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Abstract

This thesis considers two topics in the area of linear stochastic systems.

The first topic is the construction of approximate finite dimensional linear time
invariant (LTT) models for classical wide sense stationary stochastic signals with
a non-coercive and non-rational spectral density, utilizing the recently developed
theory of degree constrained rational interpolation. Non-coercive means that the
spectral density has zeros on the unit circle or the imaginary axis (depending on
whether the stochastic process is in discrete or continuous time, respectively),
while non-rationality implies that the underlying system generating such a signal
is infinite dimensional. As one example, spectral densities of this type appear
when measurements are taken of signals that have traversed through the earth’s
turbulent atmosphere, such as light from a distant star captured by astronomical
telescopes on the ground. The operation of obtaining an LTI model from a spec-
tral density is known in the literature as spectral factorization and has played an
important role in both deterministic and stochastic linear systems theory. The
non-rational and non-coercive spectral densities which are considered herein are
known to be difficult to factorize numerically. The most general algorithms for
spectral factorization, such as the maximum entropy method, converge slowly for
these spectral densities, and can lead to approximate models of degree higher than
is necessary. The first part of this thesis establishes some new results in the the-
ory of degree constrained rational interpolation and then proposes and analyzes
a new approach to spectral factorization, based on so-called rational covariance
extensions. A new spectral factorization algorithm is then introduced. In a num-
ber of simulations, which include some physically motivated spectral densities, it
is demonstrated that the new algorithm gives lower degree approximations than
the well-known maximum entropy method.

The second topic is the issue of physical realizability of a given system repre-
sented by linear quantum stochastic differential equations (QSDEs) on a quantum

probability space. Physical realizability here means that the QSDEs should rep-
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resent the dynamics of some meaningful physical system. For example, it could
be that they represent the dynamics of the position and momentum operators of
an optical cavity, a well-known device in quantum optics. Physical realizability
is a very important issue from an engineering point of view since only imple-
mentable quantum systems, built from real physical devices, are of interest in
real-life applications.

In the classical (non-quantum) setting, the question of realizability of de-
terministic and stochastic linear (time invariant) systems has been extensively
studied, for example within the context of the theory of electrical networks, and
is well understood. In principle, once all the coefficients are known, classical
systems can be regarded as always being realizable, at least approximately, via a
network of electrical, electronic and/or mechanical devices. For quantum stochas-
tic systems, however, there are additional constraints that must be satisfied by
the QSDEs to be physically meaningful, constraints which are not required of
classical stochastic systems represented by a system of linear stochastic differen-
tial equations on a classical probability space. Among these constraints, physical
systems are characterized by the preservation of canonical commutation rela-
tions (CCR) among certain canonical operators. The second part of the thesis
introduces a formal notion of physical realizability for quantum linear stochas-
tic systems, as well as deriving explicit necessary and sufficient conditions for
preservation of the CCR and physical realizability. These conditions are relevant
for extending the controller synthesis techniques of modern linear control theory,
such as the LQG and H* synthesis techniques, to the setting of quantum linear
systems. The realization ideas are applied to a quantum H* synthesis frame-
work to show that controllers obtained from this synthesis can always be made
to be physically realizable by appropriately adding a number of quantum noise
channels. Moreover, the controllers can be freely chosen to be fully quantum (no
classical components), fully classical (no quantum components), or a mixture of

quantum-classical components.
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Chapter 1

Introduction

Disturbances of a random or stochastic nature appear naturally in engineering
practice and real-life applications. Noises in electrical and other devices, the er-
ratic movement of prices in the stock market, turbulence that one experiences
when travelling on an aircraft, are some examples of random disturbances which
can be observed in the real-world. When these random effects are significant and
cannot be neglected, it is more appropriate to consider the system of interest, be
it a device, the stock market or an aircraft, as being stochastic, as opposed to
being deterministic. Human endeavor to understand and to be able to quantita-
tively describe random processes in nature, so that its effects may be controlled
to some degree or used to our advantage, has led to the development of the math-
ematical theory of stochastic processes which in turn provides the foundation for
stochastic systems theory and stochastic control. For some systems, randomness
is an indispensable part of its description. One case in particular are quantum
mechanical systems which behave according to the laws of quantum mechanics.
This is because randomness is an inherent feature built into the foundation of
quantum mechanics, and quantum phenomena are most appropriately described
using a probabilistic language.

This thesis considers two topics in the broad area of linear stochastic systems.
One topic lies in the domain of traditional stochastic systems on a classical proba-
bility space, while the second topic is in the domain of quantum stochastic systems
on a quantum probability space, an emerging area of research in engineering which
is gaining more importance. The first topic is the construction of approximate
finite dimensional linear time invariant models for classical stationary stochastic
signals with a spectral density which is both non-coercive and non-rational. The

second topic is physical realizability of linear quantum systems represented by
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linear quantum stochastic differential equations. This chapter serves to give an
overview of both topics and a summary of the contributions of the thesis. We

now start with an overview of the first topic.

1.1 Approximate finite dimensional models for

stochastic signals

Wide sense stationary (WSS) processes form an important class of stochastic
processes. Stochastic signals which are system inputs or outputs are modelled as
sample functions of stochastic processes, but in engineering contexts as here, the
terms are loosely used interchangeably. Wide sense stationary stochastic processes
are characterized as stochastic processes with time invariant first and second order
statistical properties, that is, the mean and covariance respectively. Typically
one sets the mean to be zero by adding an appropriate constant so that a WSS
process may be assumed to be completely described by its covariance function.
An equivalent complete description can be given in terms of the so-called spectral
distribution of the process, which in most cases of practical interest is simply
the Fourier transform of the covariance function. If the spectral distribution
is absolutely continuous then its derivative is called the spectral density or the
spectrum of the process. A striking result from the theory of WSS processes is
that such processes having a spectral density (i.e., the spectral distribution is
absolutely continuous) can always be modelled as the output of a linear time
invariant (LTT) system (referred to as a “shaping filter”) driven by a white noise
input [1]. This provides a universal model of WSS processes as well as a practical
way of generating them, i.e., by identifying an appropriate shaping filter.

The operation of obtaining an LTI model from a spectral density is known
in the literature as spectral factorization and plays an important role in both
deterministic and stochastic linear systems theory. More generally, spectral fac-
torization and the results presented in this thesis are not only of interest for
modelling of stochastic signals and systems, but also for the optimal control of
some classes of deterministic infinite dimensional /distributed parameter systems.
For such systems, spectral factorization has been developed in the literature as
one technique for synthesizing optimal controllers [2, 3, 4]. A more detailed dis-
cussion of WSS processes and spectral factorization will be given in Chapter 2.

In the thesis we will mainly be concerned with discrete time wide-sense sta-

tionary processes with a spectral density, defined on the unit circle, which is
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non-coercive and non-rational. Non-coercive means that the spectral density has
one or more zeros on the unit circle, while non-rationality implies that the un-
derlying system generating such a signal has infinite dimension (also known in
the literature as distributed parameter systems). Nonetheless, our results can
also be applied to continuous time processes by application of a standard bilinear
transformation which maps the imaginary axis onto the unit circle.

An attribute of the class of spectral densities mentioned above, which we
shall shortly elaborate upon, is that, in general, their spectral factors are difficult
to compute numerically. Given such a scalar spectral density W, a particular
rational spectral density W,,, known as a maximum entropy spectrum, can be
constructed whose first n terms of the covariance sequence matches those of W
[5, 6]. Matching of partial covariance sequences is a natural approach since, as
mentioned briefly in the previous paragraph, every spectral density is associated
to a unique covariance sequence, and both give a complete and equivalent char-
acterization of some purely non-deterministic wide sense stationary stochastic
process [7, 1]. H,, the canonical spectral factor of W,,, can be constructed re-
cursively via the Szegd-Levinson algorithm, see, e.g., [8, 7], and it is well-known
that as n 1 oo, H,, converges to H, the canonical spectral factor of W, in H?, the
Hardy space of functions square-integrable on the unit circle and having vanish-
ing negative Fourier coefficients. Therefore, also W, converges to W in £!, the
space of integrable functions on the unit circle. However, H,, obtained in this way
is an all-pole transfer function. Since H,, has no zeros, it has long been observed
that Hy, H,, ... converges slowly to H when the latter has zeros on or close to the
unit circle, some examples can be found in, e.g., [9, Section IV], [5, pp. 214-217]
and [6, Section 6]. Intuitively, this is due to the inability of W, to reproduce
valleys of W (i.e., points for which W has a small value) for small or medium
n. Similar slow convergence is also true when the matrix generalization of the
Szego-Levinson algoritm (see [10, 11]) is applied to a matrix-valued spectrum W
with transmission zeros on or close to the unit circle [10]. More formally, it was
shown in [12, 9] that if W is scalar and rational, then its zeros that are close to
or on the unit circle decreases the rate of decay of the Schur parameters of W:
convergence rate decreases as a zero approaches the unit circle (see also [13]). In
particular, when W has roots on the unit circle, the rate of convergence is no
longer geometric. Consequently, good approximations can only be achieved for
large n.

The limitation of the maximum entropy spectra motivated research into devel-

opment of rational spectral densities which 1) matches the first few terms of the



CHAPTER 1. INTRODUCTION 4

covariance sequence of W and 2) has zeros at specified locations on the complex
plane. A new theory of rational covariance extension with degree constraint was
later developed which makes possible the construction of such spectra. Indeed, it
has been demonstrated in [5, 6] that a finite dimensional spectrum constructed
via the new theory, by suitably placing zeros on the unit disc, is a better estimate
than the corresponding maximum entropy estimate, in the sense that it is able
to better capture features of the true spectrum.

