”). This is not the case in general for the

RCEP since (unbounded) solutions f of the RCEP that have one or more poles

on the unit circle do not correspond, via the moment constraints

c0 = 2f(0) =
1

2π

∫ π

−π

e−ikθdµ(eiθ)

and

ck =
f (k)(0)

k!
=

1

2π

∫ π

−π

e−ikθdµ(eiθ),

for k = 1, . . . , n, to absolutely continuous functions µ on [−π, π] (see, e.g., [12,

eqs. (3.10)-(3.12), p. 36]).

This chapter continues to use the notation, definitions and results of Chapter

3. However, we now also make note of the following observation. The restriction

of any element of Q+(n,A)\{0} to T is a rational spectral density of McMillan

degree at most 2n, thus we shall often also view any such element as a spectral

density. Hence, to each d ∈ Q+(n,A)\{0} we may associate a unique outer

polynomial of degree at most n, denoted by φ(d), which is the unique canonical

spectral (CSF) of d satisfying: φ(d)(0) > 0 and |φ(d)(z)|2 = d(z) ∀z ∈ T. Details

on outer functions, spectral densities and CSF’s can be found in [64, 15] and will

also be given in the upcoming Chapter 6.

The discussion of this chapter is adapted from the paper [18].

4.2 An analysis of all solutions of the RCEP

For Ψ ∈ Q+(n,C)\{0}, consider once again the functional JΨ introduced in

Chapter 3. Recall from Chapter 3 that the relationship between JΨ and the

RCEP lies in its directional derivatives. For any q, q0 ∈ Q+(n,C), the directional

derivative at q in the direction q0 − q is defined by:

∇q0−qJΨ(q) = lim
h↓0

JΨ(q + h(q0 − q)) − JΨ(q)

h
.
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Let MΨ denote the set of all q ∈ Q−1(Q+(n,C)) such that all roots of Q(q)

on T, including multiplicities, are all also roots of Ψ on T. ∇q0−qJΨ(q) is given

∀q0 ∈ Q+(n,C) by:

∇q0−qJΨ(q) =

{

∑n
k=0 ℜ

{

(

ck − 〈 Ψ
Q(q)

, gk〉
)∗

(q0,k − qk)
}

if q ∈ MΨ

∞ or −∞ otherwise
, (4.1)

where col(q0, q1, . . . , qn) = q, col(q0,0, q0,1, . . . , q0,n) = q0, and gk(z) = zk. If qs is a

stationary point, i.e., ∇q0−qsJΨ(qs) = 0 for all q0 ∈ Q+(n,C), then 〈 Ψ
Q(qs)

, gk〉 = ck

for k = 0, 1, . . . , n and it follows from the Herglotz representation [65] that there

is a unique f ∈ C ∩ H∞ such that f + f∗ = Ψ
Q(qs)

and f is a solution of the

RCEP. As we had shown in the last chapter, stationarity of qs is in fact necessary

and sufficient for a solution to be in H∞ (i.e., has no poles on T). By the

strict convexity of JΨ, qs is also its unique minimizer. The point qs could be in

the interior or boundary of Q−1(Q+(n,C)). However, when Ψ ∈ Q+(n,C), the

minimizer is guaranteed to be an interior point [5, 14]. The following lemma states

this precisely. It was shown in [14] for the degree constrained Nevanlinna-Pick

interpolation problem, but which by inspection holds analogously for the RCEP

(actually, [14] shows that both a and b have no roots on D, that the same is true

for a+ b follows from [9, Proposition 2.6] or by simply noting that a
b

+ 1 ∈ C+).

Lemma 4.2.1 If Ψ ∈ Q+(n,C) then qmin, the unique minimizer of JΨ, is a

stationary point in Q−1(Q+(n,C)). Furthermore, if b is the CSF of Q(qmin) and

a is determined uniquely from a∗b + ab∗ = Ψ, then (a, b) is the unique pair with

b(0) > 0 such that a∗b + ba∗ = Ψ, a + b has no roots on D and f = a
b
∈ C+ is a

solution of the RCEP.

We shall use Theorem 3.3.8 and Lemma 4.2.1 as the basis of our analysis of the

RCEP. To this end, we introduce the following notation: If p(z) =
∑n

k=0 pkz
k is a

polynomial of degree at most n then αp is defined as col(p0, p1, . . . , pn). Hence, p

can be written as p(z) = αT
p Zn(z), where Zn is a complex vector-valued function

defined by Zn(z) = col(1, z, . . . , zn). We also define ‖g‖∞ = ess sup
z∈T

|g(z)| and

‖g‖2 = (〈g, g〉) 1
2 for any complex function g which is measurable on T. In the

ensuing analysis, we shall make use of the following observation. By an argument

given in [61, Appendix A], the interpolation constraints

f(0) =
1

2
c0, f

(k)(0) = ck for k = 1, . . . , n, (4.2)
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imply that there is a (n+ 1)× (n+ 1) matrix W , whose entries are continuously

dependent on the value of the associated PCS c0, c1, . . . , cn, such that if a, b are

polynomials of degree at most n with b(0) > 0, and f = a
b

satisfies (4.2), then αa

and αb are linearly related via αa = Wαb (note that f need not be Carathéodory).

To emphasize the (continuous) dependence of W on c = (c0, c1, . . . , cn), we shall

at times write W (c) in place of W . The next theorem, which we are now in a

position to show, extends the known Lemma 4.2.1 to Ψ ∈ ∂Q+(n,C)\{0}:

Theorem 4.2.2 Let Ψ be an arbitrary element of ∂Q+ (n,C) \{0} and let qmin be

as in Theorem 3.3.8. If b is the CSF of Q(qmin) and a is such that αa = Wαb, then

(a, b) is the unique pair such that b(0) > 0, a+b has no roots on D, a∗b+ab∗ = Ψ

and f = a
b

is a solution of the RCEP.

Proof. Let the sequences {Ψk}k≥1 and {Q(qmin,k)}k≥1 be as in Theorem 3.3.8.

Then {Q(qmin,k)}k≥1 is a sequence of rational spectral densities having the prop-

erties:

i) there can be at most 2n roots of {Q(qmin,k)}k≥1 on or approaching T as

k → ∞, and

ii) it is uniformly bounded in magnitude by some positive number M (by The-

orem 3.3.8).

It follows that the sequence {Q(qmin,k)}k≥1 of spectral densities satisfy a set of

sufficient conditions given in [66, Theorem 8] (Theorem 6.4.5 of Chapter 6) which

guarantee {logQ(qmin,k)}k≥1 to be uniformly integrable on T, i.e.,

lim
c→∞

sup
k≥1

〈I{| logQ(qmin,k)(eiθ)|>c}, | logQ(qmin,k)|〉 = 0,

where IA is the indicator function for the set A. Let bk = φ(Q(qmin,k)) and b =

φ(Q(qmin)). Since Q(qmin,k)
‖·‖∞→ Q(qmin) (Theorem 3.3.8) and {logQ(qmin,k)}k≥1

is uniformly integrable, it follows from [15] that bk
‖·‖2→ b. However, since bk − b

is a polynomial of degree at most n for all k, we also have that bk
‖·‖∞→ b. Before

proceeding further, we make the following observation. From Lemma 4.2.1 we

note that when Ψk ∈ Q+(n,C) then ak + bk has no roots on T and fk = ak

bk
is

a solution of the RCEP if ak is uniquely determined from the equation ak∗bk +

akbk∗ = Ψk. However, as given in [14, p. 831], the last equation is equivalent

to solving the linear equation S(αbk)αak
= dk for αak

with dk = Q−1(Ψk) and S

being a continuous linear operator from R × Cn to Cn+1 × Cn+1 (actually, [14]
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considers the case where b and a+ b are free of roots on C\D, but an analogous

argument holds in our setting). Uniqueness of αak
(hence also of ak) follows

from non-singularity of S(αbk). However, given bk, we also know that ak must

satisfy αak
= Wαbk . Therefore, when Ψk ∈ Q+(n,C), determining ak by solving

akbk∗ +ak∗bk = Ψk (as stated in Lemma 4.2.1) or via the relation αak
= Wαbk are

equivalent. Continuing on with our proof, let ak = αT
ak
Zn with αak

= Wαbk . Since

‖bk−b‖∞ → 0 as k → ∞ it follows that ||Wαbk−Wαb||2 → 0 as k → ∞. Defining

a via αa = lim
k→∞

Wαbk = Wαb, we conclude that f = a
b

satisfies (4.2). For the

remaining parts of the proof, we may assume Ψk has no roots on T for all k. There

is no loss in generality in taking this assumption since qmin, as the limit of qmin,k,

is independent of the particular sequence {Ψk}k≥1 used in approaching Ψ. Then

we have from Lemma 4.2.1 that fk = ak

bk
is a solution of the RCEP for all k. All

that remains now is to show that f ∈ C. Define the set r(b) = {z ∈ T | b(z) = 0}.
Since bk → b and ak → a uniformly on D (bk and ak are in H∞ and continuous

for all k), and bk and ak have no roots in D for all k (due to Lemma 4.2.1 and

our assumption of positive definiteness of Ψk), we obtain:

ℜ
{a(z)

b(z)

}

= ℜ
{

lim
k→∞

ak(z)

bk(z)

}

= lim
k→∞

ℜ
{ak(z)

bk(z)

}

≥ 0 ∀z ∈ D\r(b).

Let us now consider points z in r(b). To this end, let z0 ∈ r(b) be such that z0 is

also a root of a. If z0 has the same multiplicity as a root of a as it does as a root

of b then there is cancellation between the polynomials a and b, f is continuous

at z0, and it follows that ℜ{f(z0)} = limz→z0 ℜ
{

a(z)
b(z)

}

≥ 0 since ℜ{f} ≥ 0 on

D\r(b). For all other z ∈ r(b), it is straightforward to see, again since ℜ{f} ≥ 0

on D\r(b), that ℜ
{

a(z)
b(z)

}

= ∞. Thus we conclude ℜ
{

f(z)
}

≥ 0 for ∀z ∈ D, i.e.,

f ∈ C. Finally, since akbk∗ + ak∗bk = Ψk, and ak + bk has no roots on D, for each

k, by taking passage to the limit as k → ∞ we easily see that a and b must satisfy

a∗b+ ab∗ = Ψ and a+ b also has no roots on D.

We shall now show the converse: If (a, b) is any pair with b(0) > 0 such that

a + b has no roots on D, f = a
b

is a solution of the RCEP (hence αak
= Wαbk is

automatically satisfied) and ab∗ + ba∗ = Ψ, then necessarily b = φ(Q(qmin)). If

f ∈ H∞∩C then we have 〈f+f∗, gk〉 = ck for k = 0, 1, . . . , n (recall that gk = zk).

Noting that f + f∗ = a∗b+ba∗
bb∗

, from (4.1) we see that Q−1(bb∗) coincides with qmin,

the unique minimizer of JΨ with Ψ = a∗b + ab∗. Therefore, b = φ(Q(qmin)).

Suppose now that f has one or more poles on T. Note that such poles can only

be simple (i.e., poles of multiplicity 1) [12, p. 35-36]. Let us write f = a
b1b0

, where

b1(0)b0(0) > 0, a
b1

∈ H∞, b0 has all its zeros on T, and b0 and a
gcd(a,b1)

are co-prime
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(gcd(a, b1) denotes the unique monic polynomial which is the greatest common

divisor of a and b1). Let b0 = Πm
k=1(1 − e−iθkz) with m < n and θ1, . . . , θm ∈

(−π, π] (θi 6= θj whenever i 6= j). Now, we may decompose f as (see, e.g., [12,

eqs. (3.11)-(3.12)]):

f =
a1

b1
+

m
∑

l=1

Kl

2

1 + e−iθlz

1 − e−iθlz
,

where a1

b1
= f1 ∈ H∞ ∩ C and Kl are positive constants for l = 1, . . . ,m. Note

that for each l, the term Kl

2
1+e−iθlz
1−e−iθlz

is in C and has a pole at z = eiθl . Moreover, if

Ψ1 = a1b1∗ + a1∗b1 then, by the argument directly above [12, eq. (3.13)], we also

have that Ψ = a∗b+ ab∗ = Ψ1b0∗b0. Let us now define f2 ∈ C by

f2(z) = f(z) − f1(z)

=
m
∑

l=1

Kl

2

1 + e−iθlz

1 − e−iθlz

=
m
∑

l=1

Kl(
1

2
+

∞
∑

k=1

e−ikθlzk), for all z ∈ D.

Clearly, we may also write f2(z) = 1
2
c2,0 +

n
∑

k=1

c2,kz
k+ higher order terms, where

c2,0 =
∑m

l=1Kl and c2,k =
∑m

l=1Kle
−ikθl for k = 1, . . . , n. Since f1 ∈ H∞ ∩ C

and f1 + f1∗ = Ψ1

b1b1∗
= Ψ

b0b1b0∗b1∗
, from the definition f2 = f − f1 it follows that

c2,0, c2,1, . . . , c2,n are also given by c2,k = ck − 〈f1 + f1∗, gk〉 = ck − 〈 Ψ
b1b0b1∗b0∗

, gk〉
for k = 0, . . . , n. Defining q1 = col(q1,0, q1,1, . . . , q1,n) = Q−1(b1b0b1∗b0∗), we have

for any q = col(q0, q1, . . . , qn) ∈ Q−1(Q+(n,C)):

∇q−q1JΨ(q1) = ℜ
{ n
∑

k=0

(

ck − 〈 Ψ

Q(q1)
, gk〉

)∗

(q − q1)

}

= ℜ
{

m
∑

l=1

Kl(q0 − q1,0) +
n
∑

k=1

(

m
∑

l=1

Kle
−ikθl

)∗

(qk − q1,k)
}

=
m
∑

l=1

Klℜ
{

(q0 − q1,0) +
n
∑

k=1

eikθl(qk − q1,k)
}

=
m
∑

l=1

KlQ(q − q1)(e
iθl).

Now, since Q(q1)(e
iθl) = 0 for l = 1, . . . ,m, it is clear that Q(q − q1)(e

iθl) =

Q(q)(eiθl) ≥ 0 for l = 1, . . . ,m. We conclude that ∇q−q1JΨ(q1) ≥ 0 ∀q ∈
Q−1(Q+(n,C)). By strict convexity of JΨ it follows that q1 coincides with qmin,
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the unique minimizer of JΨ. Since b1(0)b0(0) > 0 and recalling the definition of

q1, this proves that b1b0 = φ(Q(qmin)). 2

The above theorem is a new result. The main idea of the proof is to show that

the bijective mapping from Ψ ∈ Q+(n,C) to (a, b) in Lemma 4.2.1 continues to

hold for Ψ ∈ ∂Q+(n,C)\{0}. It is interesting because it reveals that, for any Ψ ∈
∂Q+ (n,C) \{0}, φ(Q(qmin)) is actually also a unique denominator polynomial of

some solution of the RCEP. Combining this with Theorems 3.3.3 and 3.3.7 of

Chapter 3, we see there are three possible scenarios when Ψ ∈ ∂Q+ (n,C) \{0}:

1. qmin ∈ Q+ (n,C) and is a stationary point of JΨ

2. qmin ∈ ∂Q+ (n,C) \{0} and is a stationary point of JΨ

3. qmin ∈ ∂Q+ (n,C) \{0} but is not a stationary point of JΨ. This is precisely

the case when the associated interpolant has a pole on the unit circle.

The three possible scenarios are illustrated in Fig. 4.1.

Boundary qmin,Boundary qmin,Interior qmin,

0)( minq 0)( minq0)( minq

(iii)(ii)(i)

UnboundedBounded

interpolant

Bounded

interpolant interpolant

Figure 4.1: Three possible scenarios when Ψ ∈ ∂Q+ (n,C) \{0}

Now, combining Theorem 4.2.2 with Lemma 4.2.1 we have the following corol-

lary:

Corollary 4.2.3 Let Ψ be an arbitrary element of Q+ (n,C)\{0} and let qmin be

as in Theorem 3.3.8. If b is the CSF of Q(qmin) and a is such that αa = Wαb, then

(a, b) is the unique pair such that b(0) > 0, a+b has no roots on D, a∗b+ab∗ = Ψ

and f = a
b

is a solution of the RCEP.
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Therefore, to every functional in the set {JΨ}Ψ∈Q+(n,C)\{0}, there is exactly one

pair (a, b) with b(0) > 0 and a+ b having no roots on D such that f = a
b

is a solu-

tion of the RCEP, and vice-versa. As a byproduct we obtain a new constructive

proof, via the set of functionals {JΨ}Ψ∈Q+(n,C)\{0}, of Theorem 3.2.3 on complete

parametrization of all solutions of the RCEP by elements of Q+(n,C)\{0}. As

another byproduct of Corollary 4.2.3, we also obtain a homeomorphism which

was first shown in [61] for real solutions of the RCEP.

Corollary 4.2.4 Let D =
{

d ∈ R × Cn | Q(d) ∈ Q+ (n,C)\{0}
}

and A =
{

b ∈ (0,∞) × Cn | bTZn is outer and (Wb)TZn

bTZn
is a solution of the RCEP

}

. Then

the map G : D → A defined by G : d 7→ αg(d) is a homeomorphism, where

g(d) = φ(Q(qd)), qd = arg min
q∈Q−1(Q+(n,C))

JΨd
(q), and Ψd(z) = d0+

n
∑

k=1

(

dkz
k + d∗kz

−k
)

.

Proof. That G is a bijection is already clear from results preceding the corollary.

Thus we only have to show that G and G−1 are continuous. We will do this for

G, the same follows for G−1 by a similar argument. Let d be any element in

D and define Bd to be the set of all infinite sequences d1, d2, . . . of elements in

D such that ‖dk − d‖2
k→∞→ 0. In first paragraph of the proof of Theorem 4.2.2

we have shown that ‖g(dk) − g(d)‖∞ k→∞→ 0 for all sequences in Bd. Hence also

‖αg(dk) − αg(d)‖2
k→∞→ 0 for all such sequences. Suppose that G is not continuous

at d, then there must exist a sequence e1, e2, . . . of elements in D such that

‖ek − d‖2
k→∞→ 0 but for which ‖αek

− αd‖2
k→∞
9 0. This is a contradiction, so G

must be a continuous map and the proof is complete. 2

4.3 Generalization of results to simultaneous vari-

ation of covariance and pseudopolynomial

data

Thus far we have only looked at the continuous relationship between Ψ and b when

Ψ is varied and the PCS is fixed. However, the ideas used in deriving Theorem

3.3.8, Theorem 4.2.2 and Corollary 4.2.4 can be adapted easily to analyze the case

where the PCS is allowed to vary. In this section we shall state generalizations

of Theorem 3.3.8 and Corollary 4.2.4. Since the main ideas here are the same as

in the last section, we shall only sketch the proofs.

Let P = {(c0, c1, . . . , cn) ∈ R × Cn | c0, c1, . . . , cn is a PCS of order n} and

define the functional Mc,Ψ exactly as on the right hand side of (3.3), but we now
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consider c to be an additional parameter of the function alongside Ψ. Notice that

P is a convex set. Then we have the following analogue of Theorem 3.3.8:

Lemma 4.3.1 Let Ψ,Ψk, qmin, qmin,k be as defined in Theorem 3.3.8 with JΨk
and

JΨ replaced by Mck,Ψk
and Mc,Ψ, respectively, with ck, c ∈ P. If lim

k→∞
‖ck− c‖2 = 0

then lim
k→∞

‖qmin − qmin,k‖2 = 0 and lim
k→∞

‖Q(qmin) −Q(qmin,k)‖∞ = 0.

Proof. As in the proof of Theorem 3.3.8, let Xǫ(qmin) = {q ∈ R × Cn |
‖q− qmin‖ ≤ ǫ}∩Q−1(Q+(n,C)) with ǫ > 0 small enough such that 0 /∈ Xǫ(qmin).

Then |Mc,Ψ(q) − Mck,Ψk
(q)| ≤ ‖c − ck‖2D1 + ‖Ψ − Ψk‖∞D2 for all q ∈ Xǫ(qmin),

where D1 = max
Xǫ(qmin)

‖q‖2, D2 = max
Xǫ(qmin)

〈1, | logQ(q)|〉 and 1 : z 7→ 1 ∀z ∈ T. The

remainder of the proof proceeds along similar lines to the proof of Theorem 3.3.8

by taking a suitably large k so that both ‖c−ck‖2 and ‖Ψ−Ψk‖∞ are sufficiently

small. 2

Theorem 4.3.2 Let D be as in Corollary 4.2.4 and define S = {(a, b) ∈ Cn+1 ×
(0,∞) × Cn | bTZn is outer and f = aTZn

bTZn
∈ C}. Then the map H : P × D → S

defined by H : (c, d) 7→ (W (c)αg(c,d), αg(c,d)) is a homeomorphism, where g(c, d) =

φ(Q(q(c,d))), q(c,d)= arg min
q∈Q−1(Q+(n,C))

Mc,Ψd
(q), and Ψd(z) is as defined in Corollary

4.2.4.

Remark 4.3.3 Note that, as stated in the Introduction, a stronger version of the

above theorem for the domain P × Interior of D has been given, by differential

geometric techniques, in [67, Theorem 6.6] in the context of the Nevanlinna-Pick

interpolation problem with degree constraint. Our innovation in the theorem is

extending the weaker property of homeomorphism to P×∂D by utilizing a different

technique.

Proof. That H is surjective (onto) follows from the definition. Injectivity

of H is also easily established since each pair (a, b) uniquely defines c by the first

n + 1 coefficients of the Taylor series expansion of f = a
b

about z = 0 and d via

the relation Ψd = aTZn(b
TZn)∗ + (aTZn)∗(b

TZn). Thus, H is a bijective map.

We now show that H is continuous. Let (c, d) be an arbitrary element of P×D
and (a, b) = H(c, d). Let {dk}k≥1 be any sequence in D such that ‖dk−d‖2

k→∞→ 0.

We also let {ck}k≥1 be a sequence in P such that ‖ck − c‖2
k→∞→ 0. If (ak, bk) =

H((ck, dk)) then from Lemma 4.3.1 we have that ‖b − bk‖2
k→∞→ 0. Recall that

ak = W (ck)bk for k = 1, 2, . . . and a = W (c)b. Since ‖(ck, dk)− (c, d)‖2
k→∞→ 0, we

have that ‖W (c) −W (ck)‖∞ k→∞→ 0 (here ‖ · ‖∞ denotes the operator-norm of a
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matrix) and necessarily ‖ak − a‖2 = ‖W (ck)bk −W (c)b‖2
k→∞→ 0. The continuity

of H then follows from arguments similar to those in the final part of the proof

of Corollary 4.2.4.

The remaining part of the proof is only to show that H−1 is continuous.

This is also quite straightforward. Let (ci, di) = H−1((ai, bi)) for i = 1, 2. If

‖(a1, b1)− (a2, b2)‖2 is small enough it follows that ‖aT
1Zn−aT

2Zn‖∞ and ‖bT1Zn−
bT2Zn‖∞ will also be small. Letting f1 =

aT
1 Zn

bT1 Zn
and f2 =

aT
2 Zn

bT2 Zn
, this implies that

|f1(z) − f2(z)| will be uniformly small on any compact subset K of D. From this

we see that necessarily ‖c1− c2‖2 is small by examination of the Cauchy-integrals

|
∮

C
f1(z)−f2(z)

zl+1 dz| for l = 0, 1, . . . , n over some closed path C in K which encloses

the point z = 0. Since ‖d1 − d2‖2 is trivially small when ‖(a1, b1) − (a2, b2)‖2

is small, we conclude that ‖(c1, d1) − (c2, d2)‖2 is small. Although the preceding

argument is purely formal, it can easily be made rigorous and we may conclude

that H−1 is continuous. This completes the proof. 2

By Theorem 4.3.2 we may perform a continuous coordinate transformation

from (a, b) to (c, d) and vice-versa. The theorem may also be interpreted as

saying that graph symbols of all positive real functions of degree at most n are

parametrized by pairs of PCS of order n and non-negative pseudopolynomial data.

There are also previous results which deal with variation in c with d fixed, a, b, c, d

real, and Ψd not having roots on T, and again under those special assumptions a

stronger result of diffeomorphism can be shown [68, 6]. A work which considers

uncertain covariance data is [62]. However, as noted in the Introduction, the

purpose and results of that work are rather different to ours.

4.4 Concluding remarks

This chapter gives an analysis of the RCEP which yields new results in Theorem

4.2.2 for solutions parametrized by pseudopolynomials in ∂Q+(n,C)\{0} and in

the part of Theorem 4.3.2 which extends the domain of the homeomorphism to

P × ∂D.

Previously, it has been shown that any real solution of the RCEP can be found

by solving non-linear equations for αb [61]. Corollary 4.2.3 of this paper shows

that elements of αb are actually the coefficients of φ(Q(qmin)), where qmin is the

minimizer of JΨ. We are led to the following conclusion:

Solving the RCEP is essentially equivalent to

finding the minimizer of JΨ for all Ψ ∈ Q+(n,C)\{0}.
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From Corollary 4.2.3 also follow a new proof of a theorem by Georgiou on complete

parametrization of all solutions of the RCEP and a new proof, with an extension

to non-real interpolators, of a homeomorphism which was established in [49].

Theorem 4.3.2 is a generalization of this homeomorphism.

Differences between our convex optimization treatment and the extensive and

abstract generalization of [5] given in [51], some of which have been discussed in

the Section 3.4, can now be seen more clearly. The most of important of these is

that in [51], the case Ψ ∈ ∂Q+(n,C)\{0} is treated via analysis of a functional

KΨ defined on a set of Schur functions satisfying a certain constraint (refer to

the discussion in Section 3.4). This amounts to solving an optimization problem

over a function space; a solution f of the RCEP is obtained directly as the unique

maximizer of KΨ. Our treatment is via analysis of a functional JΨ defined on a

convex subset of R×Cn (which is a finite dimensional space) and by allowing Ψ

to have zeros on T. From JΨ we do not directly obtain a solution f of the RCEP,

but a unique denominator polynomial of f . The associated numerator polynomial

is then determined by the PCS and the denominator polynomial. A possible

advantage of JΨ, since it is defined on a closed, convex subset of R × Cn, is that

it could be amenable to numerical optimization algorithms. On the other hand,

[51] does not investigate how to (numerically) compute the unique maximizer of

KΨ in the space of Schur functions, and the discussion of the RCEP in Section

5.1 therein is limited to the case where Ψ ∈ Q+(n,C).

Although the functional KΨ always has a stationary maximizer, the difficulty

with numerical optimization of KΨ is that it is defined on a function space of

contractive functions. Implementation of an algorithm for finding the maximizer

of KΨ on a finite memory computer would be impossible unless the trajectory

of the algorithm can be guaranteed to remain in a set of finitely-parametrized

functions. An alternative solution might be to consider the dual of KΨ which may

be definable on a subset of some finite-dimensional space. On the other hand, a

pitfall of numerical optimization of the functional JΨ is that its minimizer need

not be stationary (thus it may be difficult to “find” it) and the condition number

of the Hessian explodes for points tending to the boundary. However, it turns

out that these are problems which can be circumvented. As we shall see in the

following chapter, the optimization problem can always be reformulated to one

in which the minimizer is always stationary, regardless of whether Ψ is strictly

positive or merely non-strictly positive, and in which the new functional to be

minimized is better behaved around and on the boundary.

For further research, we may pose the question of whether Theorems 4.2.2 and
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4.3.2 can be exploited to develop new fast and reliable numerical algorithms for

computing the minimizer of JΨ, especially for the more challenging cases where it

is not a stationary point and/or lies very close to or on the boundary. Naturally,

efficient/fast computation of solutions is an important practical issue. As a step

in this direction, in Chapter 5 we analyze the homotopy continuation algorithm

due to Enqvist [50] for the case where Ψ is allowed to be non-strictly positive.