The first part of the thesis (Chapters 2-6) establishes some new results for de-
gree constrained rational covariance extension and interpolation, a general prob-
lem with ties to many applications in systems and control [14], and then develops
a new approach to spectral factorization of a spectral density W, based on con-
structing a sequence of rational approximations {W,, } with freely specified zeros
and which match partial covariance sequences of W. The construction is achieved
by taking advantage of a recent result on continuity of the spectral factorization
mapping given in [15] and the theory of degree constrained rational covariance
extensions [12, 9, 16, 5, 6, 17, 18]. We derive theoretical results on convergence
of this scheme for continuous W, and conditions on the zeros for convergence to
be achieved, under further mild assumptions on W. Convergence of covariance
matching approximations with freely specified zeros have not been studied in the
literature; convergence results have only been established for the case where W),
has no zeros, i.e., the maximum entropy method/Szeg6-Levinson algorithm. In
particular, our results weaken some conditions previously derived by Anderson
[19], Caines and Baykal-Giirsoy [20], and Mari et al [13] for convergence of {H,,}
to H in H? and H*>, respectively, where H> denotes the space of functions which
are analytic and bounded on the open unit disc. Then in the penultimate section
of Chapter 6, several numerical examples are given that demonstrate the advan-
tage of the proposed approach over the popular maximum entropy method: lower
degree approximations with lower approximation error (to be defined in a certain
sense).

From an applications side, non-coercive and non-rational spectral densities are
of particular interest in optics, astronomy and flight research. As one example,
spectral densities of this type appear when measurements are taken of signals that
have traversed through the Earth’s turbulent atmosphere, such as light from a
distant star captured by astronomical telescopes on the ground. In the literature,
analytical derivations based on the so-called Taylor frozen hypothesis [21] show
that signals captured by wavefront sensors on telescopes are continuous time sig-

nals with non-coercive (for continuous time this means that the spectral density
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has zeros on the imaginary axis) and non-rational temporal spectral densities,
see [22] and the references cited therein. These properties agree with empirical
observations reported in, for example, [23, 24, 25]. Knowledge of the temporal
spectra is of interest for estimating and improving the performance of various
high resolution imaging systems which compensate for abberation of images re-
ceived on a telescope due to atmospheric turbulence [22; 25]. One such image
enhancing system which has gained a significant amount of attention in recent
years are adaptive optics control systems [21, 26, 27]. In adaptive optics, de-
formable mechanical mirrors are shaped according to some control algorithm to
correct the phase of the wavefront of the incident light, which has been distorted
from its original planar profile by atmospheric turbulence, before an image is
formed on the telescope. As another relevant example, the spectral densities of
the components of wind turbulence velocity are also modelled to be of the non-
coercive and non-rational type [28, 29]. Wind turbulence models are important
for computer-based simulation of flight conditions in the design of aircrafts and
its sub-systems, including the flight controller. Typical approximate models that
are used in current applications are low order ones which give a good fit to the
spectral density only in a limited frequency range [29, 26, 27], whereas the method
proposed here allows one to obtain higher degree models which give a better fit
across a wider range. The choice of the appropriate higher degree model would
then be application specific, depending on the particular constraints present, such
computational constraints.

In summary, the ideas and results presented in the first part of the thesis may
be useful in applications in which spectral factorization plays a prominent role
such as in computation of approximate solutions of algebraic Riccati equations
(ARE’s) in optimal control of linear systems, or in which signals with non-rational
power spectra is a central theme (e.g., control of aircraft subject to windgust and
adaptive optics as discussed above, and also in laser scintillation [30]). They may

also prove to be useful in spectral estimation and system identification research.

1.2 Physical realizability of quantum linear stochas-

tic systems

The second topic addressed is the issue of physical realizability of a given system
represented by linear quantum stochastic differential equations (QSDEs) on a

quantum probability space.



CHAPTER 1. INTRODUCTION 6

Physical realizability here means that the QSDE represents the dynamics of
some meaningful physical system. For example, it could be that the QSDE repre-
sent the dynamics of the position and momentum operators of an optical cavity,
a well-known device in quantum optics. Physical realizability is a very impor-
tant issue from an engineering point of view since only implementable quantum
systems, built from real physical devices, are of use in real-life applications.

The realization question for classical (i.e., non-quantum) linear systems rep-
resented by a system of ordinary linear differential equations is a central one
in engineering and has been extensively studied in the literature. In electrical
engineering, this question is addressed in the context of synthesis of electrical
networks, at first using classical complex function theory and later with mod-
ern state-space methods [31]. However, the results for electrical networks can,
by analogy, be adapted to other kinds of networks. For a comprehensive treat-
ment of the state-space approach for synthesis of electrical networks, see [31].
According to the theory, we may, in principle, always regard linear deterministic
or stochastic linear (time invariant) systems as being realizable via a network of
electrical, electronic and, possibly, mechanical devices. This is not the case for
quantum linear stochastic systems. There are additional constraints, not present
in the non-quantum context, that must be satisfied by the QSDEs for them to
be physically meaningful. One such constraint is the requirement that certain
canonical commutation relations (CCR) between canonical conjugate variables
of the QSDESs should be satisfied at all times. The purpose of the second part
of this thesis is to introduce a formal notion of physical realizability for quan-
tum linear stochastic systems and to derive necessary and sufficient conditions
for preservation of the CCR and physical realizability. Our setting includes the
interesting and important case of systems which may have both classical and
quantum degrees of freedom, and includes linear models which are of interest in
quantum optics.

With the recent advances, both theoretical and experimental, in the control
of objects at the nano scale, such as control of an atom by using a modulated
laser, and potential benefits that may be offered by quantum information and
signal processing system over their classical counterparts, quantum control has
become a significant topic which has recently attracted more attention. Due to
the important role that linear systems has played in the development of classical
control theory, a similar theory for quantum linear systems could be beneficial
for better understanding of quantum control theory. The results of the second

part of this thesis takes a step in that direction by building a connection between
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abstract physical concepts with realizability issues which are important from an
engineering perspective. In particular, the ideas developed are applied in the
context of an H> synthesis framework due to James and Petersen [32] to show
that the controllers which result from this synthesis can always be made to be

physically realizable.

1.3 Summary of contributions of the thesis

The original contributions of this thesis are as follows:

e Some new results on degree constrained rational interpolation are estab-
lished for the case where the parametrizing pseudopolynomial has spectral
zeros on the unit circle. This completes the analysis for the dual side of the
primal-dual convex optimization approach pioneered by Byrnes et al [5, 6].

The results include:

1. A necessary and sufficient condition for a degree constrained rational

interpolant to be bounded on the unit disc (Chapter 3).

2. A characterization of the denominator polynomial of all degree con-
strained rational interpolants, including unbounded ones having a pole
of the unit circle (Chapter 4). This leads to several corollaries, includ-
ing one which establishes a homeomorphism between the numerator
and denominator polynomials of an interpolant and its pair of partial

covariance sequence and parametrizing pseudopolynomial.

e [t is shown that a numerically stable homotopy continuation method, orig-
inally proposed by Enqvist for computing degree constrained rational co-
variance extensions which are bounded and strictly positive real, is actu-
ally applicable for all interpolants including those that are unbounded or
non-strictly positive real (Chapter 5). This establishes that the algorithm
provides a complete computational method, and it has the potential to be

extended to interpolation problems beyond rational interpolation.

e A new approach to spectral factorization of a class of spectral densities is
introduced (Chapter 6) based on a sequential continuity property of the
spectral factorization mapping and the ideas and techniques developed in

Chapters 3 and 4. A new spectral factorization algorithm is also introduced
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and analyzed. Several numerical simulations are provided to indicate the

performance of the algorithm.

e A notion of physical realizability for a class of quantum linear stochastic
systems is developed, and characterizations of physical realizability are de-
rived (Chapter 7).

e In the context of H* synthesis, it is shown that physically realizable ro-
bust controllers (Chapter 8) always exist. Moreover, it is shown that the
controllers may be freely specified to consist of either purely quantum de-
grees of freedom, purely classical degrees of freedom, or a mixture of both

quantum and classical degrees of freedom.

1.4 Organization of the thesis

The organization of this thesis is as follows. It is divided into two main parts,
with Part I dealing with the first topic (chapters 2 to 6) and Part II (Chapters 7
and 8) dealing with the second topic.

In Chapter 2, we review some concepts from wide sense stationary processes to
motivate spectral factorization. In particular, we show the relationship of spectral
factorization to the prediction theory of stationary processes and to innovation
and modelling filters. We also discuss the so-called Szego-Levinson algorithm for
solving the prediction problem and its generalization, the (generalized) Schur al-
gorithm which is the basis for the Darlington synthesis procedure in circuit theory.
We point out some limitations of the Schur algorithm for spectral factorization.
In Chapter 3 we give an exposition on the rational covariance extension problem
with degree constraint (RCEP) and its bounded solutions. Chapter 4 continues
the development in Chapter 3 by analyzing all solutions of the RCEP, including
unbounded ones, and showing a homeomorphic correspondence between pairs of
partial covariance sequence and non-negative pseudopolynomials data with pos-
itive real rational functions of a bounded degree. In Chapter 5, results from
Chapter 4 are exploited to establish that a numerical homotopy continuation al-
gorithm originally due to Enqvist is in fact also applicable for computing degree
constrained rational interpolants corresponding to parametrizing pseudopolyno-
mials with spectral zeros on the unit circle, a case which has not previously been
studied for this algorithm. Then in Chapter 6 we introduce a new framework for

spectral factorization for a certain class of spectral densities based on results from
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[15] and ideas developed in Chapters 3 and 4. The class allows for the possibility
of non-coercive spectral densities (i.e., those having zeros on the unit circle) which
are known to be particularly difficult to factorize for many spectral factorization
algorithms. A new spectral factorization algorithm is also introduced and con-
vergence results provided. The effectiveness of the algorithm are demonstrated
in a number of numerical examples. In two examples, we apply the algorithm
to compute approximate spectral factors of the “physically derived” non-coercive
and non-rational von Karman and Kolmogorov spectral densities which arise in
the study of atmospheric turbulence.

In Chapter 7, we develop a notion of physical realizability for quantum linear
stochastic systems which are of interest in quantum optics, and derive charac-
terizations of physically realizable quantum linear stochastic systems. Then in
Chapter 8, we describe an H* controller synthesis framework for quantum lin-
ear stochastic systems which gives a partial description of a controller and show
that such a partial description may always be completed such that the resulting
controller is physically realizable in the sense of Chapter 7. Synthesis examples
in the context of quantum optics are given in which different types of controllers
are realized, including a fully quantum controller (with no classical component),
a fully classical controller (with no quantum component), and a mixed quantum-

classical controller.



Part 1

Topics in Classical Linear

Stochastic Systems
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List of Notation and Terminology
for Part 1

Notation

H B A

col(ay,...,a,)

8N

0A
A*

R{A}

1Al

The set of real numbers

The set of complex numbers
The unit disc {z € C | |z| < 1}
The unit circle {z € C | |z| = 1}
T

lay ... ap)

Depending on the context, denotes either the closure or com-
pletion of A, or the elementwise complex conjugation of a com-

plex matrix A

The boundary of a topological set A

The conjugate transpose of a complex matrix A

R{A} = A+ A* the hermitian part of a complex matrix A
The set of integers ..., —3,—2,—1,0,1,2,3,...

The set of natural numbers 1,2,3, ...

The Lebesque measure on T

The (Schatten) p-norm a matrix A € C™*" defined as:

HAHp—{ (Tf{<A*A>”2})’1’ if 1< p< oo,

SUPyecn |jv||<1 ”AUH if p = o0.

11



12

Lr .1 <p<oo The space of measurable functions mapping from T to C™*"

with a finite || - ||, norm defined by:

171 = { (GRSl FG)ldn)” 61 <p < o0
esssup,er ||[f(2)|le  if p=o00

If n =1, then £V . is denoted simply as LE,

mXxn

p
mxn

HE ..., 1 < p < oo The subspace of functions in £ having an analytic contin-

uation from T to D. If n = 1, HY ., is denoted simply as

H,

mXxn

H, The parahermitian conjugate of a C™*"-valued complex func-

tion H defined by H,(2) = H(z*!)*

Terminology

Outer function A function H € H?

nxn?

n € N, such that the set {Hp |

2

p is a C"-valued polynomial in C} is dense in H; .,

Pseudopolynomial A complex function of the form

f(z) =ap+ Z (apz"" + ar2®),
k=1
where 0 < n < oo, a, # 0 and (ag,as,...,a,) €
R x C". n is the order or degree of the pseudopolyno-
mial f (the order is zero if f is a constant function). A
matrix-valued pseudopolynomial may also be defined
by letting (ag, ay,. .., a,) € R>Xx C>* x ... x C™ for

some integer [ > 1

Spectral density A function W in L = for some n € N, satisfying

W (e?) = W(e)*, W(z) > 0 for almost all z € T, and

/T|log det W (2)|u(dz) < oo

Spectrum Another term for spectral density



Chapter 2

Wide-Sense Stationary Processes

and Spectral Factorization

2.1 Introduction

The purpose of this chapter is to give a brief review of the theory of wide-sense
stationary (which we shall again abbreviate as WSS as in Chapter 1) processes.
Of particular importance is the relationship between prediction theory of WSS
processes, spectral factorization and the so-called Darlington synthesis procedure
of circuit theory. We shall explain why some of the more popular and general
methods for spectral factorization are inadequate for “harder” spectral densities
which have zeros close to or on the unit circle. For a comprehensive treatment of
the topics of this chapter we refer the reader to texts such as [33, 1, 34, 7] and
the papers [8, 35, 36, 37, 9, 38].

2.2 Second order and wide-sense stationary pro-

cesses

By second order processes, we actually mean discrete time second order stochastic
processes. In the literature, second order stochastic processes are studied in both
continuous and discrete time, but our main interest will be the discrete time
setting. Although the continuous time theory is essential for theoretical study
of real-life processes, in applications filtering and control algorithms are typically
implemented on digital devices, such as microprocessors and high-speed digital

signal processors (DSPs), which inherently operate in discrete-time.

13
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Let R, C, D and T denote the real numbers, complex numbers, the unit
disc {z € C | |z| < 1} and the unit circle {z € C | |z| = 1}, respectively.
A second order process is defined as a sequence of C"-valued random variables
{Xk}rez (Z denotes the set of all integers) defined on some probability triplet
(Q,F,P), ie., Qis the set of events, F is a o-algebra of subsets of {2 and P is a
probability measure on F, satisfying Tr{E(X; — EX})(X; — EX})*} < oo for all
k € Z (we assume that elements of C™ are represented as column vectors), where
EY denotes the expectation of a random variable Y with respect to P and *
denotes conjugate (or Hermitian) transposition of a matrix. Define m(k) = EXj,
and R(k,l) = E(Xy — m(k))(X; —m(l))*. Then R(k,!l) is called the covariance
Junction of the process {Xj}rez. It is easy to see that R(l,k) = R(k,1)*, and

R(k,1) possesses the non-negative definite property in the sense that:

Z Z GZR(ik, il)al 2 O,

k=1 I=1
for any positive integer m and for any arbitrary collection 71, ...,1%,, of integers
and any arbitrary collection of complex numbers ay, ..., a,. If R(k,l) =0 then

we say that X and X; are (mutually) orthogonal or uncorrelated. We write this
as X, L X

WSS processes form a special, yet important, class of second order processes.
This special class has the additional property that EX, = ¢ Vk € Z, ¢ being
a complex constant, and R(k,l) = r(k — [) for some bounded matrix-valued
function r defined on Z satisfying r(—k) = r(k)*. For WSS processes we say that
r(0),7(1),... is the covariance sequence of the process. It is straightforward to
check that |Tr{r(k)}| < Tr{r(0)} for all k € Z, and it is also non-negative definite

in the sense that:

m  m
Z Z aZr(ik - il)al Z 0,
k=1 1=1
for any positive integer m and for any arbitrary collection i1, ...,1,, of integers
and any arbitrary collection of complex numbers aq, as, ..., a,,. Moreover, there

will be no loss in generality in assuming that ¢ = 0, so for convenience we shall
make this assumption for the remaining of this chapter.

The special properties of WSS processes allows the development of a rich
mathematical theory for these processes. We shall now give a review of this theory

starting with a discussion of the Hilbert space structure of WSS processes.



CHAPTER 2. WSS PROCESSES AND SPECTRAL FACTORIZATION 15

2.3 Hilbert space structure of WSS processes

For the ease of discussion, we shall assume for the time being that { Xy }ez is a
scalar WSS process. First, we may interpret EX; X;" as a complex inner-product
between X and X;. The inner product is also well defined for any finite linear

combination of the X}’s. Denoting the inner product as (-, ) x, we have:

<Z kX, ZﬁlXil> = E (Z e X, (Z @Xiz) ) ’
k=1 =1 X k=1 I=1

= Zz@kﬁz*EXikX;;:
k=1 1=1

NE

O‘kﬂl* <sz s Xiz >X

B
Il

1 1=1

Let h(X) denote the span of {Xj}rez over C, i.e., the set of all possible finite
linear combinations of the X}’s over the field C. Then the inner product (-,-)x
induces a norm || - || x on h(X) defined by ||Y||x = (Y, Y))%( By continuity of the
inner product, it can be linearly extended from h(X) to H(X) = h(X), where
h(X) denotes the completion of h(X) with respect to the norm || - ||x. Then
H(X) is a complete normed space with inner product (-,-)x [1], i.e., H(X) is
a Hilbert space. This allows one to conveniently analyze WSS processes within
a purely geometric framework. In particular, optimization becomes simple since
the projection of an element Y onto any closed subspace of H(X) is uniquely
defined. The Hilbert space structure of WSS processes led H. Wold to formulate
the Wold decomposition. This decomposition is of fundamental importance in
time series analysis and will be discussed in the next section.

For vector-valued (or even matrix-valued) processes only some simple adap-
tations are necessary. Suppose that X is a C"-valued random variable for each
k and let us write X; = col(Xy1,..., Xgn), where X} ; is a scalar random vari-

able for 1 < j < n. Since {Xj}rez is a stationary process, it follows by the

same arguments as in the scalar case that H(X) = span{Upez{Xx1,. ... Xn}}
is also a Hilbert space. Therefore, exactly as in the scalar case, we may apply
operations such as taking the unique projection of any element of Y € H(X)
onto some closed subspace of H(X), e.g., taking the projection of X;; onto

span{ Xy n,, X2y, - - - s Xgm, }» Where the ny’s may be assigned arbitrary values in

{1,...,n}.



CHAPTER 2. WSS PROCESSES AND SPECTRAL FACTORIZATION 16

2.4 The Wold decomposition, prediction of sta-

tionary processes and spectral factorization

Let { Xk }rez be a WSS process. We once again assume that the process is scalar.
However, note that most of the ideas and results to follow carry over to vector-
valued processes (see, for example, the classical papers [39, 40, 41, 42]).

Define Hy(X) = span{X;};<; and H_(X) = NpezHi(X). Then we say
that {Xg}rez is deterministic if Xo € H_y. Otherwise, the process is non-
deterministic. The Wold decomposition theorem, due to H. Wold, says that
any non-deterministic stationary process can be decomposed into the sum of two
mutually uncorrelated deterministic and purely non-deterministic (PND), to be

defined shortly, processes. To be precise:

Theorem 2.4.1 Any non-deterministic process {Xy}rez has the following de-
composition:
Xy = U + Vi,

where Vi, € H_o(X) Vk and {V}. }rez is a deterministic process, U, L V; Yk, 1 and

k
Uk = Z bk_lel, (21)

l=—00

where ¢; € Hi(X) and |lellx =0 >0Vl €Z, e; Lej Yi#j, bo=1,> |b* <
=1
0, and <€k7Xk+l>X = O'le ) Z 0.