Note that it may be possible to give a treatment analogous to ours in the

general setting of [51] by considering some suitable sub-class of positive real-

functions. It may also be possible that the framework developed here can be

generalized to the case of matrix-valued RCEP. This can be considered in future

research. Moreover, as with the results of Chapter 3, the results of this chap-

ter also carry over to the setting of Nevanlinna-Pick interpolation with degree

constraint and will now be taken up in the next chapter.



Chapter 5

Computation of Degree

Constrained Rational

Interpolants

5.1 Background and motivation

In Chapter 3 we had derived a characterization of bounded solutions of the

RCEP which was followed up in Chapter 4 with some new results pertaining

to all solutions of the RCEP, bounded or unbounded. The present chapter deals

with computation of solutions of the RCEP, by exploiting some of the results

of Chapter 4. However, we now derive our results in the more general setting

of Nevanlinna-Pick interpolation with derivative constraints (i.e., involving in-

terpolation constraints of the form 1
k!
f (k)(z) = w for some positive integer k),

of which the rational covariance extension problem may be viewed as a special

case. We had already mentioned that the analysis of the preceding two chapters

carry over mutatis mutandis to this more general setting (which will be formal-

ized shortly). The required adaptations will become more clear as we proceed

through this chapter. To this end, let there be given {z0, z1, . . . , zn} ⊂ D and

{w0, w1, . . . , wn} ⊂ {z ∈ C | ℜ{z} ≥ 0}. We make the convention that non-

unique zk’s are ordered sequentially. Moreover, for simplicity we shall assume

z0 = 0 and w0 is real. There is no loss in generality in taking this assumption

since the map z 7→ z−z0
1−z∗0z

sends any z0 ∈ D to 0 and is a bianalytic map from D

onto itself. Secondly, we are allowed to subtract the imaginary part of w0 from

w1, . . . , wn without changing Problem 5.1.1 to be stated below. For further de-

tails, the reader may consult [60, Appendix A]. We consider the following degree

55
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constrained rational interpolation problem:

Problem 5.1.1 Find all f ∈ C of McMillan degree at most n such that, for

k = 0, 1, . . . , n, f(zk) = wk if zk is of multiplicity 1, and 1
j!
f (j)(zk) = wk if zk is

of multiplicity m > 1 and zk = zk+1 = . . . = zk+m−1.

As with the RCEP, it is well known that the above problem has a solution

if and only if a certain (generalized) Pick matrix, constructed from the data

{w0, w1, . . . , wn}, is non-negative definite [48, 69]. In the case of the RCEP this

Pick matrix corresponds to the Toeplitz matrix T in Definition 3.2.1. Also as

before, the solution is unique if the matrix is singular, otherwise there are in-

finitely many solutions. The following generalized version of Theorem 3.2.3 holds

for Problem 5.1.1:

Theorem 5.1.2 ([48, 51, 18]) For a given interpolation data with a positive

definite Pick matrix, and any monic polynomial η 6= 0 of degree n with roots in

D, there exists a unique pair of polynomials (a, b) of degree ≤ n such that b(0) > 0,

a+ b has all its roots in C\D, the pair satisfies the relation

ab∗ + ba∗ = κ2ηη∗ (5.1)

for a fixed κ > 0, and f = a
b

is a solution of Problem 5.1.1.

Again, roots of the polynomial η in the theorem are referred to in the liter-

ature as “spectral zeros.” Problem 5.1.1 is of significance since there are many

engineering problems which can be reformulated into an interpolation problem,

whilst the degree constraint is naturally desirable from a practical point of view

as lower degree solutions typically mean simpler controllers, filters, etc. Some of

these applications include high resolution spectral estimation [70, 14], maximal

power transfer [14], and robust control [60, 55, 71, 58].

A convex optimization approach for solving Problem 5.1.1, which parallels the

approach we have already seen for the RCEP in Chapters 3 and 4, was initially

developed in the papers [5, 14] for real η with roots inside the unit circle. However,

this method, without modification, suffers the same shortcoming as remarked in

Remark 3.3.6, i.e., it has features which makes it numerically unsuitable for com-

putation of solutions with poles close to or on the unit circle. A modification of

the method, by reparametrization and application of a homotopy continuation

method, was first introduced by Enqvist [50] for the rational covariance exten-

sion problem, and subsequently adapted by Nagamune [72, 59], and Blomqvist
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and Nagamune [60, 58] to Nevanlinna-Pick interpolation and moment problems.

However, the approach had not been studied and extended to the case where η

has roots on the unit circle. From a practical point of view, spectral zeros on the

unit circle are important because they are associated with solutions of Problem

5.1.1 with poles on the unit circle (which, for instance, correspond to spectral

lines in spectral estimation [69]) and with solutions for which the restriction of

f + f∗ to T is an absorption spectrum (i.e., a spectrum with some frequencies

having “zero spectral energy”), and, in control applications, solutions with poles

close to T are often required, making it essential to have a reliable method for

computing them. In [72, 59], it was demonstrated that the homotopy continua-

tion method appears to be numerically robust and can compute solutions with

poles very close to T, but it has never been clear how close the poles can be to T

for the method to still perform satisfactorily. This chapter shows that it can in

fact compute solutions with poles anywhere on C\D.

No “complete” algorithm has been presented for the case where some spectral

zeros are on the unit circle, apart from [49]. The latter algorithm departs from

the ideas of [50, 72, 60, 59, 58] and proposes computation of all real solutions by

numerically solving some non-linear equations. However, it is important to note

that the algorithm of [49] is rather specific for rational interpolation problems,

while the method of [5, 50, 72] can be naturally extended to the setting of more

general moment and analytic interpolation problems, as shown in [58], in which η

and a can belong to a more general class of continuous functions on T, instead of

simply being polynomials. Therefore, it is of interest to investigate applicability

of the homotopy continuation method of Enqvist if η is allowed to have zeros on

the unit circle. It has already been argued in Chapter 3 and indicated in Example

3.4.1 therein that such an extension seems to be feasible when the solution f is

bounded (has no poles on T). This chapter provides further justification for this

observation, by showing that the extension is indeed valid, and goes on to cover

the case of unbounded solutions as well. Later on in the chapter, the homotopy

continuation method is applied to several examples for practical illustration.

The discussion of this chapter is adapted from the paper [73] (joint work with

J. B. Moore).
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5.2 Analysis and main results

For z0, z1, . . . , zn ∈ D (note that z0 = 0 by our convention), define

αk(z) =
z + zk
z − zk

whenever zk has multiplicity 1, and

αk(z) =
z + zk
z − zk

and αk+j(z) =
2z

(z − zk)j+1

for j = 1, . . . ,m − 1 when zk has multiplicity m and zk = zk+1 = . . . = zk+m−1.

The connection between αk and Problem 5.1.1 lies in the Herglotz representation

[65, 14, 58]. In this representation, any solution of Problem 5.1.1 is expressed as:

f(z) =
1

2π

∫ π

−π

eiθ + z

eiθ − z
dµ(θ),

where µ is a non-decreasing function of bounded variation on [−π, π], called

the spectral distribution of f . The spectral distribution has the decomposition

µ = µa + µs, where µa is absolutely continuous while µs is a piecewise constant

function with at most n − 1 jumps. This allows us to write each interpolation

condition in integral form:

f(zk) =
1

2π

∫ π

−π

eiθ + zk
eiθ − zk

dµ(θ)

=
1

2π

∫ π

−π

αk(e
iθ)dµ(θ) = wk

and

1

j!
f (j)(zk) =

1

2π

∫ π

−π

2eiθ

(eiθ − zk)j+1
dµ(θ)

=
1

2π

∫ π

−π

αk+j(e
iθ)dµ(θ)

= wk+j, for j = 0, 1, . . . ,m− 1

whenever zk = zk+1 = . . . = zk+m−1. By a generalized pseudopolynomial we

mean a complex function of the form f(z) = a0 +
n
∑

k=1

(a∗kαk + akαk∗), where

0 ≤ n <∞ and (a0, a1, . . . , an) ∈ R × C
n. The order or degree of the generalized
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pseudopolynomial f is defined as the largest k such that ak 6= 0 (thus the order

is zero if f is a constant function). Q(n,A) denotes the set of all generalized

pseudopolynomials of order at most n with (a0, a1, . . . , an) ∈ R×An, where A ⊆
C. We induce a topology on this set by the ‖ · ‖∞ norm on the unit circle:

‖f‖∞ = ess supz∈T |f(z)|, f ∈ Q(n,A). Since αk has no poles on the unit circle,

it can be seen that ‖f‖∞ is well-defined for all f ∈ Q(n,A). We also define

Q+(n,A) to be the subset of elements of Q(n,A) which are strictly positive

(> 0) on T. The restriction of any element of Q+(n,A)\{0} to T is a rational

spectral density of McMillan degree at most 2n, thus we shall often view any such

element as a spectral density instead of a generalized pseudopolynomial. Hence,

to each d ∈ Q+(n,A)\{0} we may associate a unique outer rational function (i.e.,

having no roots and poles in D) of McMillan degree at most n, denoted by φ(d),

which is the unique canonical spectral factor of d satisfying: φ(d)(0) > 0 and

|φ(d)(z)|2 = d(z) ∀z ∈ T.

Let τ(z) = Πn
k=0(1 − z∗kz) and Hn = span{1, α1∗, . . . , αn∗}. It will later

prove useful to note that Hn has an equivalent description as Hn = {f | f =
σ
τ
, σ is a polynomial of degree at most n} [48]. Then, by definition, any f ∈

Q+(n,C)\{0} can be written as f = g + g∗ with g ∈ Hn ∩ C. Letting g = σ
τ
,

we have that f = στ∗+σ∗τ
τ∗τ

and by spectral factorization of the numerator we

may write f = ξ∗ξ
τ∗τ

for some outer polynomial ξ with deg(ξ) ≤ n. Therefore,

Q+(n,C)\{0} = {f | f = ξ∗ξ
τ∗τ
, ξ is some outer polynomial, deg(ξ) ≤ n}.

Define the mapping Q : R × Cn → Q(n,C) by:

Q(q0, q1, q2, ..., qn)(z) = q0 +
n
∑

k=1

1

2
(q∗kαk + qkαk∗). (5.2)

Clearly, Q is a bijective map. Let Ψ = η∗η
τ∗τ

with η being a polynomial as defined

in Theorem 5.1.2. Then Ψ ∈ Q+(n,C)\{0}. Let us now consider a modification

of the functional JΨ we had encountered in the preceding chapters, which we shall

again denote by JΨ. This modified functional JΨ : Q−1(Q+(n,C)) → R ∪ {∞} is

defined by:

JΨ (q) = ℜ
{

w∗q − 〈Ψ, logQ (q)〉
}

, (5.3)

where w = [w0 w1 . . . wn]
T , q = [q0 q1 . . . qn]

T and 〈f, g〉 = 1
2π

∫ π

−π
f(eiθ)g(eiθ)∗dθ.

The (modified) functional was first introduced and its properties studied for

Ψ ∈ Q+(n,C) in [14]. As before, these properties continue to hold for Ψ ∈
∂Q+(n,C)\{0} and they are same ones as given in Theorem 3.3.2 with JΨ now

as being defined by (5.3). It is important to note that although Chapters 3 and 4

treat the the rational covariance extension problem, where z0 = z1 = . . . = zn = 0
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and αk(z) = 2
zk for k = 0, 1, . . . , n, it can be seen that since Q+(n,C) lies in

a finite dimensional space (i.e., span{α1, . . . , αn}
⊕

Hn) and contains functions

continuous on T, the analysis therein carries over mutatis mutandis to the current

setting without technical difficulty (one simply substitutes zk with αk∗(z) and ck

with wk, etc).

For any q′ ∈ Q−1(Q+(n,C)), let ∇q′JΨ(q) again denote the directional deriva-

tive of JΨ at the point q in the direction of q′ − q, i.e.,

∇q′−qJΨ(q) = lim
h↓0

JΨ(q + h(q′ − q)) − JΨ(q)

h
. (5.4)

Then we again have that JΨ has a unique minimizer qmin which is stationary (i.e.,

∇q′−qJΨ(qmin) = 0 ∀q′ ∈ Q−1(Q+(n,C))) and lies in Q−1(Q+(n,C)) whenever

Ψ is positive definite on T [6]. It follows that b in Theorem 5.1.2 is given by

b = τφ(Q(qmin)) and a can be found by solving the equation a∗b+ ba∗ = Ψ [14].

As for the case where Ψ has zeros on T, we have the following generalized version

of Theorem 4.2.2:

Theorem 5.2.1 Let η be as in Theorem 5.1.2, Ψ = η∗η
τ∗τ

∈ ∂Q+(n,C)\{0} and

qmin = arg min
q∈Q−1(Q+(n,C))

JΨ(q). Then:

1. ∇q′−qJΨ(qmin) = 0 for all q′ − q ∈ Q−1(Q+(n,C)) if and only if the pair

(a, b) as defined in Theorem 5.1.2 is such that f = a
b
∈ H∞.

2. qmin ∈ ∂Q+(n,C) and ∇q′−qJΨ(qmin) > 0 for all q′ ∈ Q−1(Q+(n,C)) if and

only if the pair (a, b) as defined in Theorem 5.1.2 is such that f = a
b

has a

pole on T. ∇q′−qJΨ(qmin) is then given by:

∇q′−qJΨ(qmin) =
m
∑

l=0

Klℜ
{ n
∑

k=0

αk∗(e
iθl)(q′k − qmin,k)

}

, (5.5)

where m < n, K0, K1, . . . , Km are some positive constants and θ0, θ1, . . . , θm ∈
(−π, π], with θi 6= θj whenever i 6= j, are the discontinuity points of the

spectral distribution of f , i.e., eiθ0 , . . . , eiθm are the poles of f on T.

Moreover, in both cases b
τ

= φ(Q(qmin)) and all roots of Q(qmin) on T, includ-

ing multiplicities, are also roots of Ψ.
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Proof. Although the proof is analogous to that of Theorem 4.2.2, for the

sake of clarity we shall here just detail a possibly not so obvious part in the

adaptation of the latter proof needed to establish Point 2 of the theorem. To

this end, as in Chapter 4, let us write f = fa + fs, where fa ∈ C ∩ H∞ while

fs ∈ C has one or more simple poles on T. We also have the representation

fa(z) = 1
2π

∫ π

−π
eiθ+z
eiθ−z

dµa(θ) and fs(z) = 1
2π

∫ π

−π
eiθ+z
eiθ−z

dµs(θ), where µa and µs are,

respectively, the absolutely continuous and singular part of the spectral distribu-

tion µ of f . Since dµa(θ) = ℜ{fa(eiθ)}dθ and dµs(θ) =
∑m

l=0Klδ(θ − θl)dθ for

some positive constants K0, K1, . . . , Kn (δ(x) denotes the Dirac delta function),

we have that fa(zk) = 〈fa + fa∗, αk∗〉 and fs(zk) =
∑m

l=0Klαk(e
θl) (with obvious

modification if zk is a repeated interpolation point). Thus, we obtain the relation

f(zk) − fa(zk) = wk − 〈fa + fa∗, αk∗〉 =
∑m

l=0Klαk(e
iθl), in analogy with that

obtained in Chapter 4 for the case z0 = z1 = . . . = zn = 0. The relation is a key

one for establishing (5.5). The remaining arguments are then straightforward to

adapt from the proof of Theorem 4.2.2. 2

An important conclusion to be drawn from Theorem 5.2.1 is that, regard-

less of whether Ψ has zeros on T or not, the polynomial b of Theorem 5.1.2

associated with Ψ is always given by b = τφ(Q(qmin)). Once b is computed,

a can be obtained by multiplying the coefficients of b by a certain matrix W

which only depends on the interpolation data (z0, w0), (z1, w1), . . . , (zn, wn) (see,

e.g., [18, 49] for further details), i.e., if a(z) = [1 z . . . zn][a0 a1 . . . an]
T and

b(z) = [1 z . . . zn][b0 b1 . . . bn]
T then:

[a0 a1 . . . an]
T = W [b0 b1 . . . bn]

T . (5.6)

The only discrepancy is that when Ψ has zeros on T, JΨ may have a minimizer

which is not a stationary point.

As we have remarked in previous chapters, although properties of JΨ make it

convenient for analysis, it is not suitable for numerical optimization, especially

when qmin is close to or on the boundary. This is due to the fact that the

condition number of the Hessian of JΨ tends to ∞ as qmin goes to the boundary

of Q−1(Q+(n,C)). Define

D(d)(z) =
n
∑

k=0

dkz
k

and Dn = {d = (d0, d1, . . . , dn) ∈ R × Cn | d0 > 0, D(d) is outer}. Then for

Ψ ∈ Q+(n,C), one way to circumvent the difficulty with JΨ, developed in [50,

72, 60, 59, 58], is to reformulate the optimization problem. Recalling from earlier



CHAPTER 5. COMPUTATION OF RATIONAL INTERPOLANTS 62

that every Q(q) ∈ Q+(n,C)\{0} can be written as Q(q) = D(d)∗D(d)
τ∗τ

for some

d ∈ Dn, introduce the modified functional JΨ : Dn → R ∪ {∞}:

JΨ(d) = d∗Kd−
〈

log
D(d)∗D(d)

τ∗τ
,Ψ
〉

.

where d = [d0 d1 . . . dn]
T and K is a positive definite Hermitian matrix which

depends only on the interpolation data {(zk, wk)}k=0,1,...,n; an expression for K

in terms of z0, z1, . . . , zn and w0, w1, . . . , wn are given in [58, 72, 60, 59]. Observe

that JΨ can be rewritten as:

JΨ(d) = d∗Kd− 2ℜ{〈logD(d),Ψ〉} + 2ℜ{〈log τ,Ψ〉},

where the last term does not depend on d and is not essential in the ensuing

analysis. The main idea is, instead of minimizing JΨ over Q−1(Q+(n,C)), we

now minimize JΨ over Dn.

It has been argued in [50], that the new functional is much better suited for

numerical treatment as the hessian and its condition number does not blow up

as d goes to the boundary of Dn. However, the modified optimization problem is

no longer convex since Dn is not a convex set. Fortunately, due to the bijective

correspondence between Q+(n,C)\{0} and Dn, JΨ has a unique global minimum,

and it has been shown that it is locally convex around the global minimum. This

makes it possible to find the global minimum of JΨ by constructing a convex

homotopy and solving a sequence of locally convex optimization problems as

detailed in [50, 72, 60, 59]. We have the following new result which has only been

shown previously for Ψ ∈ Q+(n,C):

Lemma 5.2.2 For Ψ ∈ ∂Q+(n,C)\{0}, JΨ again has a unique minimizer on

Dn. Moreover, this minimizer is also stationary.

Proof. Let s denote the bijective map that sends a ∈ Dn to Q−1(D(a)∗D(a)
τ∗τ

) ∈
Q−1(Q+(n,C))\{0} and note the relation

JΨ(a) = JΨ(s(a)).

Let qmin be as in Theorem 5.2.1 and define d̂ = s−1(qmin). Using the fact that

JΨ(qmin) ≤ JΨ(q) ∀q ∈ Q−1(Q+(n,C)) (by Theorem 3.3.2), we then have that

JΨ(d̂) = JΨ(qmin)

< JΨ(q) ∀q ∈ Q−1(Q+(n,C))\{qmin}
= JΨ(s−1(q)) ∀q ∈ Q−1(Q+(n,C))\{qmin}.
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Therefore, JΨ(d̂) < JΨ(d) for all d ∈ Dn\{d̂}, implying that d̂ is the unique

minimizer of JΨ. This proves the first part of the lemma.

Define the directional derivative of JΨ in the direction of d′ − d analogously

to (6.12) and denote it by ∇d′−dJΨ, where d′ ∈ Dn. Note that since Dn is not

a convex set, ∇d′−dJΨ(d) is only defined for feasible d′ (i.e., defined as those

d′ ∈ Dn for which (1 − h)d + hd′ ∈ Dn for all 0 < h ≤ 1). Let BΨ = {d ∈ Dn |
ess supz∈T

Ψ(z)
|D(d)(z)|2

< ∞}. Then, by similar arguments to the proof of Theorem

3.3.7, we may show that ∇d′−dJΨ(d), d ∈ BΨ, is given by:

∇d′−dJΨ(d) = 2ℜ
{

d∗K(d′ − d) −
n
∑

i=0

〈 gi
D(d)

,Ψ
〉

(d′i − di)
}

, (5.7)

where gi(z) = zi. Let dmin be the unique minimizer of JΨ. Since dmin = s−1(qmin),

it follows that D(dmin) = τφ(Q(qmin)) and dmin ∈ BΨ. Now, let Ψk, k = 1, 2, . . . ,

be a sequence such that Ψk ∈ Q+(n,C) for all k and Ψk converges to Ψ uniformly

on T, i.e., limk→∞ ‖Ψ − Ψk‖∞ = 0 and let dkmin = arg mind∈Dn
JΨk

(d). Then as

shown in the proof of Theorem 4.2.2 :

lim
k→∞

‖dmin − dkmin‖2 = 0 = lim
k→∞

‖D(dmin) −D(dkmin)‖∞.

Furthermore, it has been shown (see, e.g., [58]) that ∇d′−dJΨk
(dkmin) = 0 for all

feasible d′ ∈ Dn and for all k. Now, by the uniform convergence of Ψk to Ψ and

D(dkmin) to D(dmin) as noted above, we have:

lim
k→∞

Ψk(z)

D(dkmin)(z)
=

Ψ(z)

D(dmin)(z)
for a.a. z ∈ T, (5.8)

with the exceptional points being the roots of D(dmin) on T (which are also roots

of Ψ by Theorem 5.2.1). Since Ψk = D(dkmin)D(Wdkmin)∗ + D(dkmin)∗D(Wdkmin)

(see Eq. (5.6) and the discussion on the associated page), we have that

∥

∥

∥

Ψk

D(dkmin)

∥

∥

∥

∞
=

∥

∥

∥
D(Wdkmin)∗ +

D(dkmin)∗
D(dkmin)

D(Wdkmin)
∥

∥

∥

∞

≤ ‖D(Wdkmin)∗‖∞ +
∥

∥

∥

D(dkmin)∗
D(dkmin)

∥

∥

∥

∞
‖D(Wdkmin)‖∞

= 2‖D(Wdkmin)‖∞.

Now, since D(Wdkmin)
‖·‖∞→ D(Wdmin) as k → ∞, it follows that

sup
k≥1

‖D(Wdkmin)‖∞ <∞.
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Consequently,

sup
k≥1

∥

∥

∥

Ψk

D(dkmin)

∥

∥

∥

∞
<∞, (5.9)

i.e., the sequence {‖ Ψk

D(dk
min)

‖∞; k = 1, 2, . . .} is uniformly bounded. Now, by

plugging (5.8) into (5.7), and invoking the Lebesque Dominated Convergence

Theorem [54] by using (5.9), we get:

∇d′−dJΨ(dmin) = lim
k→∞

2ℜ
{

(dkmin)
∗K(d′ − dkmin) −

n
∑

i=0

〈 gi
D(dkmin,i)

,Ψk

〉

(d′i − dkmin,i)
}

= lim
k→∞

∇d′−dJΨk
(dkmin)

= lim
k→∞

0 = 0 for all feasible d′ ∈ Dn.

This shows that dmin is a stationary point and completes the proof of the lemma.

2

Lemma 5.2.2 shows a striking difference between JΨ and JΨ: for

Ψ ∈ ∂Q+(n,C)\{0}, the minimizer of JΨ is always stationary while the minimizer

of JΨ may not be. From the lemma the following is easily obtained:

Corollary 5.2.3 The functional JΨ is locally strictly convex in a neighborhood

of its unique minimizer.

Proof. Again, let dmin denote the unique minimizer of JΨ and let BΨ be

defined as before. Recall that dmin ∈ BΨ since all roots of D(dmin)∗D(dmin) on T,

counting multiplicities, are also roots of Ψ. For d ∈ BΨ and a feasible d′, define

the function fd,d′ on [0, ‖D(d′ − d)‖∞) ⊂ R by fd,d′(x) = JΨ(d + x d′−d
‖D(d′−d)‖∞

).

Let
d2+
d+x2fd,d′ denote the right sided second derivative of fd,d′ . Then we may,

analogously as before, show that
d2+
d+x2fd,d′ is given by (recall that gi(z) = zi):

d2
+

d+x2
fd,d′(x) = 2ℜ

{(d′ − d)∗K(d′ − d)

‖D(d′ − d)‖2
∞

+

n
∑

i=0

n
∑

j=0

〈 gigj

D(d+ x d′−d
‖D(d′−d)‖∞

)2
,Ψ
〉

×

(d′i − di)(d
′
j − dj)

‖D(d′ − d)‖2
∞

}

.
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In particular,
d2+
d+x2fd,d′(0) exists and is bounded for all feasible d′ ∈ Dn. Since

dmin is the unique stationary minimizer of JΨ (by the lemma) and
d2+
d+x2fdmin,d′

is continuous on [0, δ) for some δ > 0, we must have that
d2+
d+x2fdmin,d′ is positive

definite on [0, δ′) for some 0 < δ′ ≤ δ. Hence, JΨ is strictly convex on any

sufficiently small convex subset of Dn containing dmin. 2

Lemma 5.2.2 and Corollary 5.2.3 justify the use of the homotopy continuation

method for finding solutions of Problem 1 corresponding to η with spectral zeros

on the unit circle. Although the functional is not globally convex, we do have

a unique stationary minimizer and local strict convexity around that minimizer.

This is enough to allow us to use a homotopy continuation to circumvent the lack

of global convexity, and solve a sequence of locally convex problems, as is done

for the case where all spectral zeros are strictly inside the unit circle. In the next

section, we put our assertions to the test by applying the continuation method

to compute the different kinds of possible solutions as summarized in Theorem

5.2.1.

5.3 Numerical examples

In this section we present numerical results from application of the continuation

method for computing solutions of Problem 1 with spectral zeros on T. Al-

though our results have been developed for a general case, in the examples we

restrict our attention to the rational covariance extension problem, i.e. z0 =

z1 = . . . = zn = 0, which is the special problem of interest in this thesis.

Moreover, to avoid complex arithmetics, we shall only consider the real case,

where w0, w1, . . . , wn ∈ R and Ψ ∈ Q+(n,R)\{0}. We implement the homo-

topy continuation algorithm as described in [50] and use the stopping criteria:

em = ‖∇JΨ(d̂m) −∇JΨ(d̂m−1)‖2 < ǫ for a specified tolerance ǫ > 0, where ∇JΨ

denotes the gradient of JΨ and d̂m denotes the iterate (approximation of dmin) at

the m-th iteration of the algorithm. In all examples, we take the step size ρ = 0.1

(see [50, p. 1196]) and set ǫ = 10−8. The computations were executed in Matlab

with double precision, but to avoid unnecessary clutter, we shall only display the

numerical results up to four digits behind the decimal. In the following, η has

been chosen in accordance with Theorem 5.1.2.

Example 5.3.1 Let the true f ∈ C be:

f(z) =
(z − 2)(z − 1)

(z − 4)(z − 5)
.
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Then w0 = 0.2, w1 = −0.1050 and w2 = −0.0023. Suppose we choose η(z) =

(z − 1)(z − 0.74053618) having a root at z = 1. The algorithm returns dmin =

(3.6694,−1.6512, 0.1835). Whence, b(z) = 3.6694 − 1.6512z + 0.1835z2 and a(z)

can be computed to be a(z) = 0.3669−0.5504z+0.1835z2. The computed solution

f̂ is:

f̂(z) =
0.3669 − 0.5504z + 0.1835z2

3.6694 − 1.6512z + 0.1835z2

=
2 − 3z + z2

20 − 9z + z2
,

which happens to coincide with the true solution. The example illustrates the case

where there are spectral zeros on the unit circle, yet b is in the interior of Dn (cf.