In the literature, the random variables ...,e_1,€g,€1,... as defined in the
theorem are often referred to as innovations, and the process {ex}rez as the
imnovation process. Moreover, any process U which can be decomposed in the
manner of the right hand side of (2.1) is said to be a purely non-deterministic
process.

The significance of the Wold decomposition theorem was recognized by A. N.
Kolmogorov, who subsequently developed a comprehensive theory of prediction
of (scalar) stationary processes. The central theme of this theory is that of best
linear predictors/estimators, and the full generality of probability theory may be
dispensed of by working exclusively with Hilbert space theory. However, unless
the process follows a jointly Gaussian distribution, the predictors obtained by
this theory will not be optimal. This is because, in general, there will exist a

non-linear predictor that outperforms the best linear one.
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Kolmogorov observed that since e; L e; Vi # j then the best linear estimator
of Xy in Hy_1(X) given {X;};<x must necessarily be X — ej for which the esti-
mation error is then given by e,. In his work on prediction theory Kolmogorov

showed the following;:

Theorem 2.4.2 The following are equivalent:
1. {Xk}kEZ 1s WSS.

2. There exists a unitary operator U on H(X) such that X = U*X, Vk € Z.

Note that a unitary operator U is an operator satisfying U* = U~!, where U*
denotes the adjoint operator of U satisfying the relation (Ux,y)x = (z,U*y)x
Vr,y € H(X). It is then shown that there exists a spectral measure E (see [7])

such that the unitary operator U can be conveniently expressed as:
U= / e dE(N),
where the above integral is defined in the sense of the identity:
Uag)x = [ B,
Vz,y € H(X). Then Urz = / e*dE(N)x for any x € H(X) and the spectral

representation of WSS processes can be established:

Theorem 2.4.3 For a WSS process { Xy }rez there exists a process {Z(\); —m <
A < w} with orthogonal increments (i.e., Z(Xg) — Z (A1) L Z(\y) — Z(\3) for any
—T < A1 < Ay < A3 < Ay <) such that:

X = / e*dZ(\) Yk € Z, (2.2)

—T

where the integral above is to be interpreted as a stochastic integral.

For details on the stochastic integral, see, e.g., [7, 1]. The integral representa-
tion of X in terms of the Z process in the theorem is referred to as the spectral

representation of X;. From the representation we may show that:

(X0 X)x = / DN dZ (V)2
1 T .
= eFr e dFy (), (2.3)

2 ) .
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where F'y is a measure called the spectral distribution of {Xy}rez. Fx has the
property that Fx((—m, A]) is a non-decreasing and right continuous function of
Aon (—m, | with Fx(m) = r(0). It also has the decomposition Fy = Fyy + Fy,
where Fy and Fy are absolutely continuous and singular with respect to the
Lebesque measure on (—m, 7|, respectively. Therefore, dFy(N\) = fx(A)dA for
some function fx which in integrable on (—m, 7]. Clearly, fx(A) must be non-
negative definite on (—m, 7|. If the process is PND then F}, = 0 and fy is referred
to as the spectral density of { Xy }rez.
From (2.3) we have that:

- - 1 " - irgA - LETD )
<Zarkxﬁc, stlel>X 8 (Z ap e ) (Z by, €™ ) dFx(N),
k=1 =1 k=1 =1
(2.4)
holds true for all finite m and for all possible sequences r1,...,r,, and s1,..., Sy,
taking values in Z and for any sequence aq,...,a,, and by,...,b,, taking val-

ues in C. Note that the right hand side of (2.4) defines an inner product on
p(F) = span{e**};cz. The linear map K defined via K : z; +— ¢e** defines
an isomorphism form h(X) to p(F') which preserves the inner product. In other
words, K is an isometry. Then by continuity of the inner product, K can be ex-
tended to an isometry from H(X) to P(F) = p(F). The isomorphism K is known
as the Kolmogorov isomorphism. It allows one to convert least squares minimiza-
tion problems in H(X) to least squares approximation problems in P(F'). There
are certain analytical properties of P(F') which makes the latter convenient for
analyzing such problems and it is a key feature of Kolmogorov’s work on predic-

tion theory. The main results are as follows:

Theorem 2.4.4 Let { Xy }rez be WSS. Then:

1. { Xy }kez is a non-deterministic process if and only if

/ log fx(A)dA > —oc.
If, in addition, 'y is the zero measure, then it is PND.

2. For a non-deterministic process, the one step ahead prediction error vari-

ance 0% = ||e;||x is given by:

0% = exp (% /7r log fX()\)d)\>
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3. If ¢, = 1 f " log fx(N)d\ for k € Z, then by, by, ... in Theorem 2.4.1

satz'sﬁes.
o(1+biz+b2® +...) =(2) = exp{ +chz”} |z| < 1,

where [(e™)|? = fx(N).

Assuming that the process is PND, the function ¢ defined in the last theorem
is called a spectral factor of fx. It can be shown that it must be an outer function
(i.e., it is analytic inside the unit disc and has no zeros there) and is unique up
to multiplication by a complex number of modulus one. The operation of finding
such a function v for a given fx is referred to as spectral factorization. The last
theorem gives us an important connection between spectral factorization and the
prediction theory of stochastic processes. More details on this relationship are

given in the next section.

2.5 Finite prediction and the Szego-Levinson al-

gorithm

The work of Kolmogorov does not give formulas for the one step-ahead predictor
Xk—i-lloo of X1 in terms of all present and past observed values X, Xi_1,..., but
in terms of the unobservable innovations ey, e;_1,.... A method to approximate
the predictor is to compute the best (linear) estimate of Xy, given the partial
past Xg, Xx_1,..., Xg_n (i.e., the projection of Xy1 onto Hy(X)\Hy_pn_1(X))
and then letting n — oo. Thus, one tries to solve a sequence of the following

problem:

Problem 2.5.1 Given a positive n € Z, find the unique vector (an o, Gn1,- -, Gnn)
€ C" which minimizes E|Xyy1 — Y 1o ana Xp—i]*

By the Kolmogorov isomorphism the last problem is equivalent to the following:

Problem 2.5.2 Given a positive n € Z, find the unique polynomial a,(z) =

(02" + an,lz”_l + ...+ any of degree at most n which minimizes the integral

/ |ez‘(k+1)>\_ i(k—n) (u)| dFyx()\) = / |ei(n+1))‘—an(ei)‘)|2dFX()\)
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For the corresponding n, let a,, denote the solution to Problem 2.5.1 or Prob-
lem 2.5.2 (in the former problem a, would be a vector while in the latter it
would be a polynomial). N. Levinson showed that d,; in Problem 2.5.1 can be
computed recursively and efficiently by updating a, using new covariance data
r(n + 1). However, many years before G. Szegd had already given a recursive
solution to Problem 2 (hence by the isomorphism one automatically gets a re-
cursion for the other problem) in his study of polynomials which are mutually
orthogonal with respect to a distribution on the unit circle (known as Szegd’s
orthogonal polynomials). An exposition of orthogonal polynomials on the unit
circle can be found in [33, 43]. theory of

Now, let ¢,, denote the n-th Szegoé orthogonal polynomial with respect to the
distribution Fx and write it as ¢, = Y ,_, @nx2" ". Some properties of ¢, are
as follows [33, 43]:

1. q;f)"n minimizes the integral 5= [7 _|a(e™)[*dFx()) over all monic polynomi-

als a of degree n (i.e., the coefficient of 2" is 1). Moreover the minimum

1
P

value of this integral is
2. ¢, has all zeros inside the unit circle .

3. lim,, oo [|[Pnsg — 1]|]2 = 0, where g is a function in H? satisfying g(0) > 0
and |g(e™)|?> = fx()\) for almost all A € (—7, 7).

Note that in the last property ¢,. denotes the parahermitian conjugate of ¢,
defined by ¢,.(z) = ¢,(2*71)*. The last property shows that one may consider
é as an approximate spectral factor of fy(\). Now we shall briefly look at the
relation between orthogonal polynomials and prediction theory of WSS processes.

It is well-known that the solution a,, to Problem 2.5.2 is given by:

n
dn(z) = = Z UZHZn_k,
k=0

where the coefficients uy, us, . .., u,.1 are defined via the relation:

n+1
On(2) =1+ wz +usz + ...+ up 2" = oy, Z o(0)" dr(2)
k=0

¢(n+1)*
¢n+1,0
and o, is the minimum prediction error given by:

1

Onp nti . 5
2o lox(0)?
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Therefore, by the Kolmogorov isomorphism X k+1n, denoting the best linear least
squares predictor of X1 given Xy, Xy 1,..., Xr_,, which solves Problem 2.5.1

can be written as:

n
O *
Xk+1|n = _E uj+1kaj
Jj=0

= - /7r e n(e™)* — 1)dZx (N).

—Tr

Assume that Fy is absolutely continuous with spectral density fx (hence X
is a PND process). Then it can be shown that as n T oo, Xk+1|n converges in

H(X) to the optimal one step ahead predictor X, given by:

Xpir = /7r eiA (1 _ 90 ) dZx (N,

o g(ei)\)*

where ¢ is as defined before. The formula above gives an explicit relationship

between spectral factorization and best linear one step ahead prediction filters.

In engineering, the function g gives rise to two important filters. First of all,
gx(2) has the interpretation as a modelling filter for the process X. This means
that g.(z) is a causal and stable transfer function of a linear time invariant filter
which generates the stationary process X when it is driven by a white noise
sequence. Secondly, if ¢.(z) does not have any roots on the unit circle then g%(z)
has the interpretation as the causal and stable transfer function of an innovation
filter for X. The innovation filter outputs a white noise sequence with unit
variance when driven by the process X;. For details on time invariant filters for
WSS processes, see, e.g., [34, Section 4.10].