Point 1 of Theorem 5.2.1). Another example of this type had also been given

in Example 3.3.4 of Chapter 3 but was computed using the convex optimization

approach of [5].

Example 5.3.2 Let the true f ∈ C be:

f(z) =
z − 2

z − 4
.

Then w0 = 1, w1 = −0.125, and w2 = −0.0313. Now, we choose η(z) =

(z+ 1)(z− 0.38196601). The algorithm returns dmin = (1.0093, 0.7569,−0.2523).

Thus, b(z) = 1.0093 + 0.7569z − 0.2523z2 and a(z) can be computed to be a(z) =

0.5046 + 0.2523z − 0.2523z2. Thus, the computed solution is:

f̂(z) =
0.5046 + 0.2523z − 0.2523z2

1.0093 + 0.7569z − 0.2523z2

=
−2 − z + z2

−4 − 3z + z2
=
z − 2

z − 4
.

It may be inspected that both a and b has one root near −1 (which should cancel

in the absence of numerical errors). This example serves to illustrate the case

where a, b and Ψ all share a root on T and a
b
∈ H∞. Note that another example

of this type had been given earlier in Example 3.3.5 of Chapter 3.

Example 5.3.3 Let the true f ∈ C be:

f(z) =
z − 2

z − 4
+

1

4

1 + ei
π
6 z

1 − ei
π
6 z

+
1

4

1 + e−i
π
6 z

1 − e−i
π
6 z
,

and note how f has two simple poles on T. Then w0 = 2, w1 = 0.7410, w2 =

0.4687, and w3 = −0.0078. Set η(z) = (z − ei
π
6 )(z − e−i

π
6 )(z − 0.38196601).
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The algorithm returns dmin = (1.0092,−2.0004, 1.4463,−0.2523). Thus, b(z) =

1.0092 − 2.0004z + 1.4463z2 − 0.2523z3, a(z) = 0.5046 − 1.1263z + 0.9416z2 −
0.2523z3 and the computed solution f̂ is:

f̂(z) =
0.5046 − 1.1263z + 0.9416z2 − 0.2523z3

1.0092 − 2.0004z + 1.4463z2 − 0.2523z3
.

It may be inspected that b has roots almost at 4, ei
π
6 and e−i

π
6 , but a does not. The

example serves to illustrate the case where the true solution f is an unbounded

solution with poles on T (cf. Point 2 of Theorem 5.2.1).

5.4 Concluding remarks

In this chapter we have shown that a certain homotopy continuation method,

originally due to Enqvist, for computing solutions of degree constrained rational

interpolation problems with strictly positive parametrizing functions, remains

applicable when the parametrizing function is non-strictly positive definite (i.e.,

have zeros on the unit circle). This includes, as a special case, solutions with one

or more poles on the unit circle. It was not previously known that this method

can handle such cases, although it has been observed [72, 59] that it is able to

compute solutions with poles very close to the unit circle with high accuracy.

A potential advantage of the homotopy continuation method over the alter-

native method proposed in [49] is that of generality. Indeed, it has already been

adapted for computing strictly positive and absolutely continuous solutions of

more general moment and analytic interpolation problems with a complexity con-

straint [58]. Therefore, generalizations of the developments in this chapter may

allow for computation of non-strictly positive and non-absolutely continuous so-

lutions of these more general problems. Moreover, in [74, 75] fast algorithms have

recently been proposed for the original convex optimization approach of [5, 14]

and, because of some “structural similarities” between that approach and the

continuation method, it would be interesting to investigate if similar fast algo-

rithms can be developed to solve each of the local convex optimization problems

in the continuation method. These are some topics which can be considered for

future research.



Chapter 6

Spectral Factorization of a Class

of Matrix-Valued Spectral

Densities

6.1 Introduction

In this chapter we now develop a new approach to spectral factorization as mo-

tivated and outlined in Chapter 1, Section 1.1, using the ideas and convex opti-

mization techniques from Chapters 3 and 4.

Instead of directly approximating a spectral factor as with the methods de-

scribed in [64], the strategy employed here is to construct a rational approxima-

tion of the spectral density and perform spectral factorization on the approximate

spectral density to obtain a rational shaping filter. However, the latter spectral

factorization need not be performed separately, but becomes part of the pro-

posed procedure thanks to the continuation method described in Chapter 5. The

main question here is whether the approximate canonical spectral factor (i.e., the

unique spectral factor which is positive at the origin) that is obtained in this way

will be a good approximation of the true canonical spectral factor. This question

is equivalent to asking whether the operation of taking canonical spectral factors

is continuous. It has recently been shown that such an operation is sequentially

continuous : Given a sequence of spectral densities which converge to a limiting

spectral density (in the space of functions integrable on the unit circle) then their

canonical spectral factors will also converge to that of the limiting spectral den-

sity if a uniform log-integrability assumption on the spectral densities is satisfied

68
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[15] (for a related result, see also [76]). This property is then exploited to en-

sure that the resulting approximate canonical spectral factor is close to the true

one in an appropriate norm. In particular, we first derive some easily verified

sufficient conditions which guarantee uniform log-integrability of a sequence of

spectral densities.

The approximating rational spectral densities are constructed using the the-

ory of degree constrained rational covariance extensions studied in Chapters 3

and 4. Under some mild regularity conditions on a given spectral density, theo-

retical results will be derived to show that certain covariance matching rational

spectral densities, and also their canonical factors, will converge to, respectively,

the given spectral density and its canonical spectral factor (in the appropriate

vector spaces). Based on this construction a new algorithm is proposed which

give freedom in selection of spectral zeros for the approximating spectral densi-

ties. Conditions on the selected spectral zeros for convergence of the algorithm

in H2 and H∞ will be given as well as a heuristic scheme for their selection.

In the penultimate section of this chapter, several simulations are executed in

order to compare the performance of the new algorithm over the popular maxi-

mum entropy method for spectral factorization of possibly non-rational spectral

densities having one or more zeros on or close to the unit circle. As discussed in

Section 1.1, the maximum entropy method, while being able to handle quite a

general class of spectral densities, suffers from slow convergence when the spectral

density is non-coercive [12, 9, 10]. This can lead to approximate rational canoni-

cal spectral factors of unnecessarily high degree because each iteration increases

the degree of the approximation. The comparative simulations indicate advan-

tages of the new algorithm offers over the maximum entropy approach: lower de-

gree approximations with lower approximation error (defined in a certain sense).

In particular, in two simulations we successfully construct approximate rational

canonical spectral factors for the non-rational and non-coercive Kolmogorov and

von Karman spectral densities which are of interest in the study of atmospheric

and wind turbulence.

This chapter is organized as follows. In Section 6.2 we introduce some addi-

tional notation and recall some definitions and results from the literature. Follow-

ing that, in Section 6.3 we discuss a result on sequential continuity of the spectral

factorization mapping. In Section 6.4 we derive a new set of easily checkable and

sufficient conditions for uniform log-integrability of a sequence of spectral den-

sities. In Sections 6.5 and 6.6 we develop the theoretical foundation of a new



CHAPTER 6. SPECTRAL FACTORIZATION 70

approach to spectral factorization and introduce a new spectral factorization al-

gorithm for a class of matrix-valued spectral densities. We then present a number

of numerical examples using the proposed spectral factorization algorithm in Sec-

tion 6.7. Finally in Section 6.8 we give the conclusions of this chapter and discuss

potential applications of the results as well as directions for future research.

The discussion of this chapter is adapted from the papers [77, 66].

6.2 Additional notation and definitions

First we introduce some additional notation which will be required for this chapter

and generalize some of the definitions from previous chapters as well as recalling

some definitions and relevant results from the literature.

• ℜ{A} = A + A∗ denote the hermitian transpose and hermitian part of a

complex matrix A, respectively.

• A pseudopolynomial is a Cl×l-valued (with l ∈ N) function f of the form

f(z)=
n
∑

i=−m

Aiz
i, where 0 ≤ m,n <∞ and Ai ∈ Cl×l for i = −m, . . . , n.

• The ‖ · ‖p norm of a matrix A ∈ Cm×n is defined as [15]:

‖A‖p =

{

(

Tr
{

(A∗A)p/2
}

)
1
p

if 1 ≤ p <∞,

supv∈Cn,‖v‖≤1 ‖Av‖ if p = ∞.

• µ denotes the Lebesque measure on T.

• Lpm×n, 1 ≤ p ≤ ∞, denotes the space of measurable functions mapping from

T to Cm×n with a finite ‖ · ‖p norm defined by:

‖f‖p =

{

(

1
2π

∫

T
‖f(z)‖ppdµ

)
1
p if 1 ≤ p <∞

ess supz∈T ‖f(z)‖∞ if p = ∞
If n = 1, we write Lpm×n simply as Lpm.

• Hp
m×n, 1 ≤ p ≤ ∞, denotes the subspace of functions in Lpm×n having an

analytic continuation from T to D. If n = 1, we write Hp
m×n simply as Hp

m.

• H∗ denotes the parahermitian conjugate of a Cm×n-valued complex function

H: H∗(z) = H(z∗−1)∗.
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If H is a rational element of Hp
n×n or Lpn×n then the degree of H, denoted

by deg(H), is defined to be the McMillan degree of H. Let Pn denote the linear

space of Cn−valued trigonometric polynomials on T. It is well-known that this

space is dense in Lpn for all p ∈ [1,∞). In a similar fashion we define the linear

space P+
n to be the set of Cn−valued polynomials on C. We may view P+

n as a

linear subspace of Pn. A function ρ ∈ H2
n×n is said to be outer if ρP+

n = H2
n, i.e.,

the set of products ρP+
n is dense in H2

n [15]. In the special case where n = 1 (the

scalar case) and ρ is a rational function, it is known that ρ is outer if and only if

all its zeros and poles lie in C\D.

A function W which maps from T to Cn×n is a spectral density if 1) it is

in L1
n×n, and 2) there exists an outer function H ∈ H2

n×n such that W (eiθ) =

H(eiθ)∗H(eiθ). Note that the definition implies that W ∗ = W and W is non-

negative definite a.e. T. The function H is called a spectral factor of W . A

spectral factor can be uniquely specified if a condition is imposed on its value

at the origin. We call the unique spectral factor which is positive definite at the

origin the canonical spectral factor (CSF). We say that W is rational if each ele-

ment Wij is of the form Wij(e
iθ) =

Pij(e
iθ)

Qij(eiθ)
for some scalar pseudopolynomials Pij

and Qij. A precise characterization of spectral densities is given in the following

classical result:

Theorem 6.2.1 ([39, 42, 1, 64]) A non-negative definite function W ∈ L1
n×n

is a spectral density if and only if
∫

T
|log detW (z)|µ(dz) <∞.

For a function f : T → R we write f > 0 (f ≥ 0) if f is positive (non-

negative) definite a.e. T, and f > g (f ≥ g) will be taken to mean f − g > 0

(f − g ≥ 0). A spectral density W is said to be coercive if W ≥ δ > 0, otherwise

it is non-coercive.

6.3 Sequential continuity of the spectral factor-

ization mapping

Let W be a spectral density and let Φ(W ) denote its unique CSF. Then the

mapping Φ : W 7→ Φ(W ) is called the spectral factorization mapping. It was

recently shown in [15] that the mapping Φ is sequentially continuous, that is
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Theorem 6.3.1 Let W be a spectral density, and let {Wr}r∈N be a sequence of

spectral densities such that Wr → W in L1
n×n as r → ∞. Then the following are

equivalent:

1. The sequence {log detWr}r∈N is uniformly integrable.

2. Φ(Wr) → Φ(W ) in H2
n×n as r → ∞.

Recall that a family of scalar measurable functions {Xγ | γ ∈ Γ} parametrized

by a non-empty set Γ on a measurable space (Ω,F) with measure M is said to

be uniformly integrable if limα→∞ supγ∈Γ

∫

{ω∈Ω||Xγ(ω)|>α}
|Xγ(ω)|M(dω) = 0.

Remark 6.3.2 We shall refer to the condition in Point 1 of Theorem 6.3.1 as

uniform log-integrability.

Several conditions which are equivalent to uniform log-integrability are given

in [15, Proposition 4.2]. However, these conditions are general and do not indicate

how to construct a uniformly log-integrable sequence {Wr}r∈N which converges

to W in L1
n×n. For this reason, we shall shortly develop more explicit sufficient

conditions.

6.4 A sufficient and verifiable set of conditions

for uniform log-integrability

In this section we shall derive a new set of conditions on the sequence of convergent

spectral densities and the limiting spectral density which ensures that the uniform

log-integrability condition of Theorem 6.3.1 is satisfied. To this end, for α ≥ 0,

let us define:

Ar(α) = {z ∈ T | |log detWr(z)| > α} ,
Ar+(α) = {z ∈ T | detWr(z) > eα} ,
Ar−(α) =

{

z ∈ T | detWr(z) < e−α
}

and note that Ar+(α) ∩ Ar−(α) = φ and Ar(α) = Ar+(α) ∪ Ar−(α). The set

Ar+(α) is the collection of points at which detWr has “large” values and which

may grow to ∞ as α → ∞, while Ar−(α) is the set of points where detWr take
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on “small” values and can diminish to 0 as α→∞. Then we have the following

inequality:

sup
r∈N

∫

Ar(α)

| log detWr(z)|dµ ≤ sup
r∈N

∫

Ar+(α)

log detWr(z)dµ

+ sup
r∈N

∫

Ar−(α)

− log detWr(z)dµ. (6.1)

The main idea here is to derive sufficient conditions for each of the two terms

on the right hand side of (6.1) such that they go to 0 as α → ∞. It turns out that

finding conditions to guarantee the desired effect on the first term is relatively

easy. As for the second term, the conditions are more complicated. To have

that term go to 0 as α → ∞, the idea is to impose conditions which exclude the

existence of a set of positive Lebesque measure on which detWr decays to zero

as r → ∞. Before going into the formal details, we note the following matrix

inequality:

Lemma 6.4.1 For any non-negative definite matrix A ∈ Cn×n, log detA ≤
‖A‖1.

Proof. Note that the result is trivial if A is singular, since in this case we

have log detA = −∞. Therefore we assume that A is positive definite. Let

σ1, σ2, . . . , σn be the singular values of A, with σ1 ≥ σ2 ≥ . . . > 0. Since A is

positive definite, we have that det(A∗) = det(A) and log detA = 1
2
log det(AA∗) =

∑n
k=1 log σk. On the other hand, we also have that ‖A‖1 = Tr((AA∗)

1
2 ) =

∑n
k=1σk

and the result follows since log σk ≤ σk for k = 1, . . . , n. 2

First, let us make the following assumptions:

A1. ess supz∈T ‖Wr(z)‖1 <∞ for all r ∈ N.

A2. The sequence {Wr}r∈N
converges in L1

n×n to W as r → ∞.

Now we can show the following result:

Lemma 6.4.2 Under Assumption A1-A2:

lim
α→∞

sup
r∈N

∫

Ar+(α)

log detWr(z)µ(dz) = 0.

Proof. By Assumption A1 and A2 we have i) limα→∞ supr∈N

∫

Ar+(α)
‖W (z)−

Wr(z)‖1µ(dz) = 0 and ii) limα→∞ supr∈N µ(Ar+(α)) = 0 (if the latter is not
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true then we would have supr∈N ‖Wr‖1 = ∞ which contradicts A1 and A2). It

then follows from ii that iii) limα→∞ supr∈N

∫

Ar+(α)
‖W (z)‖1µ(dz) = 0. Since

‖Wr(z)‖1 ≤ ‖W (z) −Wr(z)‖1 + ‖W (z)‖1, we get from i and iii that

lim
α→∞

sup
r∈N

∫

Ar+(α)

‖Wr(z)‖1µ(dz) = 0.

Lemma 4.1 then gives limα→∞ supr∈N

∫

Ar+(α)
log detWr(z)µ(dz) = 0, as desired.

2

Let us impose three further assumptions on {Wr}r∈N:

A3. Wr(e
iθ) is a piecewise continuous function of θ for each r ∈ N.

A4. Let Za be the set defined by:

Za =
{

z0 ∈ T | lim inf
r

fr = 0 ∀neighborhoods U of z0, fr = inf
z∈U∩T

detWr(z)
}

.

Then the cardinality of Za is finite.

A5. Let Zr be the set of all zeros of detWr (i.e., all points z0 ∈ T for which

infz∈U∩T detWr(z) = 0 ∀neighborhoods U of z0). Then ∃M1,M2,∆1,∆2 > 0

such that for any r ∈ N and any θ0,r ∈ (−π, π] such that eiθ0,r ∈ Zr ∪ Za:

detWr(e
iθ) ≥M1 |θ − θ0,r|M2 ∀θ ∈ [θ0,r − ∆1, θ0,r + ∆2] ∩ (−π, π]. (6.2)

Remark 6.4.3 Assumption A5 implies that the cardinality of Zr is uniformly

bounded (away from ∞).

We have the following result:

Lemma 6.4.4 Under Assumption A3-A5:

lim
α→∞

sup
r∈N

∫

Ar−(α)

− log detWr(z)µ(dz) = 0.

Proof. Let θr,1, . . . , θr,nr
be the angles (in (−π, π]) of elements of Zr ∪ Za.

Then nr ≤ L for all r, where L is some positive integer. Define:

Ãr−(α) =
{

θ ∈ (−π, π] | eiθ ∈ Ar−(α)
}

and

Ãr−,k(α) = Ãr−(α)
⋂

{θ ∈ (−π, π] | − ∆1 ≤ θ − θr,k ≤ ∆2} ,

for i = 1, . . . , nr. Note that θr,k ∈ Ãr−(α) for k = 1, . . . , nr and that Ãr−,k can

be empty for some k’s. Clearly, Assumption A3-A5 imply that for some α0 large
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enough and α > max
{

α0,− log
(

M1 (min {∆1,∆2})M2

)}

, Ãr−,k(α) are disjoint

for k = 1, . . . , nr, independently of r, and Ãr−(α) =
⋃nr

k=1Ãr−,k(α). Furthermore,

without loss of generality we may take M1 to have value less than 1. Hence the

following holds:

∫

Ar−(α)

− log detWr(z)dµ =
nr
∑

k=1

∫

Ãr−,k(α)

− log detWr(e
iθ)dθ,

≤
nr
∑

k=1

∫

Ãr−,k(α)

− log
(

M1|θ − θr,k|M2
)

dθ,

≤ −µ(Ar−(α)) logM1

+M2

nr
∑

k=1

∫

Ãr−,k(α)

− log |θ − θr,k| dθ. (6.3)

Let α1 = max
{

α0,− log
(

M1 (min {∆1,∆2})M2

)}

. Assumption A3-A5 also im-

ply that for α > α1 there exists a number ǫ(α) > 0, dependent on α, such that

lim
α→∞

ǫ(α) = 0 and Ãr−,k(α) ⊂ θr,k+B(α) = {θ ∈ (−π, π] | θ = θr,k + ω;ω ∈ B(α)},
where B(α) is a set independent of r defined by B(α) = {θ ∈ (−π, π] | −ǫ(α)∆1 ≤
θ ≤ ǫ(α)∆2}. Therefore from (6.3) we have:

∫

Ar−(α)

− log detWr(z)dµ ≤ −
nr
∑

k=1

Λ(θr,k +B(α)) logM1

+M2

nr
∑

k=1

∫

θr,k+B(α)

− log |θ − θr,k|dθ,

≤ −LΛ(B(α)) logM1 + LM2

∫

B(α)

− log |θ|dθ,

where Λ denotes the Lebesque measure on (−π, π]. Since the right hand side of

the last inequality → 0 as α → ∞ independently of r, we conclude that

lim
α→∞

sup
r∈N

∫

Ar−(α)

− log detWr(z)µ(dz) = 0, which is the statement we had set out

to prove. 2

A direct consequence of Lemma 6.4.2 and Lemma 6.4.4 is the following theo-

rem:

Theorem 6.4.5 Under Assumption A1-A5:

lim
α→∞

sup
r∈N

∫

Ar(α)

| log detWr(z)|µ(dz) = 0,

i.e., the sequence {log detWr}r∈N
is uniformly integrable.
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Proof. Follows directly from Lemma 6.4.2 and Lemma 6.4.4 by taking the

limit α→ ∞ on both sides of inequality (6.1). 2

The above theorem has the following important corollary:

Corollary 6.4.6 Let W ∈ L1
n×n with ‖ detW−f‖1 = 0 for some spectral density

f ∈ L1 having a finite number of zeros on T (a zero is as defined in Assumption

A5) . If {Wr}r≥1 is a sequence of piecewise continuous spectral densities such

that lim
r→∞

ess sup
z∈T

‖W (z) −Wr(z)‖1 = 0 then lim
r→∞

‖Φ(W ) − Φ(Wr)‖2 = 0.

The corollary is a simple but useful result and relaxes the requirement W > 0

in [19, Theorem 1] (or [15, Corollary 6.2] with p = 2). We shall prove later

on, that a sequence satisfying the conditions of the corollary can be explicitly

constructed under some regularity conditions on W .

6.5 Construction of convergent rational spectral

densities with converging canonical

spectral factors

In this section we give the main ideas for the construction of a sequence of ratio-

nal spectral densities with CSFs converging to the true CSF. Let {Wr}r∈N be a

sequence of rational spectral densities having no poles on T. We define

ck =
1

2π

∫

T

W (z)z−kµ(dz) and ck,r =
1

2π

∫

T

Wr(z)z
−kµ(dz) k = 0, 1, . . .

The sequences {ck}k∈N and {ck,r}k∈N are the unique covariance sequences as-

sociated withW and Wr, respectively. By the Riemann-Lebesque Lemma, ck → 0

as k → ∞. The covariance sequence ck,r has the form:

ck,r = CrA
k
rBr +

mr
∑

m=0

Dm,r∆(k −m), (6.4)

where Ar, Br, Cr, and D0,r, D1,r, . . . , Dmr,r are n × n matrices with Ar having

eigenvalues in D, (Ar, Br, Cr) is a minimal realization, and ∆(m)=

{

1 if m=0

0 otherwise
.

The central idea of our construction is to require the sequence {Wr}r∈N to satisfy

deg Φ(Wr) ≤ ndr, (6.5a)
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ck,r = ck for k = 0, 1, . . . , dr, (6.5b)

where {dr}r∈N
is an increasing sequence of positive integers. That a sequence

{Wr}r∈N satisfying (6.5) exists and is computable is the content of the theory of

rational covariance extension with degree constraint [9, 16, 6, 48, 17, 18]. Since

‖W −Wr‖1 ≥ sup
k≥0

‖ck − ck,r‖1 ≥ sup
0≤k≤dr

‖ck − ck,r‖1, we see that the discrepancy

between the first few terms of the covariance sequence of W and Wr yields a lower

bound for the approximation error in L1
n×n. Therefore, it makes sense to impose

the condition (6.5b). Moreover, since it is desirable to have Wr be as “simple”

as possible, the constraint (6.5a) is also well-motivated. Plugging in the Fourier

series expansion of Wr in the definition of ‖W −Wr‖1, we obtain:
∫

T

‖W (z) −Wr(z)‖1µ(dz)

≤
∫

T

∥

∥

∥

∥

W (z) −
dr
∑

k=0

ℜ{ckzk}
∥

∥

∥

∥

1

µ(dz)+

∥

∥

∥

∥

∫

T

ℜ
{

CrA
dr+1
r (I − Arz)

−1Br

+I{dr≤mr−1}(dr)
mr
∑

m=dr+1

Dm,rz
m
}

µ(dz)

∥

∥

∥

∥

1

,

≤
∫

T

∥

∥

∥

∥

W (z) −
dr
∑

k=0

ℜ{ckzk}
∥

∥

∥

∥

1

µ(dz) + R(Wr, dr), (6.6)

where IA(x) is the indicator function for the set A and

R(Wr, dr) =

∥

∥

∥

∥

ℜ
{

CrA
dr+1
r

∫

T

(I − Arz)
−1µ(dz)Br

}

∥

∥

∥

∥

1

.

If W satisfies ess supz∈T ‖W (z)‖1 < ∞, the Fourier series of W converges to W

in L2
n×n, hence also in L1

n×n. Therefore, the first term on the right hand side of

(6.6) goes to 0 as r → ∞ and the following theorem is immediate:

Theorem 6.5.1 Suppose ess supz∈T ‖W (z)‖1 <∞ and let {Wr}r∈N be a sequence

of rational spectral densities satisfying Assumption A4, A5 and the interpola-

tion constraints of (6.5). If lim
r→∞

R(Wr, dr) = 0 then Assumption A2 holds and

lim
r→∞

‖Φ(W ) − Φ(Wr)‖2 = 0.

It is reasonable to expect, at least intuitively, that there could be “many”

sequences which satisfy the condition of Theorem 5.1 if the spectral density W is

not too “irregular” . Indeed, we see later in Corollary 6.5.3 and Corollary 6.5.5

some particular instances where this is true. Moreover, we will show that the

approximating sequence {Wr} can be constructed explicitly under some further,

yet mild, assumptions on W .
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6.5.1 The scalar case

We shall give a constructive proof of the following result:

Theorem 6.5.2 Let W be a continuous scalar spectral density and ‖W−U/V ‖∞ =

0, where U and V are, respectively, continuous and Lipschitz spectral densities.

If {Ur}r≥1 is a sequence of non-negative definite pseudopolynomials converging

uniformly to U then the following statements hold:

1. If V > 0, there is a sequence {Vr}r≥1 of non-negative pseudopolynomials

such that Wr = Ur(Vr)
−1 satisfies (6.5b) (with n = 1) for all r sufficiently

large

2. If V 6> 0 but i) U (hence also V ) is zero only at a finite number of points on

T, ii) W (eiθ) = 0 whenever V (eiθ) = 0, iii) Ur(e
iθ) = 0 only if U(eiθ) = 0

and iv) supr ‖Ur/U‖∞ < ∞, there is a sequence {Vr}r≥1 of non-negative

pseudopolynomials such that Wr = Ur(Vr)
−1 satisfies 1

2π

∫

T
Wr(z)z

−kµ(dz) =

ck − sk,r where sk,r =
∑kr

l=1Kle
ikθl, kr ∈ N is at most dr − 1, K1, . . . , Kkr

are some non-negative constants, and θ1, . . . , θkr
∈ (−π, π] with θi 6= θj if

i 6= j

In either case, {Vr}r≥1 and {Wr}r≥1 converge in L∞ to V and W , respectively.

Moreover, if degUr ≤ 2dr then Wr also satisfies (6.5a).

Let l2 denote the (standard) set of all square-summable infinite sequences.

Let Γc denote the real linear space of all real-valued continuous functions on T.

Define the real linear space Fc as

Fc = {(q0, q1, . . .) ∈ l2 | qk = 1
2π

∫ π

−π
e−ikθW (eiθ)dθ ∀k ≥ 0, for some W ∈ Γc}.

Since a continuous function f is uniquely determined by its Fourier coefficients

[78, Theorem 2.4] and since the negative Fourier coefficients are merely conjugates

of the positive Fourier coefficients whenever f is a real-valued function, Fc is

actually isomorphic to Γc. Therefore, we may uniquely identify any element of

Fc with an element of Γc, and vice-versa. By endowing Γc with a topology induced

by the supremum norm and endowing Fc with a topology induced by the norm

‖q‖ = ess sup
θ∈(−π,π]

∣

∣

∣

∣

∞
∑

k=0

ℜ{qkeikθ}
∣

∣

∣

∣

(since any element of Γc is continuous, the infinite

sum converges pointwisely for almost all z ∈ T [78, Chapter 19]), we in fact have

a homeomorphism from Fc to Γc. Moreover, Fc is then a closed set since Γc is. In
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the sequel, we denote the homeomorphic map from Fc to Γc by Q. The map Q is

linear: Q(a1f1+a2f2) = a1Q(f1)+a2Q(f2) for any a1, a2 ∈ R and any f1, f2 ∈ Fc.

We now define some relevant convex subsets of Γc and Fc. Define Γ+
c to be the

convex cone consisting of elements of Γc which are non-negative on T. We define

the convex cone F+
c analogously to Fc by replacing Γc with Γ+

c . In a similar

manner, we see that F+
c is isomorphic to Γ+

c . Endowing Γ+
c (resp. F+

c ) with a

topology derived from Γc (resp. Fc), we also get that F+
c is homeomorphic to Γ+

c

underQ, i.e., ifQ+ is the restriction ofQ to F+
c thenQ+ is a homeomorphism from

F+
c to Γ+

c . Define Dr to be the subset of F+
c consisting of all q = (q0, q1, . . .) ∈ F+

c

such that qk = 0 ∀k > r and the trigonometric polynomial
∑r

k=0 ℜ{qkeikθ} ≥ 0

∀θ ∈ (−π, π]. Clearly, Ds ⊃ Dr if s > r. Moreover, since the partial Fejér sums

of any f ∈ Γ+
c are non-negative pseudopolynomials and approximate f arbitrarily

closely (for details on Fejér sums see [78]), it is immediate that ∪r≥0Dr=F+
c .

Recall that a function f on T is Lipschitz if ‖f(eiθ) − f(eiψ)‖1 ≤ K|θ − ψ|
∀θ, ψ ∈ (−π, π] for some positive constant K, and observe that a scalar spectral

density W ∈ Γ+
c can be written as W = U/V a.e., where V is any Lipschitz

scalar spectral density and U = WV . Let W have the covariance sequence

c = {c0, c1, . . .} ∈ l2. Define cr = col(c0, c1, . . . , cr) to be the partial covariance

sequence of c up to the rth term, and let dr be an arbitrary element of Dr. The

functional Jr : Dr → R ∪ {∞}, parametrized by cr and dr, is defined as:

J
r(q; cr,dr) = ℜ{

r
∑

k=0

min{k + 1, 2}c∗kqk − 〈Qr(dr), logQr(q)〉}, (6.7)

where 〈f, g〉 = 1
2π

∫ π

−π
f(eiθ)g∗(e

iθ)dθ and Qr is a map with domain Dr defined by:

Qr(q0, q1, . . . , qr, 0, 0, . . .)(e
iθ) =

r
∑

k=0

ℜ{qkeikθ}

Notice that Qr can be viewed as the restriction of Q to Dr. The functional Jr has

been introduced and analyzed in chapters 3 and 4 (actually, our formulation here

is slightly different from the previous chapters. However, it causes no difficulty

since the functionals in those chapters can be recovered by application of the

linear invertible transformation (q0, q1, . . . , qr) 7→ (q0,
1
2
q1, . . . ,

1
2
qr) and redefining

Dr in an obvious way). Jr has the following properties:

P1. Jr is strictly convex on Dr and is continuous at all points except the origin.

P2. Jr has compact sub-level sets and a unique minimizer in Dr.
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P3. Jr is infinitely differentiable along any line lying in the interior of Dr.

Moreover, if Jr has a minimizer qs which is stationary (i.e., the gradient is zero

at qs) then Q(dr)
Q(qs)

satisfies 〈Q(dr)
Q(qs)

, gk〉 = ck for k = 0, 1, . . . , r, where gk(z) = zk.

Note that qs is always a stationary point whenever Q(dr) is positive definite [6,

Theorem 4.10].

Let us now consider another functional J : F+
c → R ∪ {∞} parametrized by

the covariance sequence c and an infinite sequence d ∈ F+
c such that Q(d) = U .

It is defined as:

J(q; c,d) = ℜ{H(q; c) − 〈Q(d), logQ(q)〉} (6.8)

where H(·; c) is a linear function on Fc, parametrized by c, defined by:

H(q; c) = lim
r→∞

r
∑

k=0

min{k + 1, 2}c∗kqk. (6.9)

Since q ∈ l2 whenever q ∈ Fc (recall the definition of Fc) and c ∈ l2, it follows

that
∑∞

k=0 min{k + 1, 2}c∗kqk < ∞. Therefore, H(·; c) is well defined ∀q ∈ Fc.

Let us define the convex set De(J) = {q ∈ F+
c |

∫

T
log−Q(q)(z)µ(dz) < ∞}

(where log− x = max{0,− log x}); De(J) is actually the effective domain (see, for

example, [79]) of J. Then clearly ∪r≥1Dr ⊂ De(J). Since ‖ · ‖ is also a norm

on De(J), we endow De(J) with the topology induced by the ‖ · ‖ norm (this is

precisely the relative topology of De(J) as a subset of F+
c : open sets in De(J) are

sets of the form De(J) ∩ O for any O which is an open set of F+
c ). Continuing

on, along the same line of arguments as for Jr we may verify that J has property

P4 (given below), and property P3 with Jr and Dr replaced by J and De(J),

respectively (an analogue of property P2 need not hold for J and will not be

required in the following).

P4. J is strictly convex on De(J) and continuous on the interior of De(J).

In the remaining analysis, let us view JΨ as a convex functional that maps

from the convex set De(J) to R. We now derive an expression for the directional

derivatives of J following [17, 18]. Define

Md = {q ∈ De(J) | ess sup
θ∈(−π,π]

Q(d)(eiθ)(Q(q)(eiθ))−1 <∞}.

Let q′ ∈ F+
c , 0 < h < 1, and suppose that q ∈ Md. We observe that if

Q(q + h(q′ − q))(z) = (1 − h)Q(q)(z) + hQ(q′)(z0) = 0 for some z0 ∈ T and all
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0 < h < 1, then Q(q) and Q(q′) must share a zero at the point z0. On the other

hand, if Q(q+h(q′− q))(z) > 0 for all z ∈ T then Q(q) and Q(q′) cannot possibly

have a zero in common on T. As a result, by the mean-value theorem of calculus,

we obtain:

Q(d)(z) logQ(q+h(q′−q))(z)−logQ(q)(z)
h

= Q(d)(z) ∂
∂v

logQ(q + v(q′ − q))(z)

∣

∣

∣

∣

v=η(h,z)

= Q(d)(z) Q(q′)−Q(q)
Q(q)(z)+η(h,z)Q(q′−q)(z)

(6.10)

for all z ∈ T such that Q(q)(z) > 0 (hence for almost all z ∈ T since q ∈ Md),

where 0 < η(h, z) ≤ h. Moreover, q ∈ Md implies that

ess sup
(h,z)∈[0, 1

2
]×T

Q(d)(z)

Q(q)(z) + η(h, z)Q(q′ − q)(z)
<∞. (6.11)

Now, the directional derivative ∇q′−qJ at q in the direction q′ − q is defined as

∇q′−qJ(q; c,d) = lim
h↓0

J(q + h(q′ − q); c,d) − J(q; c,d)

h
. (6.12)

Plugging in the definition of J into (6.12), and using (6.10) and (6.11) with the

Lebesque Dominated Convergence Theorem to bring h under the integral (this

is essentially the same argument used in [17]), and finally evaluating the limit

as h ↓ 0, we obtain: ∇q′−qJ(q; c,d) = H(q′ − q) − 〈 Ψ
Q(q)

, Q(q′) − Q(q)〉. Let

F+
c,∞ denote the set of all elements a in De(J) for which Q(a)(eiθ) is infinitely

differentiable with respect to θ, and suppose that Q(q) is Lipschitz and Q(q′)

in F+
c,∞. Then

r
∑

k=0

qke
ikθ (resp.

r
∑

k=0

q′ke
ikθ) converges uniformly to Q(q) (resp.

Q(q′)) [80, Theorem 2, p. 142]. By plugging in the definition of H and by

another application of the Lebesque Dominated Convergence Theorem, we get:

∇q′−qJ(q; c,d) = lim
r→∞

r
∑

k=0

min{k+1, 2}ℜ
{(

c∗k −
∫

T

Q(d)(z)

Q(q)(z)
zkµ(dz)

)

(q′k− qk)
}

,

for all q ∈ Md and all q′ ∈ F+
c,∞. However, since F+

c,∞ is dense in F+
c , hence also in

De(J), the preceding expression for ∇q′−qJ(q; c,d) is valid for all q ∈ Md and all

q′ ∈ F+
c . Now, setting q# = Q−1(V ), hence Q(q#) is Lipschitz and q# ∈ Md, we

obtain
r
∑

k=0

min{k+1, 2}
(

ck −
∫

T

Q(d)(z)

Q(q#)(z)
z−kµ(dz)

)∗

= 0 for all r. It therefore
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follows that ∇q′−q#J(q#; c,d) = 0 ∀q′ ∈ F+
c , so q# is a stationary point of J and,

by Property P4, must also be the unique minimizer of J.

Suppose now that {dr}r∈N is such that lim
r→∞

‖dr − d‖ = 0 with d = Q−1(U)

as defined previously. Let J
∣

∣

Dr
: Dr → R ∪ {∞} denote the restriction of J

to Dr defined by J
∣

∣

Dr
(q; c,d) = ℜ

{ r
∑

k=0

min{k + 1, 2}c∗kqk − 〈Q(d), logQr(q)〉
}

.

Since Q(d) = U is continuous on T and is zero only on a subset of T of µ-

measure zero, the analysis of Jr in [5, 6] and chapters 3 and 4 readily carries

over to J |Dr
to show that the latter also has properties P1, P2, and P3 (with

Jr replaced by J
∣

∣

Dr
). Moreover, defining sr = arg min

q∈Dr

J
∣

∣

Dr
(q; c,d), then it is

clear that lim
r→∞

sr = q#. Hence, for any ǫ > 0 we will have ‖q# − sr‖ < ǫ
2

by

taking large enough r. Then also ‖q − q#‖ ≤ ‖q − sr‖ + ‖sr − q#‖ ≤ ǫ whenever

‖q − sr‖ ≤ ǫ
2

(recall that q, q#, sr ∈ De(J)). Therefore, for all r large enough,

{q ∈ Dr | ‖q − sr‖ ≤ ǫ
2
} ⊂ {q ∈ De(J) | ‖q − q#‖ ≤ ǫ} and:

sup
{q∈Dr,‖q−sr‖≤

ǫ
2
}

|J
∣

∣

Dr
−J

r| = sup
{q∈Dr|‖q−sr‖≤

ǫ
2
}

|〈Q(d) −Q(dr), logQr(q)〉|

≤ sup
{q∈De(J)|‖q−q#‖≤ǫ}

|〈Q(d) −Q(dr), logQ(q)〉|

≤ ‖Q(d) −Q(dr)‖D,

where D = max{q∈De(J)|‖q−q#‖≤ǫ}

∣

∣

∣

∣

∫ π

−π

logQ(q)(eiθ)dθ

∣

∣

∣

∣

. Since limr→∞ ‖Q(d) −

Q(dr)‖ = 0, it then follows that lim
r→∞

max
{q∈Dr|‖q−sr‖≤

ǫ
2
}

∣

∣J
∣

∣

Dr
(q; c,d)−J

r(q; cr,dr)
∣

∣ =

0 for any ǫ > 0. Due to properties P1, P2, and P3 of J
∣

∣

Dr
and Jr, the pre-

ceding limit implies that lim
r→∞

‖sr − q#,r‖ = 0, where q#,r = arg min
q∈Dr

J
r(q; cr,dr);

for the details refer to the proof of Theorem 3.3.8 in Chapter 3 (replace Ψ, Ψk,

JΨ and JΨk
with Q(d), Q(dk), J

∣

∣

Dk
and Jk, respectively). Furthermore, since

‖q# − q#,r‖ ≤ ‖q# − sr‖ + ‖sr − q#,r‖ and both terms on the right tend to 0 as

r → ∞, we get lim
r→∞

‖q# − q#,r‖ = 0 and lim
r→∞

‖Q(q#) − Q(q#,r)‖ = 0. Conse-

quently, if V > 0 then q# is in the interior of De(J) and the same is true for q#,r

for all r sufficiently large. Therefore, Wr satisfies (6.5) for all r sufficiently large,

and Wr = Q(dr)
Q(q#,r)

→ W = Q(d)
Q(q#)

uniformly as r → ∞.

If V 6> 0 but assumptions i-iv in Point 2 of the theorem are satisfied, con-

vergence of {Wr} to W in L∞ can again be established. Let Vr = Q(q#,r).

Since Vr → V uniformly, we have that for any δ > 0 ∃R(δ) ∈ N such that

−δ < Vr(e
iθ) − V (eiθ) < δ ∀θ and ∀r > R(δ). However, since V, Vr ≥ 0
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and V, Vr are continuous ∀r, and ∃R′ ∈ N such that Vr(e
iθ) > 0 ∀r > R′

whenever V (eiθ) > 0 (due to assumptions i and iii and the observation that

all zeros of Vr on T are also zeros of Ur [17, 18] and Vr → V uniformly),

there is a continuous function fδ : T → [0, 1] such that a) V − δfδ ≥ 0, b)

(V − δfδ)(e
iθ) = 0 if and only if V (eiθ) = 0, and c) −δfδ < Vr − V < δ ∀θ

and ∀r > max{R(δ), R′}. In particular, letting S(δ) = max{R(δ), R′} we may

always take fδ to be fδ = supr>S(δ)(V − Vr)/δ (and we shall do so in the sequel)

and satisfy all the requirements. Then V/Vr < V/(V − δfδ) = 1/(1 − δfδ/V )

a.e. T ∀r > S(δ). Moreover, 1/(1 − gδ/V ) ∈ L∞ for all δ sufficiently small,

where gδ = δfδ = supr>S(δ)(V − Vr). To see this, first observe that property

a of fδ implies gδ/V ≤ 1 a.e. T. Then we observe that gδ ↓ 0 (i.e., g con-

verges monotonically to 0) uniformly on T as δ ↓ 0 and hence, since also gδ ≤ V

∀δ > 0, for sufficiently small δ we will have gδ < V for all z ∈ T except those

for which V (z) = 0. Therefore, ‖gδ/V ‖∞ < 1 and 1/(1 − gδ/V ) < ∞ a.e. for

sufficiently small δ, as claimed, and it follows that supr>S(δ) ‖V/Vr‖∞ <∞. Now,

let Nδ′(z) = {y ∈ T | |z − y| < δ′} for any z ∈ T and δ′ > 0. Then we note that

V/Vr (resp. V/Vr − 1) converges uniformly to 1 (resp. 0) on T\ ∪mk=1 Nδ′(zk),

where z1, . . . , zm ∈ T are all zeros of V , for δ′ small enough such that ∪mk=1Nδ′(zk)

is a strict subset of T. By uniform convergence of Ur to U and assumption iv,

an analogous remark is also true for Ur/U . Next, we make the observation that

|Wr−W | = |Ur/Vr−U/V | ≤W |Ur/U−1|V/Vr+W |V/Vr−1|. Then the proper-

ties of V/Vr and Ur/U just stated, along with assumptions i-ii and the continuity

of W , imply that both W |Ur/U − 1|V/Vr and W |V/Vr − 1| converge uniformly

to 0 as r → ∞. To see this, let us consider the term W |Ur/U − 1|V/Vr and

let R′′ be large enough such that M = supr>R′′ ‖Ur/U − 1‖∞‖V/Vr‖∞ < ∞
(recall that supr>S(δ) ‖V/Vr‖∞ < ∞). Then, by assumption ii and the con-

tinuity of W , for any ǫ > 0 we may choose δ′ > 0 small enough such that

sup{z∈∪m
k=1

Nδ′ (zk)}W (z) < ǫ/M a.e. followed by choosing r > R′′ which is large

enough such that sup{z∈T\∪m
k=1

Nδ′ (zk)} |Ur(z)/U(z) − 1|V (z)/Vr(z) < ǫ/‖W‖∞. In

other words, for any ǫ > 0 ∃R′′′(ǫ) such that ‖W |Ur/U − 1|V/Vr‖∞ < ǫ ∀r >
R′′′(ǫ). The same line of arguments may then be applied to W |V/Vr− 1|. In con-

clusion, we again have Wr
L∞

→ W as r → ∞. That 1
2π

∫

T
Wr(z)z

−kµ(dz) = ck−sk,r
as stated in the theorem has been shown in the proof of [18, Theorem 8].

Finally, we note that the preceding analysis remains valid if dr ∈ Dr is re-

placed by dr ∈ ∪k>rDk. To see this, let dr be any pseudopolynomial, not neces-

sarily of degree at most r, and define Jr as in (6.7). Then it may be verified that
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Jr again has properties P1, P2, and P3, and if qs is a stationary point minimizer

of Jr then Q(dr)
Q(qs)

once more satisfies 〈Q(dr)
Q(qs)

, gk〉 = ck for k = 0, 1, . . . , r. The rest

of the analysis follows mutatis mutandis. This completes the proof of Theorem

6.5.2.

An important consequence of the theorem combined with Corollary 6.4.6 and

[19, Theorem 2] is the following:

Corollary 6.5.3 Suppose W ∈ L1 is a continuous spectral density with a finite

number of zeros on T and let {Wr}r≥1 be a sequence as defined in Theorem 6.5.2.

Then lim
r→∞

‖Φ(Wr) − Φ(W )‖2 = 0. If, in addition, W > 0 and d
dθ
W (eiθ) ∈ L2

then also lim
r→∞

‖Φ(Wr) − Φ(W )‖∞ = 0.

Notice that the corollary gives a weaker condition for convergence in ‖ · ‖∞
norm than analyticity (resp. rationality and boundedness) and positivity of W

given in [20, Theorem 1] (resp. [13, Theorem 3.4]) for the Szegö-Levinson algo-

rithm, and does not restrict Φ(Wr) to have all its zeros at the origin. Note that

we say W is analytic if it can be continued analytically from all points in T.

6.5.2 The matrix case

For a matrix-valued spectral density W , the situation is slightly more compli-

cated. If W is a matrix-valued Lipschitz spectral density then we may write

W = (W−1)−1 = det(W )adj(W )−1, where adj(W ) denotes the adjoint of W . De-

fine U = P detW and V = P adj(W ) for any arbitrary scalar spectral density

P which is Lipschitz and positive definite. Then U and V are Lipschitz. The

representation W = UV −1 a.e. can be viewed as the matricial counterpart of the

scalar fractional representation. If W is positive definite then so is V and in this

case, by suitably redefining the sets Γc, Fc, Γ+
c , F+

c , Dr and the associated norms

with their respective matricial counterparts, as well as suitably modifying the

functionals Jr and J (see [55, eq. (V.5), p. 2180]), it is a relatively straightfor-

ward, but tedious, exercise to adapt the analysis developed in deriving Theorem

6.5.2 to the matrix case. Then we may show the following counterpart of Theorem

6.5.2:

Theorem 6.5.4 Let W = UV −1 ∈ L1
n×n be a matrix-valued positive definite Lip-

schitz spectral density, where U = P detW and V = Padj(W ) for some positive

definite Lipschitz scalar spectral density P . If {Ur}r≥1 is a sequence of positive



CHAPTER 6. SPECTRAL FACTORIZATION 85

definite pseudopolynomials converging uniformly to U then there exists a (unique)

sequence {Vr}r≥1 of positive definite pseudopolynomials such that:

1. Wr = Ur(Vr)
−1 satisfies (6.5b) for all r. If, in addition, degUr ≤ 2ndr,

then (6.5a) is also satisfied.

2. {Vr}r≥1 and {Wr}r≥1 converge uniformly to V and W , respectively.

It then follows from Corollary 6.4.6 and [19, Theorem 2]:

Corollary 6.5.5 Let {Wr}r∈N be a sequence as defined in Theorem 6.5.4. Then

limr→∞ ‖Φ(Wr) − Φ(W )‖2 = 0. If, in addition, W > 0 and d
dθ
W (eiθ) ∈ L2

n×n

then also lim
r→∞

‖Φ(Wr) − Φ(W )‖∞ = 0.

It is plausible that Theorem 6.5.4 and Corollary 6.5.5 can be extended to the

case where U has zeros on T. However, to do this, we must allow some spectral

zeros (see [55]) of Wr to be on T. This is currently an open problem.

6.6 A spectral factorization algorithm

We now introduce a new algorithm for spectral factorization of a special class Wn

of spectral densities. W1 denotes the set of spectral densities W ∈ L1 which can

be continued analytically from every point z ∈ T except from a finite number of

points wk = eiθk , k = 1, . . . ,M , for which W (wk) = 0 and limz∈T,z→wk

|z−wk|
mk

W (z)
<

∞ for some integer mk ≥ 1. For n > 1, Wn denotes the set of spectral densities

in L1
n×n which are positive definite and can be continued analytically from every

point on T. We state the algorithm below followed by a discussion of the steps

involved and a convergence analysis.

6.6.1 The algorithm

Given: A spectral density W ∈ Wn, the desired accuracy ǫ > 0 and

maximum number of iterations rmax.

Initialize: Normalize W so that c0 = I. Let eiλ1 , . . . , eiλL ∈ T be local

minima of detW satisfying 0 ≤ detW (eiλl) ≤ α (α ∈ R, α ≥ 0.2. Rule

of thumb: α = 0.2). Let V1 be all points in {eiλ1 , . . . , eiλL} from which

detW does not have an analytic continuation and V2 = {eiλ1 , . . . , eiλL}\V1.

For l = 1, . . . , L, define ml = min{k ∈ N | limz∈T,z→eiλl

|z−eiλl |k

W (z)
< ∞} if
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eiλl ∈ V1 and ml = min{k ∈ N | Dk
θ detW (eiλl) 6= 0} if eiλl ∈ V2 (here

Dm
θ detW (eiλl) = dm detW (eiθ)

dθm

∣

∣

θ=λl
). Let η0(z) =

∏L
l=1(z − vl)

ml
2 , where

vl = max{0, rl}eiλl (with rl = 1 −
(

detW (eiλl )

D
ml
θ

detW (eiλl )

)
1

ml ) if eiλl ∈ V2, and

vl = eiλl if eiλl ∈ V1. Set r = 1, d0 = L, and compute c0, c1, . . . , cL and the

outer polynomial matrix R0 = φ(V0), where V0 = Q(arg minq∈Dd0
Jd0(q))

(see Section 5).

Step 1. Select a point zr ∈ D. Then:

(a) If W is symmetric (i.e., W (e−iθ) = W (eiθ)) or θr /∈ {0, π}, set dr =

dr−1 + 2, and ηr = ηr−1(z − zr)(z − z∗r ), otherwise

(b) Set dr = dr−1 + 1, and ηr = ηr−1(z − zr).

Step 2. Compute cdr−1+1, . . . , cdr
and the outer matrix polynomial Rr =

φ(Vr), where Vr = Q(arg minq∈Ddr
Jdr(q)).

Step 3. Compute er = 1
2
‖W −Wr‖1 + 1

2
‖Φ(Wr) − Φ(Wr−1)‖2, where Wr =

ηr∗ηr(RrRr∗)
−1. If er > ǫ and r ≤ rmax, set r = r + 1 and return to Step 1.

End: zdrηr∗(Rr)
−1√c0 is the approximate CSF.

Computation of the polynomial matrix Rr, r = 0, 1, 2, . . ., is given in [50,

55] and Chapter 5 of the thesis. The main idea of the algorithm is to find

a sequence z1, z2, . . . ∈ D such that Wr = UrV
−1
r satisfies (6.5) and Wr →

W in L∞
n×n, where Ur(z) = η0η0∗Π

dr−L
k=1 (z − zk)(z − zk)∗. It works as follows.

Suppose eiλl ∈ V2, then detW has an analytic continuation to some open set

containing eiλl . Moreover, if Dm
θ detW (eiλ) = 0 for m = 1, . . . , l then also

(detW )(m)(eiθ) = (detW )(m)(z)
∣

∣

z=eiλl
= 0 ((detW )(m) denotes the mth deriva-

tive of the analytic continuation of detW ). Since eiλl is a local minimum, we

have that Dml

θ detW (eiλl) > 0. Let us take care of points z ∈ T for which

detW (z) ≈ 0. We take these to be the points eiλ1 , . . . , eiλL as defined in the

algorithm. For eiλl ∈ V2, the Taylor series expansion of detW (z) about eiλl gives

detW (z) ≈ detW (eiλl) + (−ie−iθ)mlDml

θ detW (eiλl)(z − eiλl)ml for z sufficiently

close to eiλl . To estimate a zero of detW (z) about eiλl , we set detW (z) = 0

to get |z − eiλl| ≈
(

detW (eiλl )

D
ml
θ

detW (eiλl )

)
1

ml . Assuming zl = rle
iλl with 0 ≤ rl ≤ 1

for our zero estimate, we obtain |1 − rl| =
(

detW (eiλl )

D
ml
θ

detW (eiλl )

)
1

ml . Thus, we choose
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rl = 1 −
(

detW (eiλl )

D
ml
θ

detW (eiλl )

)
1

ml and set vl = max{0, rl}eiλl (hence automatically

vl = eiλl if detW (eiλl) = 0). As elaborated in Section 1, points z ∈ T for which

detW (z) ≈ 0 slows convergence down significantly due to slow decay of the so-

called Schur parameters [9]. The main idea in the algorithm is to reduce their

influence by suitably placing a zero of η0 in their vicinity as in [9, 5, 6], but here

we allow the degree of the approximation Wr to increase as required.

Remark 6.6.1 v1, . . . , vL in D actually serve as estimates of zeros of detW in

some open annulus {z ∈ C | 1−δ < |z| < 1} (0 < δ < 1). As such, other schemes

can be used to determine these points. The “rule of thumb” α = 0.2 is based on

the subjective view that it is “not too small” and “not too large”. If convergence

of the algorithm is slow, say, er > 10−2 in the first few (5-10) iterations, one may

try restarting the algorithm with α increased, or the next remark may be taken

into consideration.

Remark 6.6.2 If detW has thin and sharp “spectral line”-like peaks then the

algorithm may perform poorly. This is because such a peak indicates the possible

presence of a (non-cancelling) pole and zero close to each other and to the unit

circle, while the zero is not included in η0 [9]. To remedy the situation, let H ∈ H2

be a scalar notch filter with narrow stop bands around frequencies corresponding to

the peaks, P = H∗H and apply the algorithm to W ′ = WP . Then Φ(W ) ≈ Φ(W ′)
H

in H2.

The following theorem gives a requirement on z1, z2, . . . for convergence:

Theorem 6.6.3 Let ηr be as defined in the algorithm. Suppose that the polyno-

mial ρr(z) = zdr ηr∗(z)
η0∗(z)

L∞

→ ρ, where ρ is continuous and has no zeros on T. Let

W ∈ W1 (resp. Wn, n > 1), Ur(z) = ηr∗(z)ηr(z) and Vr is as defined in The-

orem 6.5.2 (resp. Theorem 6.5.4). Then zdrηr∗(Φ(Vr))
−1 converges to Φ(W ) in

H2 (resp. H2
n×n), and also in H∞ (resp. H∞

n×n) if W > 0 and, when n = 1,
d
dθ
W (eiθ) ∈ L2.