Summarizing our discussion so far, we have now seen the close relationship
that exists between prediction theory and spectral factorization. This relationship
between predictors and spectral factors have been exploited by researchers for
constructing prediction and innovation filters from spectral factors (this is usually
attributed to N. Wiener who originally proposed spectral factorization [44] as
an ingenious method for solving a so-called Wiener-Hopf integral equation in
linear estimation theory), and, conversely, to construct spectral factors from the
innovation filters as in [35, 36, 37]. Kolmogorov’s work on prediction theory
of scalar WSS processes was extended to multivariate/vector WSS processes by
Wiener and Masani [39, 40, 41], and also, independently of Wiener and Masani,
by Helson and Lowdenslager [42]. Although the analysis becomes much more
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complicated, most of the results we have discussed have an extension to the vector
case. A similar remark is also true for Szegé’s work on orthogonal polynomials,
it has been extended to the vector case by researchers in statistics and circuit
theory (see [45, 11, 10]).

2.6 ARMA models, Darlington synthesis and
generalization of the Szego-Levinson algo-

rithm

A shortcoming of using # as an approximate modelling filter for {Xj}rez is
that it is an all-pole/autoregressive (AR) filter. Thus, its frequency response
tends to have a “flat” profile for small and medium values of n. It is desirable
to have autoregressive moving average (ARMA) modelling filters which have ra-
tional transfer functions with possibly some zeros inside or on the unit circle.
The theory of orthogonal polynomials does not provide obvious insights into how
the prediction theory can be modified to obtain ARMA filters. It was a surpris-
ing connection between the Szego-Levinson algorithm and a certain Darlington
synthesis procedure in circuit theory, first reported in [8], which allowed the ex-
tension to be realized. The connection is that the Szego-Levinson algorithm may
be viewed as a special case of Darlington synthesis, i.e., it corresponds to Darling-
ton synthesis with extraction of “sections” whose transmission zeros are all at the
origin (see [8]). Since the Darlington synthesis is actually a generalized version
of the classical Schur algorithm /recursion [46, pp. 101-104] applied to the graph
symbol of a “passive scattering function”, extension of the Szego-Levinson algo-
rithm is facilitated by simply extracting sections corresponding to transmission
zeros which are not at the origin. Following [37], by passive scattering function
we mean a scalar function which is analytic on D (or on C\D as in [35], depending
on the setting on which one is considering the problem. This causes no confusion,
as long as one works consistently on either D or C\D) and is bounded there in
magnitude by 1. They are also known as Schur functions and we shall denote the
class of such functions by S. The Schur recursion (from this point onwards when
referring to the Schur recursion or algorithm we implicitly mean the generalized
version discussed in [8, 35, 37]) allows sections to be extracted in a sequential
manner, one after another, with one section corresponding to exactly one trans-

mission zero. In the development of the theory, an important role is played by
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the so-called J-lossless matrices. Indeed, each section will in fact be a J-lossless
matrix. In the scalar theory developed in [35, 37], these are complex C**?-valued

functions © which satisfy:

1. Each element of © belongs to the Nevanlinna class of complex functions on
D which can be written as the ratio g of two complex functions f, g which

are analytic and bounded on D.

2. © is J-contractive on ID: ©(z2)JO(z) < J for almost all z € D.

3. ©is J-unitary on T: O(2)JO(z) = J for almost all z € T,

lel 0]7
0 —1

and © denotes the elementwise complex conjugation of ©.

where J is the matrix:

Some important properties of J-lossless matrices are listed in [35, Theorem
2.1]. Although the key ideas for the extension are given in [8], their full exploita-
tion and comprehensive treatment of the ideas, including the connection with
(generalized) prediction of WSS processes and the related convergence results,
were given in [35] for the scalar case and in [36] for the vector case. The pa-
pers [35, 36] deal with extraction of sections with a transmission zero inside D
but not on T. Unlike the Szego-Levinson algorithm, which outputs a polynomial
innovation filter (with no poles), the Schur algorithm produces a rational innova-
tion filter with pre-specified poles which coincide with the zeros of the extracted
sections. Therefore, the associated modelling filter will be rational having zeros
which coincide with transmission zeros of the sections. An exposition of how
sections with a transmission zero on T can be extracted was first given in [47],
but without any proofs. The theoretical analysis appears later in the paper [37].
The context of [37] is actually to solve what is known as the lossless inverse scat-
tering (LIS) problem, but as a bonus, thanks to a special embedding property
of J-lossless matrices, one obtains a solution to Problem 2.6.1, which is a gen-
eralized version of Problem 2.5.2, and an approximate rational spectral factor of
the associated spectral density. However, there are limitations of this approach
for the purpose of spectral factorization and this will be discussed in the next

section.

Problem 2.6.1 Let Fx be the spectral distribution of a non-deterministic WSS

process. Given a positive integer n and a pre-specified polynomual h,, of degree at
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most n such that all its roots are in C\D and [”_ mdF()\) < 00, find the

unique polynomial a(z) = an 02" + amlz”_l + ...+ ay, of degree at most n which

/.

For the remainder of the discussion, we assume that the associated WSS

mainimaizes the integral
2

ae”) dFx(\)

1 ———=
B (€P)

process is PND with a spectral density W defined on T (previously we have
defined spectral densities on (—m, 7|, but this causes no difficulty since the map
A € (—m, 7 — e € T is bijective). Then one may associate a unique function
Z € S, referred to as the impedance function, to W such that Z, + Z = W on

T. The impedance function is related to W via the Herglotz representation:

1 T i )
Z(2) / T2y eMdn vz eD, (2.5)

2 | et —z

and

Z(e?) = liﬁa Z(re) ae. T.

In general, the right hand side of (2.5) cannot always be integrated explicitly.
Therefore, typically Z would have be evaluated numerically. The reason we have
introduced Z is because the Schur algorithm is actually applied to the passive
scattering function S defined by S = Z—jr} Thus, to apply the algorithm for a
given spectral density W, S must first be constructed via Z. We shall now also
introduce, following [37], the notion of point of local losslessness (PLL). Formally,
a point b € T is a PLL of order £ if

™ W(eiA)
[ <

and

T W(ei)\)
/7T e — b|2k+2d)\ =9

for an integer & > 1. In the Schur algorithm described in [37] there are two types
of sections which can be extracted, depending on the location of the associated

transmission zero:

1. If the transmission zero is chosen in D then we may extract what is called

a Schur section which is analytic on D.

2. If the transmission zero is a PLL then one may extract a Brune section

which has a pole at a point on T.
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The Schur algorithm/Darlington synthesis procedure goes as follows. Given
S € S as defined above which has been normalized such that S(0) = 0 (note that
this is equivalent to normalizing W such that 5= [7 W (e"*)d\ = 1), we form the
vector [ 1 Sy |" with Sy = S . Then depending on whether the transmission
zero z1 is in D or on T, we may extract a Schur or Brune section 6; (which is a J-
lossless matrix) to get [ A, By |" =6;[ 1 Sy |". Defining S; = % then S will
again be in S and satisfies S1(0) = 0. Replacing Sy with S; the procedure may
be iterated, by choosing 29, z3,... to obtain {6s, A, By, Sa}, {05, A3, Bs, S5}, . . .,
and so on. Letting ©,, = 0,0,,_1---60;, then ©, will be J-lossless and has the
structure:
R;*l(l + Zn) R;j(l - Zn)
Fl1-2,) F'(1+27,)
where F,.F, = R,R,. = Z, + Z,.. Note that one may recover F,, and R,, (which
are both rational functions) from ©,, using the relations F,, = (0,21 + ©,,22)""
and R, = (0,11« + O,,12.)'. It can then be shown [35] that if one lets n — oo

and chooses 21, z9,... € D (hence only Schur sections are extracted) such that

0, = , (2.6)

it satisfies Z(l — |zn]) = oo, F,} converges to an innovation filter for a WSS

n=0
process with spectral density W, while F,, converges to a spectral factor of W

(i.e., a modelling filter for the process) in the sense that:

™

lim |Fp (€)™ — EL (e P (e)dA = 0.

If some Brune sections are also extracted (corresponding to a transmission zero
on T), no convergence results were given in [37], instead some explicit formulas
for the approximation error ["_|F,.(e") ™t — F,(e") W (e**)dA are derived. In
this case F,, and FL can still serve as useful approximate rational modelling and
innovation filters, respectively, if the transmission zeros are chosen appropriately

as to keep the approximation error small.

2.7 Limitations of the Schur algorithm

The Schur algorithm, although elegant and results from a beautiful combina-
tion of theoretical insights from circuit theory and harmonic analysis, has some
limitations which we shall elaborate upon in this section.

It has long been observed that the Szego-Levinson algorithm converges slowly

when W is non-coercive (has zeros on the unit circle) or is almost non-coercive.
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This is also the case with all other spectral factorization algorithms that the
author is aware of. In the case of the Szego-Levinson and assuming that W
is rational, an asymptotic analysis of this behavior is given in [12, 9] and goes
as follows. Let us write W as W (e?) = %, where a and b are co-prime
polynomials having no roots in C\D with a(0) = 1. Let co, ¢y, . . . be the covariance
sequence associated with W and let 7o, 1, . .. be the (unique) corresponding Schur
parameters (for details see [7, 34, 12, 9]). Then in [12, 9] it was shown that a
certain almost recurrence relation on the sequence ry, ri11, ... can be established
for all k£ large enough. In particular, rg, 7511, ... is almost rational, and a will be
an almost recurrence polynomial, in the terminology of [12, 48], for the sequence.
To be precise, if a = 1+az+. .. 42" (a; # 0) then for any given € > 0 there exists

an integer K (e) such that rg, 7541, ..., 7k obeys the almost recurrence relation:

ITht1 + a1Tpyo + .o+ arpy] < €k<%2f+l{|7°m’}a

for all k& > K(e) (note that Schur parameters satisfy |ry| <1 for all £ > 0).