Proof. Assume that W has been normalized so that c0 = I. Let U = η0ρ∗ρη0∗

and define V by V (eiθ) = limλ→θ U∗(e
iλ)U(eiλ)W (eiλ)−1. Then, by definition,

V ∈ L∞
n×n and ‖W − UV −1‖∞ = 0. Note that ηr = zdrη0ρr∗ and let Ur = ηr∗ηr.

Then, since ρr
L∞

→ ρ, we have that Ur
L∞

→ U . By Theorem 6.5.2 and Corollary

6.5.3, or Theorem 6.5.4 and Corollary 6.5.5, whichever pair is applicable, it fol-

lows that Vr and Wr = UrV
−1
r converge in L∞

n×n, respectively, to V and W , and
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Φ(Wr) converges to Φ(W ) in H2
n×n and also in H∞

n×n if W > 0 and, when n = 1,
d
dθ
W (eiθ) ∈ L2 (by the definition of Wn,

d
dθ
W (eiθ) ∈ L2

n×n is automatically satis-

fied when W ∈ Wn, n > 1). Since Φ(Wr) = Φ(Ur)(Φ(Vr))
−1 = zdrηr∗(Φ(Vr))

−1,

scaling back by multiplication of both Φ(W ) and Φ(Wr) on the right with
√
c0

gives the desired result. 2

Remark 6.6.4 Clearly, if zr = 0 for all r > R (R ∈ N) then ρr converges

uniformly to the analytic function ρ =
R
∏

k=1

(1 − z∗kz) and the algorithm converges.

6.6.2 General approximation strategy

The algorithm requires W ∈ Wn for some n ∈ N. If this is not the case but

W is continuous and has a finite number of zeros, then the strategy would be

to first construct an approximating analytic spectral density (which need not

be rational) in L∞
n×n. Then we apply the spectral factorization algorithm to the

approximation to obtain an approximate CSF of Φ(W ). The fact that the analytic

approximation does not have to be rational affords us flexibility in choosing a set

of basis functions for the approximation.

6.6.3 Heuristic scheme for selection of spectral zeros

In Theorem 6.6.3 we gave an explicit condition on the spectral zeros z1, z2, . . . for

the spectral factorization algorithm to converge and mention a particular situa-

tion where this condition is automatically met. In the following we give an intu-

itive heuristic scheme for choosing z1, z2, . . . for scalarW . The idea goes as follows.

For each r (including r = 0) we have at Step 1 that
∫ π

−π

(

Wr(e
iθ) −W (eiθ)

)

dθ = 0.

If Wr − W is not identically zero (for which the algorithm then terminates),

then it is easy to show, using the mean value theorem of calculus, that ∃θ
such that Wr(e

iθ) − W (eiθ) > 0. Since a zero of Wr can decrease the magni-

tude of Wr in certain regions of T, the main idea now is to try to reduce the

excess (or overshoot) of Wr over W at a point θr for which the excess is rel-

atively large (preferably the largest). If W is not symmetric or θr ∈ {0, π}
then we place a zero at zr = Reiθr (with 0 < R < 1 so that zr ∈ D) such that
Wr−1(z)|z−zr|2

W (z)

∣

∣

z=eiθr
= Wr−1(eiθr )

W (eiθr )
(1 − R)2 = 1. From the last equality we obtain

the required value of R for Step 1. In case W is symmetric and θr /∈ {0, π},
we must place two zeros at zr and z∗r to ensure Wr is also symmetric. By
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a procedure similar to the symmetric case, we find that a quartic equation

|1 − R|2|1 − Re−i2θr |2 − Wr−1(eiθr )
W (eiθr )

= 0 must be solved for R and a real solu-

tion satisfying 0 < R < 1 is chosen. It is easy to see, since Wr−1(eiθr )
W (eiθr )

< 1, that

the quartic solution always has such a solution. It is not theoretically guaranteed

that spectral zeros chosen by the scheme satisfies the requirements of Theorem

6.6.3 for convergence. However, in accordance with Remark 6.6.4, we may al-

ways proceed with the heuristic for a finite number of steps before terminating

the selection by setting zr = 0 for the remaining iterations. Simulation results

to be given in Section 6.7, however, indicate that this heuristic seems to work

reasonably well.

6.6.4 Reduction of computational time

The computationally intensive part in the proposed algorithm is Step 2 for com-

puting Rr. This is because the homotopy continuation algorithms described

in [50, 55] involve solving a finite sequence of convex optimization problems.

However, it is important to note that the computation can be substantially re-

duced at higher iterations down to solving only one convex optimization prob-

lem. To see this, consider the case where the algorithm is convergent and Er =

‖zdrηr∗R
−1
r − zdr−1(ηr−1)∗R

−1
r−1‖∞ → 0 as r → ∞. Since Rr is invertible a.e. T

and supr≥1 ‖Rr‖∞ <∞, we also have E ′
r = ‖zdrηr∗Rr−1 − zdr−1(ηr−1)∗Rr‖∞ → 0

as r → ∞ (by noting E ′
r ≤ ‖Rr−1‖∞Er‖Rr‖∞). Assuming for the moment that

zr ∈ R and recalling that ηr(z) = (z − zr)ηr−1(z) and dr = dr−1 + 1, we get that

‖(1− z∗rz)Rr−1 −Rr‖∞ → 0. Therefore, ‖(1− z∗rz)Rr−1 −Rr‖∞ will be small for

all r sufficiently large. In that case, we simply set the homotopy step-size param-

eter ρ (resp. λ) in [50] (resp. [55]) to 1 and use the coefficients of (1 − z∗rz)Rr−1

as an initial point in the algorithm for solving the single convex optimization

problem which gives the coefficients of Rr. If zr /∈ R, then replace (1− z∗rz) with

(1− zrz)(1− z∗rz). This reduction scheme can be executed when er ≤ δ for some

small δ > 0.

If required, further reduction is possible. We note that the Hessian of the

functional to be minimized has a Hankel-plus-Toeplitz structure which can be

inverted (or solved if it is the coefficient matrix in a system of linear equations)

with fast algorithms given in [56, 57]. More importantly, however, is that these

algorithms have parallel (i.e., the Schur-type) versions which can be implemented

on parallel computers.
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6.7 Numerical examples

In this section we apply the new spectral factorization algorithm and heuristic of

the last section to compute approximate CSF’s of some rational and non-rational

non-coercive spectral densities. In each example, three different simulations are

carried out:

1. Simulation A: The spectral zero selection heuristic is applied at Step 1 until

termination of the algorithm.

2. Simulation B: The spectral zero selection heuristic is applied at Step 1 for

a finite, pre-specified, number of steps after which zr is set to 0.

3. Simulation C: All of Initialize are skipped except the computation of c0, zr

is set to 0 in Step 1 for all r, and Rr in Step 2 is computed recursively via

the Szegö-Levinson algorithm. Step 3 is unaltered.

We set ǫ = 10−4 in all simulations and apply the computational reduction

scheme of Section 6.6.4 in Simulation A and B when er ≤ 10−2 is satisfied.

The algorithm was implemented in Matlab and executed on a computer with a

Pentium 4 processor with a clock speed of 3.2 GHz and 1 GB of RAM.

Example 6.7.1 Consider the rational spectral density W (eiθ)= 2+cos θ−2 cos 2θ
24.1−18.9 cos θ+2 cos 2θ

which is non-coercive with a zero at z= − 1. The exact CSF of W is known to

be Φ(W )(z)= −
√

10 (z−2)(z+1)
(z−4)(z−5)

. The results of Simulation A, B, and C are shown

in Table 6.1 and Fig. 6.1 (in simulation B, only 5 zeros are selected with the

heuristic scheme). The exact error ‖Φ(W10) − Φ(W )‖2 for Simulation A was

4.74526 × 10−5.

Table 6.1: Simulation results

Number of Final value Degree of Running time

iterations of er approximation (seconds)

Simulation A 10 4.12909 × 10−5 10 8.53

Simulation B 10 4.14906 × 10−5 10 7.593

Simulation C 151 1.98136 × 10−3 151 73.063
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Figure 6.1: Plots of Simulation A (left), B (center), C (right): ‖W −Wr‖1 (dash-

dot line), ‖Φ(Wr) − Φ(Wr−1)‖2 (circle)

Example 6.7.2 The Kolmogorov spectral density [81], which is the spectral den-

sity of a continuous time stochastic process arising in the study of turbulence, is

defined along the imaginary axis as WK(iω;σ) = 1√
1−σ(iω)2

where σ is a positive

parameter. To use our approach, we first transform the spectral density from

the imaginary axis to the unit circle via the (invertible) bilinear transformation

eiθ = 1−iω
1+iω

. After applying the transformation we get a spectral density W d
K on T

given by: W d
K(eiθ;σ) =

√

1+cos θ
1+cos θ+σ(1−cos θ)

. Notice that W d
K has a zero at z = −1

which is not PLL (see discussions on PLL in Sections 2.6 and 2.7) and cannot

be continued analytically from that point. Setting σ = 2, results from Simulation

A, B and C are shown in Table 6.2 and Fig. 6.2 (in Simulation B, only 10 zeros

are selected with the heuristic scheme).

Table 6.2: Simulation results

Number of Final value Degree of Running time

iterations of er approximation (seconds)

Simulation A 22 9.32203 × 10−5 43 239.269

Simulation B 29 9.31331 × 10−5 39 294.741

Simulation C 151 2.11347 × 10−3 151 44.86

Transforming the approximate CSF of Simulation A from the unit circle back

to the imaginary axis gives us the frequency response shown in Fig. 6.3.
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Figure 6.2: Plots of Simulation A (left), B (center), C (right): ‖W −Wr‖1 (dash-

dot line), ‖Φ(Wr) − Φ(Wr−1)‖2 (circle)
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Figure 6.3: Frequency response of approximate CSF from Simulation A

Example 6.7.3 The von Karman spectral density [30, p. 73] is the spectral

density of a continuous time stochastic process defined along the imaginary axis

as WvK(iω;σ) = 2σ
1− 8

3
σ2(1.339)2(iω)2

(1−σ2(1.339)2(iω)2)
11
6

, where σ is a positive parameter. It is often

used as a substitute for the Kolmogorov power spectral density of the previous

example. After a transformation from the real line to the unit circle, we obtain a

spectral density W d
vK on T given by:

W d
vK(eiθ;σ) = 2σ

1 + cos θ + 8
3
σ2(1.339)2(1 − cos θ)

(1 + cos θ + σ2(1.339)2(1 − cos θ))
11
6

(1 + cos θ)
5
6 .

W d
vK has a zero at z = −1 which, as with the previous example, is not PLL and

cannot be continued analytically from that point. Setting σ = 2, the results of

Simulation A, B and C are shown in Table 6.3 and Fig. 6.4 (in Simulation B,

only 10 zeros are selected with the heuristic scheme).
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Table 6.3: Simulation results

Number of Final value Degree of Running time

iterations of er approximation (seconds)

Simulation A 30 6.54517 × 10−5 49 926.656

Simulation B 47 8.97805 × 10−5 47 1014.2

Simulation C 151 7.98211 × 10−3 151 64.392
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Figure 6.4: Plots of Simulation A (left), B (center), C (right): ‖W −Wr‖1 (dash-

dot line), ‖Φ(Wr) − Φ(Wr−1)‖2 (circle)

Transforming the approximate CSF of Simulation A from the unit circle to

the imaginary axis gives us the frequency response as shown in Fig. 6.5.

All examples indicate that both Simulation A and B give better results than

Simulation C (the Szegö-Levinson algorithm). Despite producing an approxima-

tion of substantially higher order, Simulation C gives a final error er of magni-

tude 102 higher and it would seem many hundred more iterations are required to

achieve er < 10−4 as in Simulation A and B. In Example 7.1 for a simple second

order spectral factor, Simulation C also runs much longer. Simulation A runs

faster than B, but gives an approximation of slightly higher degree. The latter

is not unexpected since Simulation B selects more real-valued zeros (i.e., at the

origin). The simulations do suggest that the heuristic is practically useful and

quite effective, regardless of whether a limited or indefinite number of spectral

zeros are selected.
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Figure 6.5: Frequency response of approximate CSF from Simulation A

6.8 Conclusions and further research

This chapter makes three primary contributions. First and foremost, we have

derived a set of sufficient, easy to verify conditions for uniform log-integrability

of a sequence of matrix-valued spectral densities. Secondly, we establish theo-

retical results on the existence of certain approximating rational sequences for a

class of matrix-valued spectral densities. Finally, we propose a new spectral fac-

torization algorithm for a more specific class of matrix-valued spectral densities

based on degree constrained rational covariance extensions, and establish conver-

gence results. Our approach does not require the spectral density to be coercive.

There is a freedom to choose a sequence of spectral zeros in the algorithm and a

heuristic has been proposed for choosing them. The performance of the new al-

gorithm is demonstrated in a number of numerical examples, where it performed

favorably compared to the popular Szegö-Levinson algorithm/maximum entropy

method. In particular, the algorithm was successfully applied to the non-rational

and non-coercive Kolmogorov and von Karman spectral densities. Possible topics

for future research include development of fast algorithms for computing degree

constrained covariance extensions (as discussed in Section 4.4), relaxations of the

conditions presented here, and development of better heuristics for selection of

spectral zeros.

The results and algorithm of the chapter may be useful in applications in

which spectral factorization plays a prominent role such as in computation of

approximate solutions of algebraic Riccati equations (ARE’s) in optimal control

of linear systems, or in which signals with non-rational power spectra is a central

theme (e.g., control of aircraft subject to windgust, adaptive optics, and laser
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scintillation [30]). It may also prove to be useful in spectral estimation and

system identification research.



Part II

Topics in Quantum Linear

Stochastic Systems
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List of Notation and Terminology

for Part II

Notation

R The set of real numbers

C The set of complex numbers

T Transpose of a matrix/array

[·, ·] For two Hilbert space operators A,B which maps a Hilbert

space into itself, [A,B] denotes the commutator of A,B de-

fined by: [A,B] = AB −BA, assuming that the products AB

and BA are well-defined on a common dense domain if either

A or B or both are unbounded

⊗ Tensor product

∗ The adjoint of a (possibly unbounded) Hilbert space operator

# If X is a matrix/array of Hilbert space operators , X# denotes

the operation of taking the adjoint of each element of X

† X† = (X#)T

diag(·, . . . , ·) For square matrices M1, . . . ,Mn, diag(M2, . . . ,Mn) denotes a

block diagonal matrix with matrices M1, . . . ,Mn on the diag-

onal block

diagm(·) For a square matrix T , diagm(T ) denotes the block diagonal

matrix diag(T, . . . , T ) where T appears m times as a diagonal

block
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In×n Denotes the n × n identity matrix. If n is not specified, it is

assumed that it can be determined from the context

0n×m Denotes the n×m zero matrix. If n and/orm are not specified,

it is assumed that they can be determined from the context

Pm A 2m× 2m permutation matrix defined by

Pma = [ a1 a3 . . . a2m−1 a2 a4 . . . a2m ]T ,

where a = [ a1 a2 . . . a2m ]T and a1, . . . , a2m ∈ C

Terminology

Permutation matrix A full-rank real matrix whose columns (or, equiva-

lently, rows) consist of standard basis vectors for Rm;

i.e., vectors in Rm whose elements are all 0 except for

one element which has the value 1. A permutation

matrix P has the unitary property PP T = P TP = I

Hilbert space operator An operator mapping from one Hilbert space to an-

other

Unitary operator A bounded Hilbert space operator, say U , possessing

the unitary property U∗U = UU∗ = I, where I is the

identity operator

Commute Two vectors x, y of operators on a common Hilbert

space are said to commute if

xyT − (yxT )T = 0

on a dense subspace of the Hilbert space



Chapter 7

Quantum Linear Stochastic

Systems in Quantum Optics

7.1 Introduction

Recent successes in quantum and nano-technology have provided a great impetus

for research in the area of quantum feedback control systems; e.g., see [82, 83,

84, 85, 86, 87, 88]. It is reasonable to expect that quantum control is an area of

research which could play a vital role towards realization of conceptual quantum

signal processing systems and quantum computers that are being extensively

studied for potential benefits over their classical counterparts [89].

One particular area in which significant theoretical and experimental advances

have been achieved is quantum optics. In particular, linear quantum optics is one

of the possible platforms being investigated for building future quantum com-

puters [90], [89, Section 7.5], besides being an area of independent interest for

physicists. It is especially interesting from the point of view of an engineer, and

of a control theorist in particular, for two primary reasons:

1. A prominent mathematical tool for modelling of quantum optical devices

is quantum stochastic calculus, developed by Hudson and Parthasarathy

[91, 92], which is a generalization to the quantum context of the classical

Ito stochastic calculus. The latter is of course a familiar tool widely used

by engineers in filtering and estimation of stochastic dynamical systems.

2. Under the so-called rotating wave approximation and weak coupling as-

sumption (see detailed discussions in Chapters 3 and 5 of [93]), the approx-
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imate dynamics of various devices in quantum optics takes on a form similar

to that of a linear time invariant stochastic system of modern systems the-

ory. More precisely, these devices are conveniently modelled as quantum

linear stochastic systems represented by a set of quantum linear stochas-

tic differential equations (QSDEs) driven by non-commutative/quantum

Wiener process:

dx(t) = Ax(t)dt+Bdw(t);

dy(t) = Cx(t)dt+Ddw(t), (7.1)

with A,B,C,D being constant matrices. Here w denotes a vector of non-

commutative Wiener processes. Regarding w(t) = [ w1(t) . . . wnw
(t) ]T ,

each operator-valued stochastic process wi(t), i ∈ {1, . . . , nw}, when con-

sidered independently is equivalent to a classical Wiener process on some

classical probability space via the Spectral Theorem [94, Theorem 2.4]. The

distinction with classical Wiener processes is that two processes wi(t) and

wj(t), i 6= j, need not commute. That is, wi(s)wj(t) − wj(t)wi(s) need not

be zero for any s, t ≥ 0. In this case, a joint distribution cannot be pre-

scribed for the two processes on the same classical probability space. This

means that they cannot be measured simultaneously, a distinctive feature

of quantum mechanics.

Due to the above observations, it comes naturally to ask whether one can

generalize various controller synthesis paradigms from modern control theory,

such as the LQG and H∞ paradigms, to the quantum optical domain. To make

a case for this possibility, recently James and Petersen [32] have proposed a

generalization of the H∞ synthesis method to quantum linear systems based on

a quantum extension of the Strict Bounded Real Lemma [95] of the classical

theory. For a given disturbance attenuation level, if a controller exists then it can

be synthesized via solving a pair of Riccati equations, similar to the classical case.

However, the synthesis only gives a partial model of the controller, i.e, not all of

the system matrices are fully prescribed. In an example given in [32], where the

plant to be controlled is a (quantum) optical cavity, they demonstrated that the

controller partial model can be completed by appropriately adding some quantum

Wiener noise and realized as another optical cavity. Thus, one interesting question

which arises from the H∞ synthesis procedure which we attempt to address in

this thesis is:
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“Is it always possible to add quantum noises to complete a partial model in

such a way that the controller models some physically meaningful quantum linear

system, such as a quantum optical cavity, linear amplifier or attenuator?”

In general, quantum linear stochastic systems represented by linear QSDEs

with arbitrary constant coefficients need not correspond to some physically mean-

ingful system. This is unlike classical linear stochastic systems (throughout this

part of the thesis we shall use the term “classical” to loosely refer to systems

which have no quantum mechanical components), such as those considered in

Part I of this thesis, which may be regarded as always being realizable, at least

approximately, via electronics and/or mechanical devices. Physical quantum sys-

tems must satisfy some additional constraints which impose some algebraic con-

ditions on the system coefficients A,B,C,D. One such constraint is that physical

systems must preserve the canonical commutation relations (CCR) among cer-

tain canonical quantum observables. For example, in a basic one dimensional

quantum harmonic oscillator [96] set on the Hilbert space L2(R), the space of

measurable and square integrable complex-valued functions on R, the canonical

observables are the position operator p : f(x) 7→ xf(x) and momentum operator

q : f(x) 7→ d
dx
f(x), or the annihilation operator a = q + ip and creation operator

a∗ = p − iq (here ∗ denotes the adjoint of an operator), defined on an appropri-

ate dense subspace of L2(R), and the CCR takes the form (in the Schrödinger

picture):

[p, q] = i,

or equivalently,

[a, a∗] = 1,

where we take the Planck constant ~ to be 1. In the Heisenberg picture [96] the

CCR takes the form:

[p(t), q(t)] = i ∀t ≥ 0,

or equivalently,

[a(t), a(t)∗] = 1 ∀t ≥ 0,

where k(t), k can be either p, q, a or a∗, are the time evolution of k under a uni-

tary evolution generated by the operator-valued Hamiltonian H of the quantum

harmonic oscillator given by H = 1
2
(p2 + q2), i.e., k(t) = U †

t kUt and Ut = eiHt,

∀t ≥ 0.

Note that for convenience some authors may adopt a different convention

regarding the definition of position and momentum operators p and q than the
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one given above, e.g. [97, 98]. Sometimes it is defined as scalar multiple of the

operator p and q as defined above such as p : f(x) 7→
√

2xf(x) and q : f(x) 7→√
2 d
dx
f(x), and the annihilation and creation operators as a = p+iq

2
and a∗ = p−iq

2
.

Hence, the CCR in this case becomes [p, q] = 2i and [a, a∗] = 1. This causes no

difficulties as long as the definitions and the CCR are used consistently, and is

more a matter of preference. In this chapter and the next we shall adhere to the

latter convention (see a footnote in Section 7.2).

We first give a description of quantum linear stochastic systems which will be

the focus of our investigation. Due to the substantial amount of background ma-

terials required to set up Part II, we shall omit them and assume that the reader

has some familiarity with the principles of quantum mechanics, quantum proba-

bility spaces, quantum stochastic processes, and quantum stochastic calculus. An

introduction to quantum mechanics on finite dimensional Hilbert spaces which

only requires knowledge of elementary linear algebra, but which shows most of

the essential features of quantum mechanics, can be found in [89, Chapter 2].

For a more general treatment of quantum mechanics, the reader may refer to the

standard text [96]. For an introduction to quantum probability spaces suitable for

engineers with working knowledge of applied functional analysis, the reader may

consult the tutorial paper [94], while for an introduction to quantum stochastic

processes (which includes quantum Wiener processes) and quantum stochastic

calculus, the reader may refer to the original paper of Hudson and Parthasarathy

[91], the text [92], Chapter 5 of [99], or the tutorial paper [94].

This chapter is an adaptation of the paper [100] (joint work with M. R. James

and I. R. Petersen). The contributions of the chapter include the derivation

of a necessary and sufficient condition for preservation of the CCR in quantum

linear stochastic systems (Theorem 7.3.1), the introduction of a formal notion

of physical realizability of linear quantum stochastic systems (Definition 7.3.5),

and explicit necessary and sufficient condition for physical realizability of such

systems (Theorem 7.3.6).

7.2 General quantum linear stochastic models

for quantum optics

We are generally interested in physical systems that contain one or more compo-

nents that are quantum in nature. It is helpful to have in mind an interconnection
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of components, some of which are “classical”, meaning that non-quantum de-

scriptions suffice, and some for which “quantum” descriptions are required. Such

systems are common in quantum optics laboratories, and may occur, for instance,

in schemes for implementing quantum computing and information processing al-

gorithms. We use non-commutative or quantum probability theory to describe

the systems of interest. This framework is quite general and encompasses quan-

tum and classical mechanical systems. Quantum noise, which may arise from

measurements or interactions between subsystems and the environment, plays a

central role.

To be specific, the systems we consider can be defined on some quantum

probability space (A ,P) (e.g., see [94] and the references therein), where A is

a von Neumann algebra (of bounded operators on some Hilbert space) and P

is a state on this algebra. The von Neumann algebra can be thought of as an

abstract mathematical representation of the “observables” or physical quantities

of interest, while statistical attributes of these observables are determined by P.

We begin by presenting a general form of the system of interest, followed by a

formal discussion of the associated Hilbert spaces and algebras.

We consider linear non-commutative stochastic systems of the form

dx(t) = Ax(t)dt+Bdw(t); x(0) = x0

dy(t) = Cx(t)dt+Ddw(t) (7.2)

where A, B, C and D are, respectively, real Rn×n,Rn×nw ,Rny×n and Rny×nw

matrices (n, nw, ny are positive integers), and x(t) = [ x1(t) . . . xn(t) ]T is a

vector of self-adjoint possibly non-commutative system variables.

The initial system variables x(0) = x0 consist of operators (on an appropriate

Hilbert space) satisfying the commutation relations∗

[xj(0), xk(0)] = 2iΘjk, j, k = 1, . . . , n, (7.3)

where Θ is a real antisymmetric matrix with components Θjk, and i =
√
−1.

Here, the commutator is defined by [A,B] = AB − BA. To simplify matters

without loss of generality, we take the matrix Θ to be of one of the following

forms:

∗In the case of a single degree of freedom quantum particle, x = (x1, x2)
T where x1 = q

is the position operator, and x2 = p is the momentum operator. The annihilation operator is

a = (q + ip)/2. The commutation relations are [a, a∗] = 1, or [q, p] = 2i.
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• Canonical if Θ = diag(J, J, . . . , J), or

• Degenerate canonical if Θ = diag(0n′×n′ , J, . . . , J), where 0 < n′ ≤ n.

Here, J denotes the real skew-symmetric 2 × 2 matrix

J =

[

0 1

−1 0

]

,

and the “diag” notation indicates a block diagonal matrix assembled from the

given entries. To illustrate, the case of a system with one classical variable and

two conjugate quantum variables is characterized by Θ = diag(0, J), which is

degenerate canonical.

Assume for the moment that Θ is canonical (hence n is even). Then the

operators x1(0), . . . , xn(0) satisfying (7.3) and the underlying Hilbert space, say

Hs, can be realized in the standard way via the GNS construction and Stone’s

Theorem; for details see [97, 92]. Important in this construction are the so-

called Weyl operators {W (x);x ∈ Rn} of bounded operator on Hs. They satisfy

the Weyl relations W (x)W (y) = e−i〈x,Θy〉W (x + y) for all x, y ∈ Rn. It is well-

known that the Weyl operators generate the von Neumann algebra of all bounded

operators on Hs. Let us denote this algebra by As and assign to it a state Ps such

that x0 is Gaussian. We shall denote the density operator associated with Ps by

ρ and say that x0 is Gaussian with state ρ. If Θ is degenerate canonical, we first

construct a so-called augmentation of (7.2), which is developed in Section 7.3.2,

and perform the same construction as before on this augmentation to realize x0

and Hs.

The vector quantity w describes the input signals and is assumed to admit

the decomposition

dw(t) = βw(t)dt+ dw̃(t) (7.4)

where w̃(t) is the noise part of w(t) and βw(t) is a self adjoint, adapted process

(see, e.g., [91, 92, 94] for a discussion of adapted processes).

The noise w̃(t) is a vector of self-adjoint quantum noises with Ito table

dw̃(t)dw̃T (t) = Fw̃dt, (7.5)

where Fw̃ is a non-negative Hermitian matrix; e.g., see [92, 101]. This determines

the following commutation relations for the noise components:

[dw̃(t), dw̃T (t)] = dw̃(t)dw̃T (t) − (dw̃(t)dw̃T (t))T = 2Tw̃dt, (7.6)
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where we use the notation Sw̃ = 1
2
(Fw̃ + F T

w̃ ), Tw̃ = 1
2
(Fw̃ − F T

w̃ ) so that Fw̃ =

Sw̃ + Tw̃. For instance, Fw̃ = diag(1, I + iJ) describes a noise vector with one

classical component and a pair of conjugate quantum noises (here I is the 2 × 2

identity matrix). The noise processes can be represented as operators on an

appropriate Fock space (a particular, yet important, type of Hilbert space); e.g.,

see [91, 92]. Let us denote this noise Fock space by F and the algebra of all

bounded operators on F by W . We assume that W is assigned a Gaussian/quasi-

free state φ such that the noise commutation relations (7.6) hold. Indeed, later

in this section Fw̃ is assumed a certain canonical form corresponding to φ being

a vacuum state.