A consequence of the almost recurrence is that the asymptotic rate of decay
of the Schur parameters are dictated by the location of zeros of a. If the roots of
a are away from T, the rate of decay is geometric, but the rate steadily decreases,
although still geometric, as the location of the zeros come closer to the unit circle.
When there is a root on T then the geometric rate is lost. Since it is well known
that o, = II7_(1 — |rx|?) (0, is as defined in Section 2.5, see for example [12]),
we clearly see that the Szego-Levinson algorithm converges at the same rate as
the rate of decay of r;. Hence, when a has roots close to or on the boundary, ry
decays slowly and the Szego-Levinson algorithm follows suit.

The same line of reasoning as given above also applies to the Schur algorithm
by using an interpretation of that algorithm given by Delsarte and Genin in [38].
The latter interpretation allows us to see more lucidly the connections of the
Schur algorithm to the Szego-Levinson in terms of Toeplitz matrices. Suppose
that the transmission zeros 2, zs,... € D are chosen such that z, = 0 for all
k large enough (thus Y, (1 — |z|) = 00). Let us define hy = 1 and h,(z) =

ro1(1—ziz) for n > 1, and let W, = % Suppose also that W is a bounded
rational spectral density and W, is integrable on T for all n (this will be the
case if any z; on T is a PLL of W and the multiplicity of z; does not exceed
the order of the PLL). Denote the covariance sequence associated with W,, by
Cnos Cats - -5 100, G = 5= [ Wy (e)e™*AdX. Then the family of finite sequences

Cn0y Cnly - - s Cop for n=0,1,2, ... form what is referred to in [38] as a first degree
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Toeplitz family. To see this, we note that W, = W’“‘llp for all £ > 1 with

Wy = W. Then from [38, Eq. (7)] it is easy to see tlhatk the collection of partial
sequences Cro, Cki, - - -, Crk, k= 0,1,...,n, will generate such a family of Toeplitz
matrices.

Let ¢n1, ..., ¢nn be the first n sequence of orthogonal polynomials with respect

to the spectral density W,, (thus ¢,, may be computed with the Szegd-Levinson
d)’ﬂ’n,*

’ d)nn,O

®nn) is the solution to Problem 2.5.2 given a WSS process { X,x }rez with spectral

algorithm). Thus, for fixed n (here ¢nn o denotes the leading coefficient of
density W, or, equivalently, with covariance sequence ¢, Cy1, ..., for all n. As
shown in [38], @oo, 411, P22, ... can be computed recursively, and this is exactly
what the Schur algorithm in [37] actually does. Therefore, % is an approximate
modelling filter for {X,x ez while % is an approximate modelling filter for a
process { X ez with spectral density W. In fact, (f? = F, [37, pp. 654-656],
where F), is as defined in Section 2.6. However, if W has roots almost at or on
T which are not exactly cancelled by a corresponding root of h, then, by the
almost recurrence property of the Schur parameters that we have just discussed,
F,, converges slowly to a spectral factor of W. The same reasoning applies to the
general case where z; is not necessarily zero for all k large enough, since for any
fized n which is not large, the presence of uncancelled zeros of W in W, implies
that ¢, can only be a “good” approximate innovation filter for £ much larger
than n.

In practice, exact cancellation of roots of W on T is of course not possible
to achieve due to approximation and numerical errors. However, this is not the
only problem that can be encountered. A more fundamental limitation is that in
some instances W may have a zero b € T which is not PLL, i.e., there does not
exist any positive integer k such that f:r %d/\ < 00. An example of such a

spectral density is the following:

1+ cos A

W(e™) = \/ o>0 (2.7)

14 cosA+o(l—cosA)’

which has a zero at b = —1 but which may be inspected not to be a PLL. Hence
it is not possible to extract a Brune section with transmission zero at b = —1 in
order to “cancel” that particular zero of W and accelerate convergence.
Therefore, we see that there are circumstances where the Schur algorithm
is inadequate for numerical spectral factorization. However, to the best of our
knowledge the Schur algorithm (of which the Szegd-Levinson algorithm is a special

case) seems to be the only algorithm which allows placement of desired zeros on
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D and applies to a reasonably large class of spectral densities, including non-
rational and non-coercive ones. For this reason, in Chapter 6 we propose a new
approach to spectral factorization which can be applied to derive approximate
rational spectral factors of spectral densities such as of the type given in (2.7)

with zeros on the unit circle which need not be PLL.



Chapter 3

Results on Bounded Solutions of
the Rational Covariance

Extension Problem

3.1 Introduction

In the last chapter we have explained the motivation of our work in the context
of wide sense stationary processes, and reviewed some related concepts, including
the notion of spectral factorization. In this chapter we shall describe the so-
called rational covariance extension problem with degree constraint (RCEP). Our
interest in the RCEP is as a tool for developing a new approach to spectral
factorization that will be proposed in Chapter 6 of the thesis.

Recent years have seen significant advances in the theory of analytic interpo-
lation on the open unit disc of the complex plane. Some major results are the
parametrization of all positive real rational functions interpolating a certain posi-
tive partial covariance sequence cg, ¢y, ..., C,, in terms of desired “spectral zeros”
and the introduction of a convex optimization based approach to compute the so-
lution [9, 16, 5, 48, 6]. However, the convex optimization approach was originally
developed for the case where none of the spectral zeros lie on the unit circle. The
remaining case where there are spectral zeros on the unit circle is important not
only for the sake of completeness, but also due to the fact that placing or forcing
a zero on the unit circle is desirable, such as in the design of some filters. In this
chapter, we derive some new theoretical results for this special case based on con-
vex optimization. An alternative treatment based on solving non-linear equations

has been given in [49]. However, there are important new insights gained with the

29
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current approach. For example, we are able to derive a necessary and sufficient
condition for a solution to be bounded (have no poles on the unit circle). We also
assert, and demonstrate by numerical examples, that bounded solutions can be
computed using methods that have been developed for pseudopolynomials free of
zeros on the unit circle. In fact, building on the ideas developed in this chapter
and the next, we shall show in Chapter 5 that an earlier homotopy continuation
algorithm due to Enqvist [50] can compute all rational covariance extensions of
a bounded degree. This was not previously known and could be advantageous
in view of the current lack of theoretical convergence results for the algorithm of
[49] and the more general nature of the algorithm of [50] (to be discussed further
in Chapter 5).

More recently in [51], a theory of generalized interpolation with complexity
constraint has emerged as an extensive generalization of the convex optimization
approach first presented in [5]. The focus of [51] is on theoretical development
(rather than numerical development as in [49]) and applies to a general, possibly
abstract, class of interpolation problems with complexity constraint (a general-
ization of the notion of degree constraint). In particular, it also covers the case
where the parametrizing pseudopolynomial has zeros on the unit circle. Our anal-
ysis, which is also based on convex optimization, proceeds in a different manner
from [51]. Intrinsic and important differences between our work and [51] will be
discussed. In particular, we argue that our results do not follow obviously from
[51].

The discussion of this chapter is adapted from the papers [17, 52] (joint work
with A. Bagchi).

3.2 The rational covariance extension problem
(RCEP)

In this section we shall formally define the rational covariance extension problem
(RCEP).

Definition 3.2.1 A sequence of complex numbers cqy,cy,...,c, (with cg € R) is

n+1

said to be a partial covariance sequence (PCS) if the Toeplitz matriz T'= [c;—];

with c_j;) = C|*¢|7 1s positive definite.

Problem 3.2.2 (RCEP) Given a PCS ¢y, c1,...,¢, (n > 1), find all rational
functions f € C of McMillan degree less than or equal to n such that the first
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n + 1 coefficients of the Taylor series expansion of f about 0 is %co, Cly .y Cp.

The RCEP basically adds a new requirement of degree bound to the classical
Carathéodory extension problem which is traditionally solved by Schur’s algo-
rithm [12]. A drawback of Schur’s algorithm is that, in general, it does not give
a convenient parametrization of solutions of a bounded degree. The Carathédory
extension problem is related to the classical Nevanlinna-Pick interpolation prob-
lem which was solved by Nevanlinna by an algorithm similar to Schur’s [53],
sometimes known as the Nevanlinna-Schur algorithm.

In a series of papers [9, 16, 48|, a complete parametrization of all solutions of
the RCEP has been established. We now state a pertinent result:

Theorem 3.2.3 For a given PCS and any polynomial n # 0 of degree < n
with roots in C\D and normalized by n(0) = 1, there erists a unique pair of
polynomials (m,x) of degree < n such that x(0) > 0, m + x has all its roots in
C\D, the pair satisfies the relation

TXx + XTw = K 11 (3.1)
for a fited k > 0, and f = § satisfies the requirements of the RCEP.

Remark 3.2.4 This theorem is stated slightly differently from [48, Theorem 2].
We have added the requirement x(0) > 0 and k fized so that the pair (7, x) is
unique. In [48], it is implicit that the uniqueness of (m,x) is in the equivalence

class of graph symbols.

The parametrization given in the theorem may also be stated equivalently in
terms of so-called pseudopolynomials. By a pseudopolynomial we mean a complex
function of the form f(z) = ap + Z (a,’;z_k + akzk), where 0 < n < o0, a, # 0

k=1
and (ag,ai,...,a,) € Rx C". Then n is said to be the order or degree of the

pseudopolynomial f (the order is zero if f is a constant function). Let Q (n, A)
denote the set of all pseudopolynomials of order at most n with (ag, a1, ...,a,) €
RxA"™ where A C C. We induce a topology on this set by the maximum norm:
I flle = rgg%]f(z)] We also define Q. (n, A) to be the set of all elements of
9 (n, A) which are strictly positive (> 0) on T. With pseudpolynomials having
been defined, we may equivalently state the parametrization of all solutions of
the RCEP in Theorem 3.2.3 in terms of elements d € Q. (n,C)\{0}, where
d = k®nm,, and we can state a more specific problem, the particular rational

covariance extension problem (PRCEP):
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Problem 3.2.5 (PRCEP) Given a PCS co,c1,...,¢, (n > 1) and a pseu-
dopolynomial ¥ € Q. (n,C)\ {0}, find the rational function f = § € C of
McMillan degree < n such that the first n + 1 coefficients of the Taylor series

expansion of f about 0 is %co, Cl,y...,Cn and ab, + ba, = V.

A convex optimization method for computing solutions of the PRCEP for any
given real valued PCS c¢q, ¢y, . .., ¢, and pseudopolynomial ¥ € Q. (n,R) (i.e., ¥
is free of roots on T) was first given in [5, 6], and was subsequently adapted to
solve the Nevanlinna-Pick interpolation problem with degree constraint in [14].
However, a specialized aspect of the theory which has received relatively less
attention is the case of solving the PRCEP when the pseudopolynomial has zeros
on the boundary. In this work, we extend the method of [5, 6] to the case where
the pseudopolynomial has zeros on the boundary. It turns out that this leads to
interesting new theoretical insights, including a necessary and sufficient condition
for a H*™ solution, as shown in the next section. A numerical treatment of the
problem was recently given in [49] based on solving non-linear equations. There

the orientation is towards computation of any real solution of the RCEP.

3.3 Main results

In this section we derive some properties of the solutions of the RCEP when the
parametrizing pseudopolynomial has zeros on T. In particular we show a neces-
sary and sufficient condition for a solution to be in H> and establish sequential
continuity of the map from ¥ to the minimizer of a certain functional Jy (to be
defined below).

Define the mapping @ : R x C" — Q(n, C) by:

1, -
Q(QO7Q17q2> 7Q71)(Z) = qo + Z §<qkz i + qkzk) (32)

Clearly @) is a bijection.

Remark 3.3.1 For shorthand, we shall write the integral % fjﬂ f (ew) g (eie)* do
as (f.g).-

For any ¥ € Q. (n,C)\ {0} we consider the functional Jy : Q! (Q4(n,C)) —
R U {oo} defined by:

Ju (q) = R{c*q — (¥,10g Q (¢)) }, (3.3)
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where ¢ = col(cg, ¢1,...,¢,) and ¢ = col(qo, q1,-..,q,). Here col(ay,as, ..., ay)

denotes the column vector [ag a; ... a,]T.

Note that Jg can be viewed as an extension to Q=1 (. (n, C)) of the functional
¢ that was defined in [6, (4.1)] for the special case where ¥ € Q. (n,R) and
Co,C1, - . ., Cy is real-valued. It then follows by close inspection of the proofs that
certain key results in [6] can be easily extended to the current setting where
€0, C1s - - -5 Cp is complex-valued and ¥ € Q. (n,C)\{0}. In particular, we state
the analogues of Lemma 4.2, Lemma 4.3 and Proposition 4.6 of [6] in the following

theorem:

Theorem 3.3.2 Jy has the following properties for any ¥ € Q. (n, C)\{0}:

e Jy is finite and continuous at any q € Q=1 (Qy(n,C)), except at zero. The
functional is infinite, but continuous, at ¢ = 0. Moreover, Jy((1—1)qo+1tq1)
is a C™ function w.r.t. t for any qo,q1 € Q7' (Q4(n,C)).

e Jy is strictly convex on the closed, convexr domain Q=1 (Q(n,C)).

e For all v € R, Jg'(—o0,r] is compact. Thus Jy is proper (i.e., Jg'(A) is

compact whenever A is compact) and bounded from below.

e The functional Jy has a unique minimum on Q= (Q4(n,C)).

We now state the first result on a solution of the RCEP corresponding to a

pseudopolynomial having zeros on T:

Theorem 3.3.3 If guin € Q' (Q,4(n,C)) is a minimum for Jy then the solution
of the PRCEP is: f = ¢ where bb, = Q (qumin) and ab, + ba, = V. Conversely,

suppose that [ = ¢ is the solution to the PRCEP with b being an antistable
polynomial (i.e., having roots strictly in C\D) and ab, + ba, = V. Then quin =

Q=L (bb,) is a unique minimum for Jy.

Proof. By inspection of the proofs of [6, Theorems 4.7 and 4.8] and using the
directional derivative to replace the ordinary derivative, it follows those proofs
remain valid if the polynomial ¢ = 2" + 092" ' + ... 4+ 0,_12 + 0, of degree
n defined in equation (2.18) of [6] is complex and not Schur (i.e., having roots
in D), but merely stable (i.e., having roots in D). Also note that .0 can be a
pseudopolynomial of degree less than n if dm satisfying 1 < m < n, such that
or = 0 for all £ > m. The main idea is that the minimizer of Jy may be an
interior point even when ¥ = g,0 € 99, (n,C)\ {0}. O



CHAPTER 3. RESULTS ON BOUNDED SOLUTIONS OF THE RCEP 34

The minimizer of Jy may then be found by a Newton descent type algorithm
which has been outlined in [5, 6, 14]. We illustrate this in the following example.

Example 3.3.4 Let the given partial covariance sequence be
{0.2115,0.0728, —0.0396}.

We choose the pseudopolynomial ¥(z) = 2+2+2z"" which has two zeros on the unit
circle, i.e., both at z = —1, and seek a solution of the RCEP of degree 2. By using
a Newton gradient descent algorithm we obtain ¢y, = col (8.6250, 3.5000, 2.0000).
It can be checked that quin s in the interior of Q=1 (Q4 (n,R)), and the solution
of the PRCEP 1is

~0.09877 +0.1111z + 0.0123422

1) 8+ 22— 22

An interesting question now is: what could happen if the minimum of Jy lies
on the boundary of Q7! (Q(n,C))? We first look at an insightful example.

Example 3.3.5 Consider the Carathéodory function

11+2

== : 3.4
10)= 57 (3.4
The associated PCS is 1, %, i, ... We choose the pseudopolynomial V(z) = z +
2 + 27! having a double root at = = —1. By Newton gradient descent we find

Gmin ~ c01(2,0.66749, —1.3324). The roots of Q (Gmin) are

{2.0013, —1.0061, —0.99396, 0.49967},
and the approximate solution is

» 0.3326 4 0.4978z + 0.16522>

© 20135 +0.9952z — 22
Note how two roots of Q(qmn) are close to z = —1. Assuming that were it not
for numerical discrepancies that both roots would be exactly —1 and cancel the
two corresponding roots of ¥, we ﬁnd:Q(q\i(ii))(z) = 2_5011(‘)5_0?;%) which 1s the power

spectral density of the Carathéodory function

. 1+ 0.4997%
— 049948 002
f(z) = 049948 =0,

a function close to the true function [ given in (3.4). Observe that we have

deliberately chosen U such that qumin s intuitively expected to lie on the boundary,
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in contrary to Example 3.5.4 in which quin 1S tn the interior. To see this, note
that f maybe written as f = § witha = (1+3)(z+1) andb=2(1—-3)(z+1) so
that a.b + bya =V and b,b share a common double root at z = —1. In fact, the
purpose of this example is to illustrate a case where quy, 1S at the boundary and
also seems to be a stationary point, and to motivate the next theorem. We shall

consider this example again in Section V.

Remark 3.3.6 When qui, is close to or on the boundary, numerical problems
can arise when Newton descent is used to find quin. To improve the situation
for quin close to the boundary, the optimization problem can be reformulated and
numerically solved by a continuation method [50]. In certain circumstances, the

same also applies when qui, 1S at the boundary. This is discussed in Section 3.4.

As it turns out, the generality of the observation in Example 3.3.5 can be

formally proven. It is the content of the next theorem:

Theorem 3.3.7 The solution of the PRCEP is in H* if and only if Jy has a sta-
tionary point in the interior or boundary of its domain. If Q (¢min) € 024 (n,C)
and Gumin 18 stationary, then every root of Q (qmim) on T will also be a root of W
on T, and the solution of the PRCEP is of order less than n. In this case the

solution is given by: f = ¢ where bb, = Q4 (¢umin), abs + b.a = T, and

1. Q4 (qmin) € Q4 (n,C) denotes the pseudopolynomial that is left behind after
all factors (zil — ei‘i’) corresponding to the roots of Q (¢min) on T have been

removed from Q (Gmin)-

2. U denotes the pseudopolynomial that is left behind after all factors (zil — ew)

corresponding to the roots of Q (¢min) on T have been removed from V.

Proof. We need only prove the initial statement that the solution of the
PRCEP is bounded if and only if Jy has a stationary point in the interior or
boundary of its domain. The remaining statements of the theorem all follow
from the proof of the initial statement. Let ¢ be such that Q(q) € 9Q,(n,C) and
such that all the roots of Q(g) on T are also the roots of ¥ on T. Let the set of
all ¢ € C"*! satisfying the previous two conditions be denoted by M, y. First
we show that for any ¢ € M,y U Q1 (Q,(n,C)), the directional derivatives of
Jy exist in all feasible directions. To this end, for any gy € Q@ '(Q,(n,C)) we
define the directional derivative:

C Ju(g+h(g—1q) —Ju(qg
Vi (0) = i 2D 0) 230
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It is easy to check that if ¢ + h(go — ¢) € 99+ (n,C) for all 0 < h < ¢ and some
¢ > 0, then Q(q) and Q(go) must share a root on T. Since all roots of Q(¢) on T
are also roots of ¥ on T, it follows that m
T for all go € Q' (Q(n,C)) and for all h > 0. From the mean-value theorem of

calculus it follows that:

is uniformly bounded a.e. on

log Q(q 4 h(q0 — q)) (") —log Q(q)(e”)
h
N U(e”)Q(q0 — ) ()
Qq)(e?) +n(h, e?)Q(q0 — q)(e?)’

where 0 < n(h, ¢?) < h, for all § except for a finite number for which Q(q)(e?) =

\Ij(ew)

0. Since the right hand side of the last equality is uniformly bounded for almost

: 1 h(qo — —1
all (h,e) € [0,1] x T, we have that 1}%1(\1!, 08 Qg + hldo ; 2)) ogQ(q)> —

1 — —1
og Q(q + h(qo — q)) — log Q(q) ) by the Lebesque Dominated Convergence

h
Theorem [54]. Therefore, for any ¢ = col (qo, ..., qn) € Muw UQ (Q4(n,C))

(U, lim
110

and any gy = col (qoo, - - -, Gon) € Q714 (n,C)) we get:

Va-adu (@) = ?R{C* (90 —q) — i(%,gkﬁ(%k - Qk)}
= 3?{ Y <Ck - <%7Qk>>* (QOk - Qk)}

k=0

where g (2) = 2*.