The process βw(t) serves to represent variables of other systems which may

be passed to the system (7.2) via a connection. Therefore, we require that βw(0)

is an operator on a Hilbert space Ha distinct from Hs and F . We also assume

βw(t) commutes with x(t) for all t ≥ 0 (two vectors x, y of operators are said to

commute if xyT − (yxT )T = 0); this will simplify matters for the present work.

Moreover, since we had earlier specified that βw(t) should be an adapted process,

we make note that βw(t) also commutes with dw̃(t) for all t ≥ 0. We denote the

von Neumann algebra of all bounded operators on Ha by Aa and assume that it

is assigned a state Pa.

Overall, the system (7.2) is defined on the composite Hilbert space Hc =

Hs ⊗Ha ⊗ F and all operators are affiliated to the von Neumann algebra Ac =

As ⊗ Aa ⊗ W for all t ≥ 0. A self-adjoint operator X is said to be affiliated to

a von Neumann algebra A if (X + iI)−1 ∈ A . Affiliation is a useful notion for

relating unbounded operators, such as the components of x(t), to an algebra of

bounded operators. Statistical attributes of the operators are determined by the

composite state Pc = Ps⊗Pa⊗φ. Therefore, the associated quantum probability

space for (7.2) is (Ac,Pc). Note here that operators originally defined on Hs, Ha

or F are implicitly “lifted” to the composite space Hc by the standard operation

of ampliation (i.e., tensoring with appropriate identity operators). For example,

the ampliation of an operator X : Hs → Hs to Hc is simply X ⊗ I ⊗ I where the

middle I denotes the identity operator on Ha while the right most I denotes the

identity operator on F .

At this point, we stress once again that the most important fact to be noted of

the model (7.2) is that its similarity in form to the state-space model of classical

finite-dimensional stochastic linear systems. The main difference is that in the

classical setting, the vectors x(t), y(t) and w(t) consist of real- or complex-valued
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functions of time which commute with one another for all time t ≥ 0 and different

times s, t ≥ 0, while in the quantum context they consist of operators on some

Hilbert space which need not commute with one another at any time t ≥ 0 nor

at any two time instances s, t ≥ 0. But despite this difference, we shall show

in the next chapter that in the context of quantum H∞ control, to some degree

it is possible to work with them in a similar way as we do with their classical

counterparts.

To simplify the exposition, we now set up some conventions to put the sys-

tem (7.2) into a standard form. First, note that there will be no change to the

dynamics of x(t) and y(t) if we enlarge w(t), by adding additional dummy noise

components and enlarging F and W if necessary, and at the same time enlarg-

ing B by inserting suitable columns of zeros. Secondly, we may add dummy

components to y by enlarging C and D by inserting additional dummy rows to

each of these matrices. Our original output can be recovered by discarding or

“disconnecting” the dummy components/entries. Therefore, we make the follow-

ing assumptions on the system (7.2): (i) ny is even, and (ii) nw ≥ ny. We also

make the assumption that Fw̃ is of the canonical form Fw̃ = I + idiag(J, . . . , J).

Hence nw has to be even. Note that if Fw̃ is not canonical but of the form

Fw̃ = I + idiag(0n′×n′ , diag(J, . . . , J)) with n′ ≥ 1, we may enlarge w(t) (and

hence also w̃(t)) and B as before such that the enlarged noise vector, say w̃′, can

be taken to have an Ito matrix Fw̃′ which is canonical.

Equation (7.2) is a linear quantum stochastic differential equation. General

quantum stochastic differential equations of this type are described in [91, 92],

though the specific linear equations (7.2) may be treated directly, with solutions

given explicitly by:

x(t) = eAtx(0) +

∫ t

0

eA(t−s)Bdw(s);

y(t) =

∫ t

0

Cx(s)ds+Dw(t). (7.7)

Here the integral with respect to dw(t) is taken to be a quantum stochastic

integral. By construction, x(t) depends only on the past noise w(s), for 0 ≤ s ≤ t;

i.e., it is adapted, and a property of the Ito increments is that dw(t) commutes

with x(t).

Equations (7.2) describe a general non-commutative linear stochastic system,

which need not necessarily correspond to a physical system, such as an optical

cavity, attenuator, or amplifier. This issue does not normally arise in physical
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modelling, but we shall see in the next chapter that it is of considerable impor-

tance when we come to synthesizing physically realizable controllers. In particular,

we will describe a quantum H∞ control framework for quantum linear stochastic

systems due to James and Petersen [32]. This framework returns a partial model

for a quantum linear stochastic controller which may not represent any physically

meaningful system. The main idea is to complete the partial model by suitably

adding additional channels of quantum Wiener processes to the partial model

such that the completed model does indeed represent some physically meaningful

system. In the next section, we shall formalize what we mean by “physically

meaningful” by introducing a precise notion of physical realizability for quantum

linear stochastic systems represented by the QSDE (7.2).

7.3 Physical realizability of linear QSDEs

As mentioned at the beginning of this chapter, a basic requirement of any phys-

ical quantum system is that canonical commutation relations (CCR) between

canonical operators of the system must be preserved for all time t ≥ 0 (in the

Heisenberg or interaction picture of quantum mechanics [96]). In our context,

the canonical operators are elements of the vector x(t) and the preservation of

the CCR translates to the condition:

[xi(t), xj(t)] = 2iΘij ∀i, j = 1, . . . , n and ∀t ≥ 0,

or equivalently,

x(t)x(t)T − (x(t)x(t)T )T = 2iΘ ∀t ≥ 0.

The following theorem provides an algebraic characterization of precisely when

the quantum system (7.2) preserves the commutation relations as time evolves.

Theorem 7.3.1 Under the assumptions of Section 7.2 for the system (7.2),

-[xi(0), xj(0)] = 2iΘij implies [xi(t), xj(t)] = 2iΘij for all t ≥ 0 if and only if

iAΘ + iΘAT +BTw̃B
T = 0. (7.8)

Proof. To preserve the commutation relations for all i, j = 1, . . . , n and all

t ≥ 0, we must have d[xi, xj] = 0 for all i, j = 1, . . . , n (for convenience, in this

proof we shall drop the time index t). We now develop a general expression for

d[xi, xj]. Indeed, let ek = [ 0 . . . 0 1 0 . . . 0 ]T , where the 1 is in the k-th
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row. It is easy to see that for any i, j ∈ {1, . . . , n}, [xi, xj] = eTi xx
T ej − eTj xx

T ei.

Therefore, d[xi, xj] = eTi d(xx
T )ej − eTj d(xx

T )ei. Now, we expand d(xxT ) using

the quantum Ito rule (e.g., see [92]) as follows:

d(xxT ) = (dx)xT + xd(xT ) + dxd(xT )

= AxxTdt+BdwxT + xxTATdt+ xd(wT )BT + AxxTATdt2

+Axd(wT )dtBT +BdwdtxTAT +Bdw(dw)TBT

= AxxTdt+BdwxT + xxTATdt+ xd(wT )BT +B(dw)(dw)TBT .

Substituting dw = βwdt + dw̃ into the above and noting that βwβ
T
wdt

2 and

βwdw̃
Tdt vanish to order dt gives

d(xxT ) = AxxTdt+Bβwx
Tdt+Bdw̃xT + xxTATdt+ xβTwB

Tdt+ xdw̃TBT +

Bdw̃dw̃TBT .

We now write A = [ AT1 AT2 . . . ATn ]T and B = [ BT
1 BT

2 . . . BT
n ]T , where

the vectors Ak and Bk denote the k-th row of matrices A and B, respectively.

Then we have

eTi d(xx
T )ej = eTi Axx

T ejdt+ eTi Bβwx
T ejdt+ eTi Bdw̃x

T ej + eTi xx
TAT ejdt

+eixβ
T
wB

T ejdt+ eixdw̃
TBT ej + eTi Bdw̃(dw̃)TBT ej

= Aixxjdt+Biβwxjdt+Bidw̃xj + xiAjxdt+ xiBjβwdt+ xiBjdw̃ +

(Bidw̃)(Bjdw̃). (7.9)

Also we have

eTj d(xx
T )ei = Ajxxidt+Bjβwxidt+Bjdw̃xi + xjAixdt+

xjBiβwdt+ xjBidw̃ + (Bjdw̃)(Bidw̃). (7.10)

Subtracting (7.10) from (7.9) gives us

eTi d(xx
T )ej − eTj d(xx

T )ei

= ((Aix)xj − xj(Aix))dt+ ((Biβw)xj − xj(Biβw))dt

+(Bidw̃)xj − xj(Bidw̃) + (xi(Ajx) − (Ajx)xi)dt

+(xi(Bjβw) − (Bjβw)xi)dt+ (xi(Bjdw̃) − (Bjdw̃)xi)

+((Bidw̃)(Bjdw̃) − (Bjdw̃)(Bidw̃))

= ((Aix)xj − xj(Aix))dt+ ((Biβw)xj − xj(Biβw))dt

+(xi(Ajx) − (Ajx)xi)dt+ (xi(Bjβw) − (Bjβw)xi)dt

+((Bidw̃)(Bjdw̃) − (Bjdw̃)(Bidw̃)). (7.11)
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Here we are using the fact that elements of dw̃ commute with those of x and βw

due to the adaptedness of x and βw. Hence,

eTi d(xx
T )ej − eTj d(xx

T )ei

= [Aix, xj]dt− [xj, Biβw]dt+ [xi, Ajx]dt+ [xi, Bjβw]dt+

[Bidw̃, Bjdw̃]

=
n
∑

k=1

Aik[xk, xj]dt−
n
∑

k=1

Bik[xj, βwk]dt+
n
∑

k=1

Ajk[xi, xk]dt

+
n
∑

k=1

Bjk[xi, βwk]dt+
n
∑

k=1

n
∑

l=1

BikBjl[dw̃k, dw̃l]

=

(

2i
n
∑

k=1

AikΘkj + 2i
n
∑

k=1

AjkΘik −
n
∑

k=1

BikC
xβw

jk +
n
∑

k=1

BjkC
xβw

ik

+
n
∑

k=1

n
∑

l=1

BikBjl(Fw̃,kl − Fw̃,lk)

)

dt, (7.12)

where Cxβw

ij = [xi, βwj]. Since Cxβw=[Cxβw

ij ]i=1,...,n,j=1...,nβw
= 0 (by assumption)

and Fw̃ − F T
w̃ = 2Tw̃, equation (7.12) takes the form

d(xxT − (xxT )T ) = 2(iAΘ + iΘAT +BTw̃B
T )dt (7.13)

from which the result follows. 2

Thus we see that preservation of the CCR amounts to an algebraic constraint

(7.8) that must be satisfied by the system matrices A and B of (7.2). However, as

we shall see shortly, for (7.2) to be physically realizable there is actually another

constraint required in relation to the output signal y(t). We shall now proceed

further by introducing the notion of an open quantum harmonic oscillator, which

acts as the basic “dynamical unit” (as opposed to static quantum optical com-

ponents units/devices such as beamsplitters and phase shifters) of a physically

realizable quantum system.

7.3.1 Open quantum harmonic oscillator

In order to formally present a definition of an open quantum harmonic oscil-

lator we will require the following notation. For a square matrix T , diagm(T )

denotes the block diagonal matrix diag(T, . . . , T ) where T appears m times as

a diagonal block. The symbol Pm denotes a 2m × 2m permutation matrix de-

fined so that if we consider a column vector a = [ a1 a2 . . . a2m ]T , then
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Pma = [ a1 a3 . . . a2m−1 a2 a4 . . . a2m ]T . Recall that an m×m permu-

tation matrix is a full-rank real matrix whose columns (or, equivalently, rows)

consist of standard basis vectors for Rm; i.e., vectors in Rm whose elements are

all 0 except for one element which has the value 1. A permutation matrix P has

the unitary property PP T = P TP = I. Note that P T
m[ a1 a2 . . . a2m ]T =

[ a1 am+1 a2 am+2 . . . am a2m ]T .

Let us also further introduce the notation Nw = nw

2
and Ny = ny

2
,

M =
1

2

[

1 i

1 −i

]

,

and Γ = PNw
diagNw

(M). Moreover, let ∗ denote the adjoint of a Hilbert space

operator (by this we mean that the operator is a map from one Hilbert space to

another), and let X# denote the operation of taking the adjoint of each element of

X, where X is a matrix/array of Hilbert space operators. Also, let X† = (X#)T .

Then we have the following definition of a quantum harmonic oscillator by

slightly generalizing a linear model given in [102, Section 4]:

Definition 7.3.2 Set βw(t) = 0 ∀t ≥ 0. Then the system (7.2) is said to be an

open quantum harmonic oscillator if Θ is canonical and there exist a quadratic

Hamiltonian H = x(0)TRx(0), with a real and symmetric Hamiltonian matrix

R of dimension n × n, and a coupling operator L = Λx(0), with complex-valued

coupling matrix Λ of dimension nw × n, such that:

x(t) = U(t)∗x(0)U(t), yl(t) = U(t)∗wl(t)U(t), l = 1, . . . , ny,

where {U(t); t ≥ 0} is an adapted process of unitary operators satisfying the

following QSDE [102, Section 2.5] :

dU(t) = (−iHdt− 1

2
L†Ldt+ [ −L† LT ]Γdw(t))U(t), U(0) = I.

In this case the matrices A,B,C,D are given by:

A = 2Θ(R + ℑ(Λ†Λ)); (7.14)

B = 2iΘ[ −Λ† ΛT ]Γ; (7.15)

C = P T
Ny

[

ΣNy
0Ny×Nw

0Ny×Nw
ΣNy

][

Λ + Λ#

−iΛ + iΛ#

]

; (7.16)

D = P T
Ny

[

ΣNy
0Ny×Nw

0Ny×Nw
ΣNy

]

PNw
= [ Iny×ny

0ny×(nw−ny) ], (7.17)

where ΣNy
= [ INy×Ny

0Ny×(Nw−Ny) ].
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As its name suggests, the open quantum harmonic oscillator is simply an

n−dimensional quantum harmonic oscillator with HamiltonianH which is open in

the sense that it interacts with its environment (for a discussion of open quantum

systems, see [103], [99, Chapter 3]), which in this case are independent quantum

Wiener noise channels, and the interaction with the environment is linear via

the coupling operator L. Note that in quantum optics, a quantum Wiener noise

channel is an idealized model a of a free travelling quantized electromagnetic field,

which is precisely how these channels can be physically realized in the laboratory.

For a discussion see, for example, [93, 86].

Remark 7.3.3 In the definition, we have set βw ≡ 0 since an open quantum

harmonic oscillator is a stand alone open system in its ambient heat bath, which

in this case are the quantum noise channels. Recall that βw serves to represent

observables originating from another physical system via an interconnection.

Another important point to be noted in the definition of an open quantum

harmonic oscillator is that the output y(t) has a specific form, that is, it is

the time evolved version of the noise channels w(t) after its interaction with

the oscillator (via the unitary evolution Ut). This can be considered a natural

restriction because observables of a physical system of interest (such as an optical

cavity or an atom) cannot be observed directly, but only indirectly such as by

shining a laser or light source on the system and observing the light which is

reflected as a result of the interaction of the incident light with the system.

Here, w(t) plays the role of the incident light, while y(t) is the reflected light.

A intuitive visualization of the concept an open quantum harmonic oscillator is

given in Figure 7.1.

7.3.2 Augmentation of a linear QSDE

If Θ is degenerate canonical then we may perform an augmentation in which Θ

is embedded into a larger skew symmetric matrix Θ̃ which is canonical up to

permutation (this means Θ̃ becomes canonical after permutation of appropriate

rows and columns). To do this, let θ = [Θij]i,j=n′+1,...,n = diagn−n′

2

(J) if n′ < n.

Here diagm(J) denotes a m×m block diagonal matrix with m matrices J on the

diagonal. Define:

Θ̃ =







0n′×n′ 0n′×(n−n′) In′×n′

0(n−n′)×n′ θ 0(n−n′)×n′

−In′×n′ 0n′×(n−n′) 0n′×n′






,



CHAPTER 7. QUANTUM LINEAR STOCHASTIC SYSTEMS 112

Open quantum

harmonic oscillator 

Noise channel 4

Noise channel 1

Noise channel 2
Noise channel 3

Figure 7.1: Visualization of an open quantum harmonic oscillator

where the middle block of rows is dropped whenever n = n′. Then by definition

Θ̃ is canonical up to permutation and contains Θ as a sub-matrix by removing

appropriate rows and columns of Θ̃. Let ñ = n + n′, the dimension of the rows

and columns of Θ̃. By enlarging if necessary the quantum probability space,

define the vector x̃(t) = [x1(t) x2(t) . . . xn(t) z1(t) z2(t) . . . zn′(t)]T of variables.

We now define the following linear QSDE

dx̃(t) =

[

A 0n×nc

A′ A′′

]

x̃(t)dt+

[

B

B′

]

dw(t),

ỹ(t) =
[

C C ′
]

x̃(t)dt+Ddw(t)

(7.18)

where A′, A′′, B′ and C ′ are, respectively, some real n′ × n, n′ × n′, n′ × nw

and ny × n′ matrices, and the initial variables x̃(0) satisfy the commutation re-

lations x̃0x̃(0)T − (x̃(0)x̃(0)T )T = 2iΘ̃. We shall refer to the system (7.18) as an

augmentation of (7.2).

Remark 7.3.4 In the proof of Theorem 7.3.6 it is shown that the augmentation

can be chosen to preserve commutation relations whenever the original system

does.

An augmentation is useful for handling vectors x(t) which may contain one or

more classical components, i.e., when Θ is degenerate canonical. The central idea
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here is that in an augmentation, any classical component of x(t), say xk(t), is con-

sidered to be “one-half” of a pair of canonically conjugate operators {xk(t), zk(t)}
satisfying [xk(t), zk(t)] = 2i, where zk(t) also satisfies [zk(t), xl(t)] = 0 ∀l 6= k.

Here zk(t) acts merely as a “dummy variable” which becomes a component of

the augmented vector x̃(t), in the sense that z(t) has no effect whatsoever on the

dynamics of x(t), as can be seen from the QSDE (7.18). Thus, here augmentation

presents a convenient way of treating classical components within the formalisms

of quantum mechanics, without having to develop new concepts or theories for

handling them. The fact that a quantum linear stochastic system which preserve

the CCR is guaranteed to have an augmentation which again preserve the CCR,

as stated in Remark 7.3.4, shows that classical components can be “embedded”

in a fully quantum mechanical augmentation in a consistent way.

7.3.3 Formal definition of physical realizability

With open quantum harmonic oscillators and augmentations having been defined,

we are now ready to introduce a formal definition of physical realizability of the

QSDE (7.2). A discussion regarding the definition follows after Theorem 7.3.6 in

which necessary and sufficient conditions for physical realizability are given.

Definition 7.3.5 The system (7.2) is said to be physically realizable if one of the

following holds:

1. Θ is canonical and (7.2) represents the dynamics of an open quantum har-

monic oscillator.

2. Θ is degenerate canonical and there exists an augmentation (7.18) which,

after a suitable relabelling of the components x̃1(t), . . . , x̃ñ(t) of x̃(t), repre-

sents the dynamics of an open quantum harmonic oscillator.

The following theorem provides explicit necessary and sufficient conditions for

physical realizability given in terms of the system matrices A,B,C,D. Hence,

whether a given system (7.2) is physically realizability in the sense of Definition

7.3.5 can be determined in definite manner (i.e., it is either ‘yes’ or ‘no’), which

is a useful practical result.
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Theorem 7.3.6 The system (7.2) is physically realizable if and only if:

iAΘ + iΘAT +BTwB
T = 0, (7.19)

B

[

Iny×ny

0(nw−ny)×ny

]

= ΘCTP T
Ny

[

0Ny×Ny
INy×Ny

−INy×Ny
0Ny×Ny

]

PNy
=

ΘCTdiagNy
(J), (7.20)

and D satisfies (7.17). Moreover for canonical Θ, the Hamiltonian and cou-

pling matrices have explicit expressions as follows. The Hamiltonian matrix R

is uniquely given by R = 1
4
(−ΘA + ATΘ), and the coupling matrix Λ is given

uniquely by

Λ = −1

2
i
[

0Nw×Nw
INw×Nw

]

(Γ−1)TBTΘ. (7.21)

In the case that Θ is degenerate canonical, a physically realizable augmentation

of the system can be constructed to determine the associated Hamiltonian and

coupling operators using the above explicit formulas.

Remark 7.3.7 Note that the Hamiltonian and coupling operators are determined

by (7.19), while conditions (7.17) and (7.20) relate to the required form of the

output equation.

Proof. (of Theorem 7.3.6) Let us first consider the case where Θ is canon-

ical. If the system is realizable then (7.14)-(7.17) holds. Since U(t) is unitary

for each t ≥ 0, we have that d
(

x(t)x(t)T − (x(t)x(t)T )T
)

= 0; i.e., the canoni-

cal commutation relations are preserved. By Theorem 7.3.1 this is equivalent to

(7.19). Let M1,M2, . . . ,MNy
be column vectors such that [M1 M2 . . . MNy

] =

ΛT [ INy×Ny
0 ]T . Then using (7.15) and (7.16) we obtain the following after

some algebraic manipulations:

B[ Iny×ny
0ny×(nw−ny) ]T = 2iΘ[ −Λ† ΛT ]Γ[ Iny×Ny

0ny×(nw−Ny) ]T

= 2Θ[−ℑ(M1) ℜ(M1) . . . −ℑ(MNy
) ℜ(MNy

)]

= Θ

(

P T
Ny

[

0Ny×Ny
−INy×Ny

INy×ny
0Ny×ny

]

PNy
C

)T

= ΘCTP T
Ny

[

0 INy×Ny

−INy×Ny
0

]

PNy

= ΘCTdiagNy
(J).
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Therefore, we conclude that (7.20), (7.19) and (7.17) are necessary for realizabil-

ity.

Conversely, now suppose that (7.20), (7.19) and (7.17) hold. We will ar-

gue that these conditions are sufficient for realizability by showing that they

imply the existence a symmetric matrix R and a coupling matrix Λ such that

(7.14)-(7.16) are satisfied. First we note that after some simple algebraic manip-

ulation −iΘ−1BΓ−1 = iΘBΓ−1 = [−Z# Z], for some complex matrix Z. Hence

B = iΘ[−Z# Z]Γ. Substituting the last expression into (7.19) and after further

manipulations we get:

iAΘ + iΘAT − 1

2
Θ(Z#ZT − ZZ†)Θ = 0.

Writing Z#ZT−ZZ† = 2iℑ(Z#ZT ), we may rewrite the last expression as follows:

iAΘ + iΘAT − 1

2
Θ(Z#ZT − ZZ†)Θ = iAΘ + iΘAT − iΘℑ(Z#ZT )Θ

= iΘ(Θ−1A+ ATΘ−1 −ℑ(Z#ZT ))Θ

= iΘ(Θ−1A− (Θ−1A)T −ℑ(Z#ZT ))Θ

= 0,

implying that Θ−1A − (Θ−1A)T − ℑ(Z#ZT ) = 0. Since Θ−1A is real, we have

the decomposition Θ−1A = −ΘA = V + W for a unique pair of real symmetric

matrix V and real skew symmetric matrix W and obtain the condition 2W −
ℑ(Z#ZT ) = 0. Hence, W = 1

2
ℑ(Z#ZT ). Setting R = 1

2
V and Λ = 2ZT , we

get A = 2Θ(R + ℑ(Λ†Λ)) and B = 2iΘ[−Λ† ΛT ] as desired, and also prove the

second statement of the theorem. After substituting the expression, just obtained

for B (in terms of Λ, Θ, and Γ) into (7.20) and more algebraic manipulations we

then get (7.16). Since the expression for D has been hypothesized as (7.17), we

conclude that (7.20), (7.19) along with (7.17) gives matrices A,B,C,D which are

the coefficients of a realizable system.

Now, we consider the case where Θ is degenerate canonical, i.e.,

Θ = diag(0n′×n′ , diagn−n′

2

(J)).

Let us write

A =

[

A11 A12

A21 A22

]

B =
[

B1 B2

]

C =
[

C1 C2

]
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with A11 ∈ Rn′×n′

, A12 ∈ Rn′×(n−n′), A21 ∈ R(n−n′)×n′

, A22 ∈ R(n−n′)×(n−n′),

B1 ∈ Rn×ny , B2 ∈ Rn×(nw−ny), C1 ∈ Rny×n′

and C2 ∈ Rny×(n−n′). Consider the

following augmentation:

dx̃(t) =







A11 A12 0n′×n′

A21 A22 0(n−n′)×n′

A′
1 A′

2 A′′






x̃(t)dt+

[

B1 B2

B′
1 0

]

dw(t)

dỹ(t) =
[

C 0ny×n′

]

x̃(t)dt+Ddw(t)

where B′
1 = −CT

1 P
T
Ny

[

0 I

−I 0

]

PNy
, and A′

1, A
′
2 and A′′ satisfy the following:

A′
1 − (A′

1)
T = i

[

B′
1 0

]

Tw

[

(B′
1)
T

0

]

[

A′′ −A′
2diagn−n′

2

(J)
]

= −
[

AT11 AT21

]

− i
[

B′
1 0

]

TwB
T .

It follows by inspection that such matrices A′
1, A

′
2 and A′′ exist. Let A′ = [A′

1 A
′
2]

and define

Ã =

[

A 0n×n′

A′ A′′

]

B̃ =

[

B1 B2

B′
1 0

]

C̃ =
[

C 0n×n′

]

.

If (7.19) holds then it can be verified, by direct substitution, that the matrices Ã

and B̃ satisfy:

iÃΘ̃ + iΘ̃ÃT + B̃TwB̃
T = 0. (7.22)

Recalling that Θ̃ is only canonical up to permutation, we now need to transform

it into canonical form. To do this, introduce the variable z = Px̃ where P is a

permutation matrix such that P Θ̃P T = diag ñ
2
(J). Then the components of z are

a relabelling of the components of x̃. This gives us the following dynamics for z:

dz(t) = PÃP T z(t) + PB̃dw(t)

dy(t) = C̃P T z(t)dt+Ddw(t).

Denoting Â = PÃP T , B̂ = PB̃, Ĉ = C̃P T , and Θ̂ = diag ñ
2
(J) we see that (7.22)

implies that:

iÂΘ̂ + iΘ̂ÂT + B̂TwB̂
T = 0. (7.23)
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Continuing further using (7.20), we have the following:

B̂

[

Iny×ny

0(nw−ny)×ny

]

= P

[

B

B′
1 0

][

Iny×ny

0(nw−ny)×ny

]

= P

[

ΘCT

−CT
1

]

P T
Ny

[

0 I

−I 0

]

PNy

= P Θ̃

[

CT

0

]

P T
Ny

[

0 I

−I 0

]

PNy

= (P Θ̃P T )P

[

CT

0

]

P T
Ny

[

0 I

−I 0

]

PNy

= Θ̂ ĈTP T
Ny

[

0 I

−I 0

]

PNy
= Θ̂ĈTdiagNy

(J). (7.24)

If D is given by (7.17) then (7.23) and (7.24) implies, as we have already shown

for the case of canonical Θ, the system defined by the matrices (Â, B̂, Ĉ,D) is

realizable in the sense of Point 1 of the theorem. Hence, the original system

defined by the matrices (A,B,C,D) is then realizable in the sense of Point 2 of

the theorem.

Finally, suppose conversely that (7.2) is realizable and let (Ã, B̃, C̃,D) be

a suitable augmentation. Then (PÃP T , P B̃, C̃P T , D) is a quantum harmonic

oscillator, with P as defined before. Hence, PÃP T , PB̃, C̃P T , and D are given

by the right hand sides of (7.14)-(7.17) for a canonical Θ and some R and Λ. It

follows that Ã, B̃, C̃ and D̃ are given by the same set of equations by replacing

Θ̃, R and Λ by Θ̃ = P TΘP , R̃ = P TRP and Λ̃ = ΛP , respectively. We then

have, from the same line of arguments given for the case of canonical Θ, that:

B̃

[

Iny×ny

0(nw−ny)×ny

]

= Θ̃C̃TP T
Ny

[

0 INy×Ny

−INy×Ny
0

]

PNy
= Θ̃C̃TdiagNy

(J),

(7.25)

(7.22) holds, and D satisfies (7.17). Reading off the first n rows of both sides of

(7.25) then gives us (7.20), while reading of the first n rows and columns of both

sides of (7.22) gives us (7.19), as required. This completes the proof. 2

The conditions of Theorem 7.3.6 are precisely what we would intuitively ex-

pect. As stated in Theorem 7.3.1, (7.19) is the condition for preservation of the

CCR, as required in a physical system. On the other hand, conditions (7.20) and

(7.17) arise due to the restriction on the form of the output of an open quantum

harmonic oscillator, as discussed at the end of Section 7.3.1.
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We conclude this section with the following remark.

Remark 7.3.8 It should be possible, and can be convenient, to consider the prob-

lem of physical realizability more broadly than discussed here by including addi-

tional static components, such as beam splitters and phase shifters that commonly

occur in quantum optics (see [98, 57]). In a more general situation, one could

consider output equations of the form:

dy(t) = Ks(Cdx(t)dt+Dddw(t)), (7.26)

where Ks, Cd, Dd are real matrices satisfying KsCd = C and KsDd = D. Here

the matrix Ks represents the action of static devices connected to the output ỹ(t)

of a physically realizable system (in the sense of Definition 7.3.5) defined by:

dx(t) = Ax(t)dt+Bdw(t)

dỹ(t) = Cdx(t)dt+Dddw(t),

where the quadruplet {A,B,Cd, Dd} satisfy the conditions of Theorem 7.3.6. Note

that y(t) = Ksỹ(t). Therefore, in order that y(t) has the correct Ito table, Ks

should satisfy the constraint KsFỹK
T
s = I + diagny

(J). However, detailed devel-

opment of an efficient realization methodology, combining static and dynamical

quantum units, for systems of the form (7.2) is beyond the scope of the thesis.

7.4 Concluding remarks

In this chapter, we have developed a notion of physical realizability of quantum

linear stochastic systems which are relevant in quantum optics, and give explicit

characterizations for physical realizability. In particular, we derive a necessary

and sufficient condition for preservation of the canonical commutation relations

for such systems, a prerequisite of any physical system.

Our results indicate that up to some degree one can work with quantum linear

stochastic systems just as one would with classical linear stochastic systems. The

key difference is that in the quantum case one has to take care of additional

algebraic constraints imposed on the system matrices by Theorems 7.3.1 and

7.3.6. These new constraints are not present in the classical case.

The developments here support the point of view that it may be plausible to

extend various controller synthesis methods that have been extensively developed

over the years for classical linear stochastic systems to their quantum counterpart.
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In the next chapter, we shall see that this is indeed the case for the well-known

H∞ synthesis methodology.



Chapter 8

Synthesis and Physical

Realizability of H∞ Quantum

Linear Controllers

8.1 Introduction

Consider a given partial model of a quantum linear stochastic system, in which the

system matrices A,C are completely specified, but the matrix B is only partially

specified and the matrix D unspecified. This situation arises in the context of a

H∞ synthesis framework initiated by James and Petersen [32] for quantum linear

stochastic systems. As mentioned briefly in the last chapter, it is then natural

to ask whether one can complete the specification of B and determine D such

that the resulting completely specified model is physically realizable in the sense

of Chapter 7. James and Petersen have shown in some specific examples that

it is indeed possible to complete the model, but the general case was an open

question.

The purpose of this chapter is to address the general question of physical

realizability of a partially specified quantum linear stochastic system. The main

result is that given a partial model of a controller there always exists a physically

realizable completion (Theorem 8.3.5). The results are constructive in the sense

that we derive explicit formulas for B and D and the associated Hamiltonian and

coupling matrices for the completion (Lemma 8.3.6). More importantly, however,

is that our results show there is complete freedom to specify the commutation

matrix Θ. This implies that in general one may in fact a priori specify the type

120
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of controller to be realized. This means the controller can be chosen to be fully

quantum, purely classical, or even a hybrid mixed classical-quantum controller.

From an H∞ perspective, the type of controller is inconsequential since the H∞

performance is not affected by the particular choice of realization.

As with the previous chapter, this chapter is also based on the paper [100].

We begin with a discussion of the H∞ synthesis framework of [32]. This will

clearly show how the issue of physical realization of partially specified models

arises in the controller synthesis for quantum linear stochastic systems.

8.2 Dissipation properties

In order to develop an H∞ methodology for quantum linear systems, we first de-

scribe various dissipation properties frequently used in control engineering, suit-

ably adapted to the quantum context. These properties concern the influence

of disturbance inputs on energy transfers and stability. In particular, we give a

quantum version of the Strict Bounded Real Lemma (Corollary 8.2.5) which will

be employed in Section 8.3 for quantum H∞ controller synthesis. In this section,

we consider the following quantum system of the form (7.2):

dx(t) = Ax(t)dt+ [ B G ][ dw(t)T dv(t)T ]T ;

dz(t) = Cx(t)dt+ [ D H ][ dw(t)T dv(t)T ]T (8.1)

In this quantum system, the input channel has two components, dw = βwdt+dw̃

which represents the disturbance input, and dv which represents any additional

noise input.

Definition 8.2.1 Given an operator valued quadratic form

r(x, βw) = [xTβTw ]R

[

x

βw

]

where

R =

[

R11 R12

RT
12 R22

]

is a given real symmetric matrix, we say the system (8.1) is dissipative with

supply rate r(x, βw) if there exists a positive operator valued quadratic form
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V (x) = xTXx (where X is a real positive definite symmetric matrix) and a

constant λ > 0 such that

〈V (x(t))〉 +

∫ t

0

〈r(x(s), βw(s))〉ds ≤ 〈V (x(0))〉 + λt ∀t > 0, (8.2)

for all Gaussian states ρ. Here we use the shorthand notation 〈·〉 ≡ P(·) for

expectation.

We say that the system (8.1) is strictly dissipative if there exists a constant

ǫ > 0 such that inequality (8.2) holds with the matrix R replaced by the matrix

R + ǫI.

The term 〈V (x(t))〉 serves as the generalization to quantum stochastic sys-

tems (8.1) of the notion of the abstract internal energy for the system at time t.

On the other hand, the term 〈r(x(t), βw(t))〉 is a quantum generalization of the

notion of abstract power flow into/out of the system at time t. Both of these are

notions which are widely used in the stability analysis of linear and non-linear

deterministic systems [104, 105]. The dissipation inequality (8.2) is a general-

ization of the corresponding inequality that was introduced for classical linear

stochastic systems by Dupuis, James and Petersen [106]. Note that the term λt

on the right hand side of (8.2), which accounts for the variance of Wiener process

disturbances, pertains only to linear stochastic systems (classical and quantum);

it does not appear in the dissipation inequality for deterministic systems. For

details, see [106, 98]

The following theorem relates the property of dissipativeness to certain linear

matrix inequalities.

Theorem 8.2.2 ([32]) Given a quadratic form r(x, βw) defined as above, then

the quantum stochastic system (8.1) is dissipative with supply rate r(x, βw) if

and only if there exists a real positive definite symmetric matrix X such that the

following matrix inequality is satisfied:
(

ATX +XA+R11 R12 +XB

BTX +RT
12 R22

)

≤ 0. (8.3)

Furthermore, the system is strictly dissipative if and only if there exists a real

positive definite symmetric matrix X such that the following matrix inequality is

satisfied:
(

ATX +XA+R11 R12 +XB

BTX +RT
12 R22

)

< 0. (8.4)
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Moreover, if either of (8.3) or (8.4) holds then the required constant λ ≥ 0

can be chosen as

λ = tr

[[

BT

GT

]

X
[

B G
]

F

]

(8.5)

where the matrix F is defined by the following relation:

Fdt =

[

dw

dv

]

[

dwT dvT
]

. (8.6)

We now present some corollaries to the above theorem corresponding to a

special case of the matrix R defined in terms of the error output operator

βz(t) = Cx(t) +Dβw(t).

Definition 8.2.3 The quantum stochastic system (8.1) is said to be Bounded

Real with disturbance attenuation g if the system (8.1) is dissipative with supply

rate

r(x, βw) = βTz βz − g2βTwβw = [xTβTw ]

[

CTC CTD

DTC DTD − g2I

][

x

βw

]

.

Also, the quantum stochastic system (8.1) is said to be Strictly Bounded Real

with disturbance attenuation g if the system (8.1) is strictly dissipative with this

supply rate.

Using the above definition of a bounded real system, we obtain the following

corollary from Theorem 8.2.2 (e.g., see also [107] for the corresponding classical

result).

Corollary 8.2.4 ([32]) The quantum stochastic system (8.1) is bounded real

with disturbance attenuation g if and only if there exists a positive definite sym-

metric matrix X ∈ Rn×n such that the following matrix inequality is satisfied:
(

ATX +XA+ CTC CTD +XB

BTX +DTC DTD − g2I

)

≤ 0.

Furthermore, the quantum stochastic system is strictly bounded real with distur-

bance attenuation g if and only if there exists a positive definite symmetric matrix

X ∈ Rn×n such that the following matrix inequality is satisfied:
(

ATX +XA+ CTC CTD +XB

BTX +DTC DTD − g2I

)

< 0.
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Moreover, in both cases the required constant λ ≥ 0 can be chosen as

λ = tr

[[

BT

GT

]

X
[

B G
]

F

]

.

Now combining this corollary with the standard Strict Bounded Real Lemma

(e.g., see [95, 108]) we obtain the following corollary.

Corollary 8.2.5 ([32]) The following statements are equivalent

(i) The quantum stochastic system (8.1) is strictly bounded real with disturbance

attenuation g.

(ii) A is a stable matrix and ‖C(sI − A)−1B +D‖∞ < g.

(iii) g2I −DTD > 0 and there exists a positive definite matrix X̃ > 0 such that

AT X̃ + X̃A+ CTC + (X̃B + CTD)(g2I −DTD)−1(BT X̃ +DTC) < 0.

(iv) g2I −DTD > 0 and the algebraic Riccati equation

ATX +XA+ CTC + (XB + CTD)(g2I −DTD)−1(BTX +DTC) = 0

has a stabilizing solution X ≥ 0.

Furthermore, if these statements hold then X < X̃.

Some remarks regarding Corollary 8.2.5 are now in order. It has been shown

in [98] that a small gain methodology can be developed for quantum stochastic

systems that parallels the small gain methodology in [106] for classical stochastic

systems. The essence of the results of [106, 98] is that, properly formulated, the

small gain principle (see, e.g., [109]) applies in the same way for linear stochastic

systems and an appropriate class of quantum stochastic systems as they do for

deterministic systems. In particular, the quantity ‖C(sI −A)−1B +D‖∞ < g in

Point 2 of Theorem 8.2.5 implies that:

∫ t

0

〈z(s)T z(s)〉ds < g2

∫ t

0

〈βw(s)Tβw(s)〉ds+ µ1 + µ2t, t ≥ 0

for some real constants µ1, µ2 > 0. In the terminology of [98], the system (8.1) is

then said to be mean square stable. The main point of the theorem is that the

last property is equivalent to (8.1) being strictly dissipative. Hence mean square
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stability is also characterized by strict matrix inequality of Corollary 8.2.4. Now,

according to the small gain principle of [98] the smaller the gain g, the more robust

the system (8.1) is with respect to some unmodelled dynamics and Wiener noise

disturbances which may be present between the signals z(t) and w(t) (see Figure

8.1). In particular, if the gain from z(t) to w(t) due to the unmodelled dynamics

and disturbances satisfies:
∫ t

0

〈w(s)Tw(s)〉ds ≤ g′2
∫ t

0

〈βz(s)Tβz(s)〉ds+ µ′
1 + µ′

2t, t ≥ 0,

for some real constants µ′
1, µ

′
2 > 0, and g′ ≥ 0 is such that g′g < 1 then (8.1)

will remain mean square stable. In this case we say that (8.1) is robustly stable.

Moreover, the smaller the gain g the more robust the system becomes (since this

allows a higher gain g′ from z(t) to w(t) such that the condition g′g < 1 is not

violated).

 

Plant

w z 

u y 

Uncertainty 

v

Figure 8.1: The uncertainty block represents unmodelled dynamics and additional

quantum Wiener disturbances which may appear between z(t) and w(t)

8.3 H∞ controller synthesis

In this section, we consider the problem of H∞ controller design for quantum

systems. As we shall see, we do not restrict ourselves to classical controllers.

The closed loop plant-controller system is defined in Subsection 8.3.1, and then

in Subsection 8.3.3 we apply the Strict Bounded Real Lemma to the closed loop

system to obtain our main results. In Subsection 8.3.4 we provide conditions

under which a controller is physically realizable.
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8.3.1 The closed loop plant-controller system

The general linear model (7.2) described above is the prototype for the inter-

connection of components which will make up the quantum control system. In

control system design, we prescribe a system called the plant, and seek to find

another system, called a controller, in such a way that desired closed loop be-

havior is achieved. We now introduce our plant and controller models, and the

resulting closed loop.

We consider plants described by non-commutative stochastic models of the

following form defined in an analogous way to the quantum system (7.2):

dx(t) = Ax(t)dt+ [ B0 B1 B2 ][ dv(t)T dw(t)T du(t)T ]T ; x(0) = x0;

dz(t) = C1x(t)dt+D12du(t);

dy(t) = C2x(t)dt+ [ D20 D21 0ny×nu
][ dv(t)T dw(t)T du(t)T ]T . (8.7)

Here x(t) is a vector of plant variables. The input w(t) is represents a disturbance

signal of the form (7.4). The signal u(t) is a control input of the form

du(t) = βu(t)dt+ dũ(t) (8.8)

where ũ(t) is the noise part of u(t) and βu(t) is an adapted, self-adjoint process

commuting with x(t). Also, dv(t) represents any additional quantum noise in the

plant. The vectors v(t), w̃(t) and ũ(t) are independent quantum noises (meaning

that they live on distinct Fock spaces) with Ito matrices Fv, Fw̃ and Fũ which are

all non-negative Hermitian. We also assume that

x(0)x(0)T − (x(0)x(0)T )T = Θ.

The plant is depicted in Figure 8.2.

Plant

z

y

w

u

v

Figure 8.2: Diagram of plant
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Controllers are assumed to be non-commutative stochastic systems of the form

dξ(t) = AKξ(t)dt+BK1dvK(t) +BKdy(t); ξ(0) = ξ0

du(t) = CKξ(t)dt+BK0dvK(t) (8.9)

where ξ(t) = [ ξ1(t) . . . ξnK
(t) ]T is a vector of self-adjoint controller variables.

The noise vK(t) = [ vK1(t) . . . vKKv
(t) ]T is a vector of non-commutative

Wiener processes (in vacuum states) with non-zero Ito products as in (7.5) and

with canonical Hermitian Ito matrix FvK
, and lives on a distinct Fock space from

v(t) and w̃(t). We will also assume that

ξ(0)ξ(0)T − (ξ(0)ξ(0)T )T = ΘK .

By enlarging the underlying Von Neumann algebra if necessary, the controller can

be defined in the above quantum probability space. The controller is depicted in

Figure 8.3.

Controller yu

vK

Figure 8.3: Diagram of controller

At time t = 0, we also assume that x(0) commutes with ξ(0). The closed loop

system is obtained by interconnecting (8.7) and (8.9), by identifying βu(t) with

CKξ(t), to give

dη(t) =

[

A B2CK

BKC2 AK

]

η(t)dt+

[

B0 B2BK0

BKD20 BK1

][

dv(t)

dvK(t)

]

+

[

B1

BKD21

]

dw(t);

dz(t) =
[

C1 D12CK

]

η(t)dt+
[

0 D12BK0

]

[

dv(t)

dvK(t)

]

(8.10)
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where η(t) = [ x(t)T ξ(t)T ]T . That is, we can write

dη(t) = Ãη(t)dt+ B̃dw(t) + G̃dṽ(t) = Ãη(t)dt+
[

B̃ G̃
]

[

dw(t)

dṽ(t)

]

;

dz(t) = C̃η(t)dt+ H̃dṽ(t) = C̃η(t)dt+
[

0 H̃
]

[

dw(t)

dṽ(t)

]

(8.11)

where

ṽ(t) =

[

v(t)

vK(t)

]

; Ã =

[

A B2CK

BKC2 AK

]

; B̃ =

[

B1

BKD21

]

;

G̃ =

[

B0 B2BK0

BKD20 BK1

]

;

C̃ =
[

C1 D12CK

]

; H̃ =
[

0 D12BK0

]

.

Note that the closed loop system (8.11) is a system of the form (7.2). It is depicted

in Figure 8.4.

Plant

z
w

v

Controller

u vK y

Figure 8.4: Diagram of closed loop system

Remark 8.3.1 An important aspect to be noted about the way we have defined

our plant and controller models is that their outputs are specified such that there

is no direct feedthrough of their respective input signals. That is, in the plant

u(t) only influences y(t) indirectly via x(t), likewise in the controller y(t) only
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influences u(t) indirectly via ξ(t). This avoids delicate and difficult physical issues

that arise when there is direct feedthrough, due to the self-interaction of both the

plant and controller in the feedback loop (for example, see [86, Appendix II]).

8.3.2 H∞ control objective

The goal of the H∞ controller synthesis is to find a controller (8.9) such that for

a given disturbance attenuation parameter g > 0:

∫ t

0

〈z(s)T z(s)〉ds < g2

∫ t

0

〈βw(s)Tβw(s)〉ds+ µ1 + µ2t,

is satisfied for some real constants µ1, µ2 > 0. This objective can be interpreted

as that of disturbance attenuation where the controller bounds the effect of the

“energy” of the signal βw(t) and the noise variances on the “energy” of the signal

z(t). Consequently, as explained at the end of Section 8.2, the controller is robustly

stabilizing. Naturally, one would like to have g as small as possible, but if it is

too small a desired controller may not exist. Necessary and sufficient conditions

for the existence of a specific type of controller which achieves this goal for a

given g are given in the next section, as well as explicit formulas for AK , BK and

CK . The results parallel the corresponding well-known results for classical linear

systems (see, e.g., [110, 95]).

8.3.3 Necessary and sufficient conditions

In order to present the results on quantum H∞ control, we will require that the

plant system (8.7) satisfies the following assumptions.

Assumption 8.3.2

1. DT
12D12 = E1 > 0.

2. D21D
T
21 = E2 > 0.

3. The matrix

[

A− jωI B2

C1 D12

]

is full rank for all ω ≥ 0.

4. The matrix

[

A− jωI B1

C2 D21

]

is full rank for all ω ≥ 0.
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The results will be stated in terms of the following pair of algebraic Riccati

equations:

(A−B2E
−1
1 DT

12C1)
TX +X(A−B2E

−1
1 DT

12C1) +

X(B1B
T
1 − g2B2E

−1
1 B′

2)X + g−2CT
1 (I −D12E

−1
1 DT

12)C1 = 0; (8.12)

(A−B1D
T
21E

−1
2 C2)Y + Y (A−B1D

T
21E

−1
2 C2) +

Y (g−2CT
1 C1 − CT

2 E
−1
2 C2)Y +B1(I −DT

21E
−1
2 D21)B

T
1 = 0. (8.13)

The solutions to these Riccati equations will be required to satisfy the follow-

ing assumption.

Assumption 8.3.3

(i) A−B2E
−1
1 DT

12C1 + (B1B
T
1 − g2B2E

−1
1 B′

2)X is a stability matrix.

(ii) A−B1D
T
21E

−1
2 C2 + Y (g−2CT

1 C1 − CT
2 E

−1
2 C2) is a stability matrix.

(iii) The matrix XY has a spectral radius strictly less than one.

It will be shown that if the Riccati equations (8.12), (8.13) have solutions

satisfying Assumption 8.3.3, then a controller of the form (8.9) will solve the H∞

control problem under consideration if its system matrices are constructed from

the Riccati solutions as follows:

AK = A+B2CK −BKC2 + (B1 −BKD21)B
T
1 X;

BK = (I − Y X)−1(Y CT
2 +B1D

T
21)E

−1
2 ;

CK = −E−1
1 (g2BT

2 X +DT
12C1). (8.14)

We are now in a position to present the main result in [32] concerning H∞

controller synthesis which follows directly from the classical results in [110, 95].

Theorem 8.3.4 ([32]) (Necessity) Consider the system (8.7) and suppose that

Assumption 8.3.2 is satisfied. If there exists a controller of the form (8.9) such

that the resulting closed loop system (8.11) is strictly bounded real with distur-

bance attenuation g, then the Riccati equations (8.12), (8.13) will have stabilizing

solutions X ≥ 0 and Y ≥ 0 satisfying Assumption 8.3.3.

(Sufficiency) Suppose the Riccati equations (8.12), (8.13) have stabilizing

solutions X ≥ 0 and Y ≥ 0 satisfying Assumption 8.3.3. If the controller (8.9)
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is such that the matrices AK, BK, CK are as defined in (8.14), then the resulting

closed loop system (8.11) will be strictly bounded real with disturbance attenuation

g. Also the constant λ ≥ 0 in Definition 8.2.1 can be chosen as in (8.5) with B,

G, and F replaced by B̃, G̃ and F̃ , where F̃ is defined by the relation:

F̃ dt =

[

dw(t)

dṽ(t)

]

[

dw(t)T dṽ(t)T
]

Notice that the controller parameters BK0, BK1, and the controller noise vK

are not given in the construction described in the sufficiency part of Theorem

8.3.4. In fact, they are free as far as the H∞ objective is concerned. In the

next subsection, we show that they may always be chosen to yield a physically

realizable controller.

8.3.4 Physical realization of controllers

In this section we will show that given an arbitrary choice of a commutation

matrix ΘK = ξ(0)ξ(0)T − (ξ(0)ξ(0)T )T for the controller, there always exists a

physically realizable controller in the sense of Definition 7.3.5. This is a rather

surprising result since it implies that the controller can be chosen to be purely

quantum, purely classical, or a combination of quantum and classical components

at will.

Theorem 8.3.5 Assume

Fy = D20FvD
T
20 +D21FwD

T
21

is canonical. Let {AK , BK , CK} be an arbitrary triple (such as given by (8.14)),

and select the controller commutation matrix ΘK to be canonical or degener-

ate canonical, as desired. Then there exists controller parameters BK0, BK1,

and the controller noise vK such that the controller (8.9) is physically realiz-

able. In particular, 2iΘK = ξ(t)ξ(t)T − (ξ(t)ξ(t)T )T for all t ≥ 0 whenever

2iΘK = ξ(0)ξ(0)T − (ξ(0)ξ(0)T )T .

The proof of this theorem depends on the following lemma for the case in which

ΘK is canonical. For the degenerate canonical case, this lemma can be applied

to an augmentation of the controller. We shall use the notation of Section 7.3.1,

and as in the discussion in Section 7.2, we may take BK to have an even number

of columns and CK to have an even number of rows.
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Lemma 8.3.6 Let Fy be canonical and {AK , BK , CK} be such that AK ∈ RnK×nK ,

BK ∈ RnK×mK , CK ∈ Rlk×nK , nK = 2Nξ, mK = 2Ny and lK = 2Nu for positive

integers Nξ, Ny and Nu, and ΘK = diagNξ
(J) is canonical. Then there exists an

integer NvK
≥ Nu and BK1 ∈ RnK×2NwK , with NwK

= NvK
+ Ny, such that the

system (8.9) is physically realizable with

BK0 = P T
Nu

[

ΣNu
0Nu×NwK

0Nu×NwK
ΣNu

]

PNwK

[

I2NvK
×2NvK

0mk×2NvK

]

=

[ Iny×ny
0ny×(nw−ny) ],

R =
1

2
(Z + ZT ); (8.15)

BK1 =
[

BK1,1 BK1,2

]

; (8.16)

Λ =

[

1
2
CT
KP

T
Nu

[

I

iI

]

ΛT
b1 ΛT

b2

]T

; (8.17)

BK1,1 = −iΘKC
T
KdiagNu

(iJ); (8.18)

Λb2 = −i
[

INy×Ny
0Ny×Ny

]

PNy
diagNy

(M)BT
KΘK ; (8.19)

BK1,2 = 2iΘK

[

−Λ†
b1 ΛT

b1

]

PNvK
−Nu

diagNvK
−Nu

(M) (8.20)

where Z = −1
2
ΘAK and NvK

≥ Nu+1. Here Λb1 is any complex (NvK
−Nu)×nK

matrix such that

Λ†
b1Λb1 = Ξ + i

(

1

2
(Z − ZT ) − 1

4
CT
KP

T
Nu

[

0 I

−I 0

]

PNu
CK−

ℑ(Λ†
b2Λb2)

)

, (8.21)

where Ξ is any real symmetric nK × nK matrix such that the right hand side of

(8.21) is non-negative definite.

Remark 8.3.7 Note that the condition NvK
≥ Nu is significant since it implies

that there is no direct feedthrough of the signal y(t) to u(t) (see Remark 8.3.1) as

required for (8.9). For compatibility between the equations (8.9) and (8.7), it is

necessary that the corresponding Ito matrices satisfy the following condition:

Fu = BK0FvK
BT
K0. (8.22)
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However, since FvK
and Fu are, by convention, in canonical form, (8.22) is always

satisfied. To see this, we simply note that the 2Nu elements of BK0vK are a subset

of pairs of conjugate real and imaginary quadratures in vK. Hence it follows that

if FvK
is canonical then Fu must also be canonical and (8.22) is automatically

satisfied.

The proof of Lemma 8.3.5 uses the following lemma:

Lemma 8.3.8 If S is a Hermitian matrix then there is a real constant α0 such

that αI + S ≥ 0 for all α ≥ α0.

Proof. Since S is Hermitian it has real eigenvalues and is diagonalizable. Hence

S = V †EV for some real diagonal matrix E and unitary matrix V . Now let

α0 = −λ, where λ is the smallest eigenvalue of S. The result follows since

αI + S = V †(αI + E)V while αI + E ≥ 0 for all α ≥ α0. 2

Proof. (of Lemma 8.3.5) The main idea is to explicitly construct matrices

R ∈ RnK×nK , Λ ∈ CNvK
×nK , BK1 ∈ RnK×2(NvK

+Ny) and BK0 ∈ RlK×2NvK , with

NvK
≥ Nu, such that (7.14)-(7.17) are satisfied by identifying AK , BK , CK ,

[ BK0 0lK×mK
], ξ, wK and u with A, B, C, D, x, w and y, respectively. To

this end, let Z = 1
2
Θ−1
K A = −1

2
ΘKA, with ΘK = diagNξ

(J). We first construct

matrices Λb2, Λb1, BK1,1 and BK1,2 according to the following procedure:

1. Construct the matrix Λb2 according to (8.19).

2. Construct a real symmetric nK × nK matrix Ξ1 such that the matrix

Ξ2 = Ξ1 + i

(

Z − ZT

2
− 1

4
CT
KP

T
Nu

[

0 I

−I 0

]

PNu
CK −ℑ(Λ†

b2Λb2)

)

is non-negative definite. It follows from Lemma 8.3.8 that such a matrix Ξ1

always exists.

3. Construct a matrix Λb1 such that Λ†
b1Λb1 = Ξ2. This can be done, for

example, using the singular value decomposition of Ξ2 (in this case Λb1 will

have nK rows).

4. Construct the matrices BK1,1 and BK1,2 according to equations (8.18) and

(8.20), respectively.
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Let R = 1
2
(Z + ZT ). We now show that there exists an integer N vK

q ≥ Nu
q

such conditions (7.14)-(7.17) are satisfied with the matrix R as defined and with

BK1 = [ BK1,1 BK1,2 ] and

Λ =









1
2

[

I iI
]

PNu
Ck

Λb1

Λb2









. (8.23)

First note that necessarily NvK
≥ Nu+1 > Nu since BK1 has at least 2Nu+2

columns. Also, by virtue of our choice of Λb1 we have

ℑ(Λ†
b1Λb1) = ℑ(Ξ2) =

1

2
(Z − ZT ) − 1

4
CT
KP

T
Nu

[

0 I

−I 0

]

PNu
CK −ℑ(Λ†

b2Λb2),

and hence

ℑ(Λ†Λ) = ℑ(Λ†
b1Λb1) + ℑ(Λ†

b2Λb2) +
1

4
CT
KP

T
Nu

[

0 I

−I 0

]

PNu
CK =

1

2
(Z − ZT ).

Since R = Z+ZT

2
, we have R + ℑ(Λ†Λ) = Z. Therefore, (7.14) is satisfied.

Now, as in the proof of Theorem 7.3.6, observe that

iΘKBKdiagNy
(M †)P T

Ny
= [ T −T# ]

for some nK × Ny complex matrix T . But by taking the conjugate transpose of

both sides of (8.19) which defined Λb2, we conclude that T = −Λ†
b2. Hence,

BK = 2iΘK [ −Λ†
b2 ΛT

b2 ]PNy
diagNy

(M). (8.24)

From (8.18) which defined Λb1, we obtain

BK1,1 = −iΘKC
T
KdiagNu

(iJ)

= −iΘKC
T
KdiagNu

(iJ)(2diagNu
(M †))diagNu

(M)

= iΘKC
T
KdiagNu

(

[

−1 1

i i

]

)diagNu
(M)

= iΘKC
T
KP

T
Nu

[

−I I

iI iI

]

PNu
diagNu

(M). (8.25)
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Combining (8.20), (8.24) and (8.25) gives us

[ BK1,1 BK1,2 BK ]

= 2iΘK

[

1
2
CT
KP

T
Nu

[

−I I

iI iI

]

PNu

[

−Λ†
b1 ΛT

b1

]

P(NvK
−Nu)

[

−Λ†
b2 ΛT

b2

]

PNy

]

P T
NwK

PNwK
diagnwK

(M)

= 2iΘK

[

−1
2
CT
KP

T
Nu

[

I

−iI

]

−Λ†
b1 −Λ†

b2
1
2
CT
KP

T
Nu

[

I

iI

]

ΛT
b1 ΛT

b2

]

PNwK
diagNwK

(M)

= 2iΘK

[

−1
2
CT
KP

T
Nu

[

I

−iI

]

−Λ†
b1 −Λ†

b2
1
2
CT
KP

T
Nu

[

I

iI

]

ΛT
b1 ΛT

b2

]

Γ

= 2iΘK

[

−Λ† ΛT
]

Γ.

Therefore, (7.15) is also satisfied. Moreover, it is straightforward to verify (7.16)

by substituting Λ as defined by (8.23) into the right hand side of (7.16). Finally,

since NvK
> Nu, it follows that [ BK0 0lK×mk

] is precisely the right hand side

of (7.17). This completes the proof of Lemma 8.3.5. 2

8.4 H∞ synthesis in quantum optics

Quantum optics is an important area in quantum physics and quantum tech-

nology and provides a promising means of implementing quantum information

and computing devices; e.g., see [90]. In this section we give some examples of

controller design for simple quantum optics plants based on optical cavities and

optical amplifiers coupled to optical fields; e.g., see [111, 93]. We give explicit

realizations of controllers which are fully quantum, fully classical, and mixed

quantum-classical using standard quantum optical components and electronics.

8.4.1 Quantum controller synthesis

We consider an optical cavity resonantly coupled to three optical channels v, w,

u as in Figure 8.5.

The dynamics of this cavity system is described by the evolution of its an-

nihilation operator a (representing a quantized single mode standing wave). In
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v

a

u

     w

z

     2= 0.2     1= 2.6

     3= 0.2

     y

Figure 8.5: An optical cavity (plant).

the quadrature notation of (8.7), x1(t) = q(t) = a(t) + a∗(t), x2(t) = p(t) =

(a(t)−a∗(t)/i, v(t) = (v1(t), v2(t))
T , w(t) = (w1(t), w2(t))

T , u(t) = (u1(t), u2(t))
T .

The quantum noises v, w̃ have Hermitian Ito matrices Fv = Fw̃ = I + iJ . This

leads to a system of the form (8.7) with the following system matrices:

A = −γ
2
I; B0 = −√

κ1I; B1 = −√
κ2I; B2 = −√

κ3I;

(γ = κ1 + κ2 + κ3)

C1 =
√
κ3I; D12 = I;

C2 =
√
κ2I; D21 = I. (8.26)

In this model, the boson commutation relation [a, a∗] = 1 holds. This means that

the commutation matrix for this plant is ΘP = J .

In our example, we will choose the total cavity decay rate κ = 3 and the

coupling coefficients κ1 = 2.6, κ2 = κ3 = 0.2. With a disturbance attenuation

constant of g = 0.1, it was found that the Riccati equations (8.12) and (8.13)

have stabilizing solutions satisfying Assumption 8.3.3. These Riccati solutions

were as follows: X = Y = 02×2. Then, it follows from Theorem 8.2.2 that if a

controller of the form (8.9) is applied to this system with matrices AK , BK , CK

defined as in (8.14) then the resulting closed loop system will be strictly bounded

real with disturbance attenuation g. In our case, these matrices are given by

AK = −1.1I, BK = −0.447I, CK = −0.447I.

The form of the matrices AK , BK and CK suggest that the controller (8.9) can

be implemented using an optical cavity in combination with some phase shifters.

Indeed, it is a straightforward exercise to devise an implementation as shown in

Figure 8.6.
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aK

vK2

     y

     K3 = 0.2     K1 = 0.2

     K2= 1.8

180o

phase 

shift 

     u

     vK1
180o

phase 

shift 

Figure 8.6: An optical cavity quantum realization of the controller (ΘK = J) for

the plant shown in Figure 8.5.

In the figure, aK is the annihilation operator of the cavity, ξ1 = aK + a∗K ,

ξ2 = (aK − a∗K)/i and ξ = (ξ1, ξ2)
T . The implemented controller is a physically

realizable system with the following dynamics:

dξ(t) = AKξ(t)dt+ [ BK1 BK ][ dvTK dyT ]T

dũ(t) = CKξ(t)dt+ [ I2×2 02×4 ][ dvTK dyT ]T , (8.27)

where BK1 = [
√
κK1I2×2 −√

κK2I2×2 ] and vK = [ vTK1 vTK2 ]T , with κK1 = 0.2

and κK2 = 1.8. For this realization we have

R = 02×2 Λ =







−0.2236 −0.2236i

0.6708 0.6708i

0.2235 0.2235i






.

Note that the controller of Figure 8.6 requires two phase shifters. Alterna-

tively, if we consider realizing the controller as a cascade of a passive optical

device with a physically realizable system, see the discussion in Remark 7.3.8,

it is possible to remove one of the phase shifters. This alternative realization is

illustrated in Figure 8.7.

Now the controller is implemented as an optical cavity, with annihilation oper-

ator aK , connected at the output with a 180o phase shifter. The controller cavity

has coupling coefficients κK1 = 0.2, κK2 = 1.8, κK3 = 0.2 and is a physically
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vK1

aK

vK2

     y

     K3 = 0.2     K1 = 0.2

     K2 = 1.8

180o

phase 

shift 

     u

     

Figure 8.7: An alternative optical cavity quantum realization of the controller

(ΘK = J) for the plant shown in Figure 8.5.

realizable system with dynamics:

dξ(t) = AKξ(t)dt+ [ BK1 BK ][ dvTK dyT ]T

dũ(t) = −CKξ(t)dt+ [ I2×2 02×4 ][ dvTK dyT ]T , (8.28)

where ũ(t) is the output of the cavity, BK1 = [ −√
κK1I2×2 −√

κK2I2×2 ] and

vK = [ vTK1 vTK2 ]T . For the cavity we have that

R = 02×2 Λ =







0.2236 0.2236i

0.6708 0.6708i

0.2235 0.2235i






.

The overall output of the controller is u(t), given by u(t) = Ksũ(t), where Ks =

−I2×2. Here Ks models the 180o phase shift at the output of the cavity (cf.

Remark 7.3.8). Thus, the overall controller is of the form (8.9) with BK0 =

[− I 0 ] and BK1 as given before.

Notice that the BK1 matrix in (8.27) and the BK1 matrix in (8.28) differ in

the sign of the (1, 1) 2 × 2 block, which is why the second realization does not

require a phase shifter in front of vK1.

8.4.2 Classical controller synthesis

In subsection 8.4.1 we obtained a quantum controller corresponding to the choice

ΘK = J . We now show that if we instead choose ΘK = 0, the controller that is
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realized is classical, with appropriate transitions to and from the quantum plant.

Now, suppose we choose vK to be the quadratures of two independent noise

channels (i.e., FvK
= I4×4 + idiag(J, J)). Setting ΘK = 02×2, Eq. (7.19) and the

compatibility requirement (8.22) in this context results in the following pair of

equations:

BKJB
T
K +BK1diag(J, J)BT

K1 = 0 (8.29)

BK0(I4×4 + idiag(J, J))BT
K0 = I + iJ. (8.30)

In order to find BK0 and BK1 solving (8.29) and (8.30), we assume the following

forms for BK0 and BK1:

BK0 =
[

B̃K0 02×2

]

; BK1 =
[

02×2 B̃K1

]

.

Since BK = −0.447I, substitution of these forms into (8.29) and (8.30) gives:

B̃K0(I + iJ)B̃T
K0

= I + iJ ; 0.4472J + B̃K1JB̃
T
K1 = 0.

It can be readily checked, by direct substitution, that these equations are solved

by B̃K0 = I2×2 and B̃K1 = −0.447Ĩ, where Ĩ =

[

1 0

0 −1

]

. This completely spec-

ifies the classical realization of the controller, illustrated in Figure 8.8. The quan-

tum signal y is converted to a classical signal yc = (yc1, yc2)
T = (y1 − vK21, vK22 +

y2)
T by imperfect continuous measurement of the real and imaginary quadratures

of the optical beam, implemented in Figure 8.8 by a beam splitter and two ho-

modyne detectors [111]. The classical signal yc is processed by a classical linear

system (AK , BK , CK , 0) to produce a classical control signal uc, which then modu-

lates (displaces) a field vK1 to produce the optical control signal du = ucdt+dvK1.

This classical controller achieves exactly the same H∞ performance as the quan-

tum controller of Subsection 8.4.1.

This classical controller has access to the full quantum signal y, and the quan-

tum measurement occurs in the controller. The algebra based on the commuta-

tion relations enforces the quantum measurement, and also the modulation. If we

were to include measurement as part of the plant specification, then in general

a different classical controller will result, with different H∞ performance. To see

this, suppose that y is replaced by its real quadrature in the plant specification;
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Mod

 vK1

 u

Classical system 

d  = AK  dt + BK dyc

duc =CK  dt 

- 2

2

uc

yc2

HD(Re)

HD(Im)

 vK2

 y

yc1

50:50 beam 

splitter Homodyne  

detection 

Figure 8.8: A classical realization of the controller (ΘK = 0) for the plant shown

in Figure 8.5. The controller includes quantum measurement and classical mod-

ulation of optical fields.

this situation is described by the matrices

A = −γ
2
I; B0 = −√

κ1I; B1 = −√
κ2I; B2 = −√

κ3I;

(γ = κ1 + κ2 + κ3)

C1 =
√
κ3I; D12 = I;

C2 =
√
κ2

[

1 0
]

; D21 =
[

1 0
]

(8.31)

and is illustrated in Figure 8.9. Thus the output of the plant is a classical single-

variable signal.

a

u

     w

z

     2 = 0.2     1 = 2.6

     3 = 0.2

HD(Re)

 y

v

Figure 8.9: An optical cavity (plant) with classical output. The (real) quadrature

measurement is achieved by homodyne photodetection (HD(Re)).

With a disturbance attenuation constant of g = 0.134, it was found that

the Riccati equations (8.12) and (8.13) have the following stabilizing solutions
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satisfying Assumption 8.3.3:

X =

[

0 0

0 0

]

; Y =

[

0 0

0 0.121

]

.

It now follows from Theorem 8.2.2 that if a controller of the form (8.9) is applied

to this system with the following matrices AK , BK , CK defined as in (8.14), then

the resulting closed loop system will be strictly bounded real with disturbance

attenuation g = 0.134:

AK =

[

−1.1 0

0 −1.3

]

; BK =

[

−0.447

0

]

;

CK =

[

−0.447 0

0 −0.447

]

. (8.32)

In this case, the controller (8.9), (8.32) is a classical system which can be im-

plemented using standard electronic devices. This second classical controller is

illustrated in Figure 8.10, and is different to the previous one. Here we have cho-

sen BK0 = I, BK1 = 0, and the quantum noise is canonical. The control signal

is du = ucdt+ dvK , a coherent optical field.

Classical system 

d  = AK  dt + BK dy

duc =CK  dt 

uc

Mod

 vK

 u

 y

Figure 8.10: Classical controller (ΘK = 0) for the plant of Figure 8.9.

Finally, let us now return to the controller of Figure 8.8, which we had con-

structed “directly”, and show how it may be recovered using Lemma 8.3.6. To

this end, suppose we seek a physically realizable controller of the form:

dξ(t) = AKξ(t)dt+BK1dvK(t) +BKdy(t)

du(t) = CKξ(t)dt+BK0dvK(t), (8.33)
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with ΘK = 0, and the real matrices BK0 and BK1 are unknown and to be deter-

mined. Since ΘK is degenerate canonical, we need to consider some augmenta-

tion of (8.33) (Theorem 8.3.5). Suppose we consider some augmentation where

AK , BK , CK are, respectively, augmented to the matrices ÃK , B̃K , C̃K given by:

ÃK =







AK 02×2

0 −0.4472/2

0.4472/2 0
−ATK






B̃K =

[

BK

02×2

]

C̃K = [ CK 02×2 ],

and let P be a permutation matrix such that P T Θ̃KP
T is canonical. Now, ap-

plying Lemma 8.3.6 to the triplet {PÃKP T , P B̃K , C̃KP
T} by choosing

Ξ =











0 0 0 0

0 0.05 0 0

0 0 0 0

0 0 0 0.05











and Λb1 = [ 0 0.2235i 0 0.2235 ],

gives us a physically realizable dilation of (8.33) for some BK0 and BK1. By

extracting the sub-system of the dilation corresponding to our original system

(8.33), we recover the matrices BK0 = [ I2×2 02×2 ] and BK1 = [ 0 −0.447Ĩ ]

as we had before. This results in the controller given in Figure 8.8.

8.4.3 Classical-quantum controller synthesis

As a final example, we illustrate the synthesis of a controller with both classical

and quantum components. The plant has two degrees of freedom, and is formed

as a cascade of an optical amplifier [93] and the cavity discussed above. This

plant is illustrated in Figure 8.11.

The optical amplifier has an auxiliary input h, which is an inverted heat bath

with Ito matrix Fh = (2N+1)I+iJ , where N > 0 is a positive thermal parameter

(for details, see [93]). The complete system shown in Figure 8.11 is of the form



CHAPTER 8. SYNTHESIS AND REALIZABILITY OFH∞ CONTROLLERS143

a
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     w

z

     2=0.2     1=2.6

     3=0.2

v

Optical 
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Figure 8.11: An optical amplifier-cavity system (plant).

(8.7) with matrices

A =

[

−γ
2
I −√

κ3α I

0 −α−β
2
I

]

; B0 =

[

−√
κ1I 0

0
√
βI

]

; B1 =

[

−√
κ2I

0

]

;

B2 =

[

−√
κ3I

−√
αI

]

;

(γ = κ1 + κ2 + κ3)

C1 =
[ √

κ3I 0
]

; D12 = I;

C2 =
[ √

κ2I 0
]

; D20 = 0; D21 = I. (8.34)

Here α and β are parameters of the optical amplifier. The signals have Ito

matrices Fu = Fw̃ = I + iJ and Fv = diag(I + iJ, (2N + 1)I + iJ), and the

parameters are chosen to be κ1 = 2.6, κ2 = κ3 = 0.2, α = 1 and β = 0.5.

With a H∞ gain g = 0.1, the Riccati equations (8.12) and (8.13) have stabi-

lizing solutions satisfying Assumption 8.3.3: X = Y = 02×2. Using (8.14), the

controller matrices AK , BK , CK are

AK =

[

−1.3894I −0.4472I

−0.2I −0.25I

]

, BK =

[

−0.4472I

02×2

]

,

CK =
[

−0.4472I 02×2

]

. (8.35)

We would like to realize a controller with both classical and quantum degrees

of freedom. Suppose further that we want ξc = (ξ1, ξ2)
T to be quantum and ξq =

(ξ3, ξ4) be classical. For the sake of conformity with the setup of Chapter 7, let
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us relabel ξ according (ξ1, ξ2, ξ3, ξ4)
T 7→ (ξ3, ξ4, ξ1, ξ2)

T = (ξc, ξq)
T . Subsequently,

we also redefine AK , BK , CK to be:

AK =

[

−0.25I −0.2I

−0.4472I −1.3894I

]

, BK =

[

02×2

−0.4472I

]

,

CK =
[

02×2 −0.4472I
]

. (8.36)

Therefore, for our realization we choose ΘK = diag(02×2, J). The realization

of the controller is shown in Figure 8.12, which consists of a four-mirror optical

cavity, a classical system, and homodyne detection and modulation for interfacing

the classical and quantum components. The quantum noises in Figure 8.12 are

all canonical. The cavity has coupling coefficients κK1 = κK3 = κK4 = 0.2 and

κK2 = 2.1788. The interconnection fields are given by dηq =
√

1.33ξqdt + dvK2,

and dζq = ζcdt+ dvK4, where ηc = (ηc1, ηc2)
T = (ηq1 − vK31, ηq2 + vK32)

T . For this

realization we have the dynamics (8.9) with

BK1 =

[

0.4472I −1.4761I 02×2 −0.4472I

02×2 −0.1355I 0.1355Ĩ 02×2

]

,

BK0 =
[

I 02×2 02×2

]

,

and vK = (vK1, vK2, vK3, vK4)
T , where we recall that Ĩ =

[

1 0

0 −1

]

. To connect

this direct realization with the Lemma 8.3.6, consider the following augmentation

of the matrices AK , BK , CK in (8.36):

ÃK =

[

AK 02×2

04×2 0.4472J 0.25I

]

B̃K =

[

BK

02×2

]

C̃K =
[

CK 02×2

]

.

Let P be a permutation matrix such that P Θ̃KP
T = diag2(J). Then applying
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Lemma 8.3.6 to the triple {PÃKP T , P B̃, C̃P T} and choosing

Ξ =





















0 0 0 0 0 0

0 0.0092 0 0 0 0.05

0 0 0 0 0 0

0 0 0 0.0092 −0.05 0

0 0 0 −0.05 0.5947 0

0 0.05 0 0 0 0.5947





















Λb1 =







0 0.0678i 0 −0.0678 0.738 0.738i

0 −0.0678i 0 −0.0678 0 0

0 0 0 0 0.2236 0.2236i






,

gives us the controller realization of Figure 8.12.
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     K2 = 2.1788

c

Figure 8.12: Quantum-classical controller (ΘK = diag(02×2, J)) for the plant of

Figure 8.11.

The above is, of course, not the only possible mixed quantum-classical real-

ization. To obtain a different realization we could have alternatively specified

that (ξ1, ξ2)
T be classical and (ξ3, ξ4)

T as quantum. Let us now do this and set

ξc = (ξ1, ξ2)
T and ξq = (ξ3, ξ4)

T . In this case we are already in the setup of
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Chapter 7 and it is not necessary to relabel ξ or redefine AK , BK , CK . In other

words, AK , BK , CK are as given in (8.35). This alternative realization is shown

in Figure 8.13.

y

67:33 

Beam splitter 

Classical System 

d c =-1.3894 c dt +d c

d c = c dt 

2

- 2

HD(Re)

HD(Im)

Mod

-0.4472

Mod

aK
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z3

z4

z2

vK4 

vK3

vK5

vK2

u

vK1z1 = 0.8944y –(0.2236 q+ 0.4472vK3)

z2 = 0.4472y +(0.4472 q + 0.8944vK3)

z3 = (vK4-z2)/ 2

z4 = (vK4+ z2)/ 2

Homodyne  

detection 

50:50 

Beam splitter 

K2 = 0.25 K3 = 0.04 

K1 = 0.21 

c1 

c2 

c

Figure 8.13: Alternative quantum-classical controller (ΘK = diag(02×2, J)) for

the plant of Figure 8.11.

Note that the control signal u is now the output of the classical part of the

controller, modulated by the Wiener noise vK1. As before, we proceed to re-

late this alternative mixed classical-quantum realization with Lemma 8.3.6. The

suitable augmentation of AK , BK , CK are as follows:

ÃK =

[

AK 02×2

−0.1J 0.2J 1.3894I

]

B̃K =

[

BK

02×2

]

C̃K =
[

CK 02×2

]

.
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Then application of Lemma 8.3.6 to {PÃKP T , P B̃K , C̃KP
T} with

Ξ =





















0 0 0 0 0 0

0 0.45 0 0 0 0.1118

0 0 0 0 0 0

0 0 0 0.45 −0.1118 0

0 0 0 −0.1118 0.125 0

0 0.1118 0 0 0 0.0125





















Λb1 =











0 0 0 0 0.2291i 0.2291i

0 0.4472i 0 −0.4472 0.25 0.25i

0 −0.5i 0 −0.5 0 0

0 0 0 0 0.1 0.1











,

results in the controller of Figure 8.13.

8.5 Concluding remarks and future challenges

In this chapter we describe anH∞ synthesis problem for a class of non-commutative

stochastic models due to James and Petersen [32], and then show that the re-

sulting partial description of a controller from the H∞ synthesis can always be

completed, by appropriately adding additional quantum noise channels, such that

the complete controller model is physically realizable. It should be emphasized

that the novelty of the approach discussed herein is that it facilitates the design

of controllers which may have quantum freedom degrees of freedom, such as in

[87]. Moreover, the H∞ theory is applicable to a fairly general class of linear

non-commutative plants as well as being quite similar to the classical theory.

A particularly interesting insight obtained from our results is there is com-

plete freedom to specify the type of controller to be realized. Therefore, starting

with a partial description of a controller, one may at will choose to realize either

a fully quantum controller (with no classical components), a classical controller

(with no quantum components), or even a more elaborate hybrid type of con-

troller with mixed classical and quantum components. All these different types

of realization will achieve the same H∞ performance specification. In a number

of illustrative examples from quantum optics, we demonstrate the synthesis and

physical realization of quantum, classical, and quantum-classical controllers.

The initial results and insights of this work opens several avenues for future

research in quantum linear stochastic systems. We shall now list and discuss some
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interesting interrelated topics which can be themes for further investigations:

1. Fortuitously, the resulting system matrices in the synthesis examples have

a special structure consisting of blocks of scalar multiples of 2 × 2 iden-

tity matrices, thus enabling direct (or “manual”) realization the controller.

For a number of these direct realizations we also explicitly show how they

correspond to one of the infinitely many different realizations that can be

obtained from Theorem 8.3.5. However, there is no reason to believe that we

will in general obtain solutions with readily exploitable structures nor would

direct realization necessarily be sensible for a controller with many degrees

of freedom. The general approach would be to apply Theorem 8.3.5 and

Lemma 8.3.6 to obtain a pair of Hamiltonian and coupling matrices (R,Λ)

which completely specifies a particular realization, followed by a physical

construction of the controller. At present, an impediment to this approach

is, to the best of the author’s knowledge, a lacuna of results pertaining

to systematic engineering of linear quantum optical systems with arbitrar-

ily specified (R,Λ) from a bin of quantum optical components. There is

an interest in the quantum information science community in implementa-

tion of quadratic Hamiltonians but only of specific ones which will create

entangled Gaussian states useful for quantum cryptography and comput-

ing [112, 113, 114]. In [115], it has been shown that arbitrary quadratic

Hamiltonians can be implemented via applying appropriate sequences of

fast elementary operations and is investigated further in, e.g., [112, 113].

Despite this, it may still prove advantageous to be able to engineer the

Hamiltonian directly and in some situations this may be preferable. On the

other hand, engineering of arbitrary linear coupling seems to have attracted

even less attention, if any. With the advent of quantum control and the

increasing involvement of engineers, these implementation questions may in

the future gain more prominence. In any case, they are important ques-

tions and will be even more relevant if we are to develop other synthesis

methods in which we do not have the luxury of adding in quantum noise

without degrading the closed loop performance. It is hoped that this will

eventually lead to a constructive theory for the analysis and synthesis of

quantum optical networks which parallels that of electrical networks.

2. Due to the presence of the free parameter Ξ in Lemma 8.3.6, we know that

there can be infinitely many different physical realizations for any particular
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partial model. As such it would also be of interest to consider whether it

is possible to find Ξ which returns a realization which is in some sense

“optimal”. For example, it may be that one wishes to find a realization

with a minimal number of noise channels, that is, a realization with NvK

which is smallest among all possible realizations. Alternatively, we may

wish to bound the complexity of the controller and look for a realization

which can be built with a minimum number of components.

3. Here we have only considered a quantum generalization of classical H∞

synthesis. However, there are other controller synthesis paradigms such as

the LQG synthesis and the risk-sensitive synthesis. Thus, it is of interest

to investigate whether these other paradigms may also be extended to the

quantum linear stochastic systems setting.
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[33] U. Grenander and G. Szegö, Toeplitz Forms and Their Applications, ser.

California monographs in mathematical sciences. Berkeley and Los Ange-

les: University of California Press, 1958.

[34] P. J. Brockwell and R. A. Davis, Time series: Theory and methods, 2nd ed.,

ser. Springer series in statistics. Springer, 1991.

[35] P. Dewilde and H. Dym, “Schur recursions, error formulas, and convergence

of rational estimators for stationary stochastic sequences,” IEEE Trans.

Inform. Theory, vol. 27, no. 4, pp. 446–461, July 1981.

[36] ——, “Lossless chain scattering matrices and optimum linear prediction:

The vector case,” Circuit Theory Appl., vol. 9, pp. 135–175, 1981.

[37] ——, “Lossless inverse scattering, digital filters, and estimation theory,”

IEEE Trans. Inform. Theory, vol. 30, no. 4, pp. 644–662, July 1984.

[38] P. Delsarte and Y. Genin, “On a generalization of the Szegö-Levinson re-
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