Now we are ready to prove necessity. By Theorem 3.2.3 and since the so-
lution of the PRCEP is bounded by hypothesis, we know that there is a unique
Q € m such that (%,g@ = ¢, for k= 0,1,...,n and Q71(Q2) lies in
M,up UQ Q. (n,C)). Setting ¢ = Q~(Q) then we have that VI, _,(¢) = 0.
Hence that particular choice of ¢ is a stationary point and it is the unique mini-
mizer of Jy. This establishes the necessity.

We proceed to prove sufficiency. Let ¢ be a stationary point of Jy by letting
Vg (q) = 0 for all g € @7 (Q+(n,C)). Then ¢ € M,v UQ ' (Q4(n,C)),
otherwise V,_,Ju(q) = +00 Vgo € Q1 (n,C) (by the same arguments employed

in the proof of [5, Lemma 5.4]), and we have:
%{i (ck - <i,gk>>* (qorx — Qk)} =0 (3.5)
p Q(q)

Now, for any ¢ € M,, s UQ (24 (n,C)) we may write Q(q) = Q+(q)Qo (¢) where

Qo(q) is a pseudopolynomial with all its roots on T or is identically equal to 1
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if no such roots exist, while @ (q) is a pseudopolynomial which does not have
roots on the boundary. Because all the roots of Q(¢) which are on the boundary
are also roots of W by hypothesis, we may write U = W(q)Qo(q), where ¥(q) is

v 7 After inserting the two identities

a pseudopolynomial defined by \if(q) = 5@

into (3.5) we obtain:

%{Z (Ck - <%Z;),gk>> (qor — C]k)} =0 (3.6)

k=0

However, equation (3.6) holds for all gy € Q~1(Q(n, C)). Therefore by inspection

(e.g., see proof of [55, Lemma 5.1]) we must have

¥ (q) W(q)
Ck_< 7gk>:O<:>< 7gk>zck
Q+(q) Q+(q)
for k =0,1,....,n. T herefore, there is a unique Caratheodory function f such
that (f + f.)(e?) = Ci(‘(?;)((ifg), f satisfies the interpolation constraints, and f is

bounded. Hence we have shown sufficiency. Note the cancellation that takes
place if Q(¢) has roots on the boundary. In this case the solution f will be of
degree less than n. O
Therefore, stationarity of the minimizer of Jy is essentially a trademark for
the boundedness of the solution: if it is stationary then the solution is bounded,

otherwise it is not. We may also show the following sequential continuity result:

Theorem 3.3.8 Let ¥ € Q4 (n,C)\{0} and let {W}, ., C Q (n,C)\{0} be a
sequence such that klim U — Wl|,=0. If

Gmin = argmin = Jy (¢) and @ummr = argmin Jy, (q),
q€Q~1(Q+(n,C)) qeQ~1(Q+(n,0))

then
kh—>nc}o ||Qmin - Qmin,k” =0 and kh—>nolo ||Q (qmin) - Q (Qmin,k)Hoo = 0.

Proof. For r > 0, define the compact sets

Br(Qmin) - {q € R X (Cn : ||q - Qmin“ S T}

and S, (¢min) = OB, (¢min). Also define the compact sets X, (¢min) = Br(Gmin) N
Q71 (Q4 (n,C)) and Y, (Gmin) = O0X,(¢min). We prove that given any ¢ > 0
small enough such that 0 ¢ X.(gmm), there is a K (¢) > 1 such that guming €
Be(¢min) VE > K (€). First, we observe that

Jo(q) —Ju, (@) < (¥ — U, [logQ (9)])
< W =Wl (1, [log Q (g)]) if ¢ # 0,
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where 1: z+— 1Vz€T. If we define D = )r(ngxx )(1, llog @ (¢)|), we have that
g€ Xe(gmin
vq € Xe(Qmin):
e (@) = Ju (@) < DW= il

or more explicitly,
Ju(q) = DIV = Wil < Ju,(q) < Tulg) + D |0 — Wil (3.7)

For any r > 0, define Z,(¢min) = Yo(quin) if gun € Q1 (Q(n,C)) and
Zr(Guin) = Sr(qmin) N Q11 (n,C)) if guin € 0Q1(Q,(n,C)). Notice that
Z+(qumin) is a compact set. Choose any € > 0 small enough such that 0 ¢ X (quin)
and such that Z (qmm) C Q714 (n,C)) if ¢um € Q1 (Q4(n,C)). Next, for
any ¢ # ¢min define the unit vector u, = HZ:ZZZII’ and for any ¢ € Z.(Gumin)

and any 0 < d < e define the functions L;(q,d)=Jw(q) — Ju(gmin + du,) and
Ly(q, d)=Jw(qmin + dug) — Jo(gmm). Clearly, from the strict convexity of Jy,

Ly(-,d) and Lo(-,d) are continuous, positive-valued (> 0) functions on Z,(Gmin)-
Furthermore, define ¢;(d)= min L;(q,d) for i = 1,2. Observe that d;(d) > 0

qE€Ze (qmin)

for i = 1,2, for if it is not then 3¢ € Z.(¢min) such that L;(¢,d) = 0 and/or
Ls(q,d) = 0, contradicting the fact that they are positive-valued on Z(qun). Let
us now choose a fixed d € (0,¢). Choose K, (€) (note the dependence on d) large
enough such that |V — U || < W for all k > K (€), then using (3.7)
one easily gets that for any ¢ € Z(quin):

J\I/k (qmin) < J\I/k (Qmin + duq) < J\yk (q) Yk > Kd (E) (38)

From (3.8) and the strict convexity of Jy, for all k, it follows that gumins €
Xe(Gmin)\Ze (qmin) for all & > Ky (e).

Summarizing, we have shown that for every e > 0 such that 0 & X (¢min),
dK (%) such that for all & > K (%), Gming € X (Gmin) is in the interior of

Be(¢min), or in other words, klirn ||gmin — Gmink|| = 0. It follows immediately
that klim 1@ (Gmin) — @ (¢mink)|| . = 0. This concludes the proof. O

Although one may view the last theorem as a corollary to [49, Theorem 3.1]
when ¥ and the PCS ¢y, ¢y, ..., ¢, are real, it is an interesting result in its own
right. Notice that its proof is based solely on properties of Jy (see Theorem
3.3.2) and is independent of Theorem 3.2.3. On the other hand, [49, Theorem
3.1] was derived based on Theorem 3.2.3. In fact, we claim that it is possible to
show the converse: Theorem 3.2.3 and [49, Theorem 3.1] can be derived using
Theorems 3.3.2 and 3.3.8. This interesting ramification of Theorem 3.3.8 presents
an alternative analysis of the RCEP, including unbounded solutions, which will
be treated in Chapter 4.
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3.4 Discussion, extensions, and application of

results

Our convex optimization based approach is reminiscent of the extensive and ab-
stract generalization of [5, 6] given in [51], but it may be inspected that the two
treatments are not identical and there are two important differences which we
shall now discuss.

First, the objectives of the two works are different. In [51], the objective is
to extend the convex optimization technique to generalize Theorem 3.2.3 to the
setting of a general class of interpolation problems with a so-called complexity
constraint, whereas in the present work we do not attempt to re-derive Theorem
3.2.3, but rather to use the theorem and/or properties of Jy when W has zeros on
T (to the best of our knowledge, we were the first to do this) to derive Theorems
3.3.3, 3.3.7 and 3.3.8. Secondly, our treatment is centered on analysis of bound-
ary properties of the functional Jy when ¥ may have zeros on T. Although a
generalized version of Jy was formulated in [51], its properties when W has zeros
on T were not investigated. Instead, an alternative route was taken whereby the
case ¥ € 99, (n,C)\{0} is treated via analysis of a functional Ky (see [51, eq.
(2.16)]) defined on a set of Schur functions (i.e., functions which are analytic on
D and bounded there in magnitude by one) satisfying a certain constraint. In
particular, it has been shown that the unique extremal point of Ky (which, in
this case, is a maximizer) is always stationary (see the penultimate part of the
proof of [51, Theorem 1] on uniqueness of a solution, p. 13). On the other hand,
this is not the case for Jy. As we have shown, the extremal point of Jy (which is
a minimizer) need not be stationary. In fact, it is precisely this unique property
of Jy over Ky which led us to a characterization of H* solutions of the RCEP
as stated in Theorem 3.3.7.

Continuing further, we note that for ¥ positive definite on T, Ky is obtained
from a transformation of the functional Iy, the dual of Jy (see [51, eq. (2.14)]).
To derive our results within the development of [51], some results relating Ky
and Jy need to be established for ¥ non-negative but not positive definite. Then
one should show that the maximizer f of Ky satisfies eszseiTnf |1+ f(2)| > 0 (this is

equivalent to the RCEP having a bounded solution) if and only if the minimizer
of Jy is stationary. These relations have not been considered in [51]. Thus, in
light of these facts, our results do not obviously follow from [51]. On the contrary,

it may be possible to generalize them to the setting of [51] by further analysis of
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the generalized version of Jy. Indeed, we should keep in mind that our results
are specialized to the RCEP, while those of [51] apply to a more general, possibly
abstract, class of interpolation problems with a complexity constraint.

We now discuss some practical implications of Theorems 3.3.3 and 3.3.7. From

Theorem 3.3.3 we see that when ¥ has zeros on T and the minimizer of Jy is in

the interior of Q=1(Q4(n,C)) and away from the boundary, the solution can be
computed rather quickly and easily by Newton descent. We have illustrated this
in Example 3.3.4. When the minimizer is close to the boundary, the continua-
tion method of [50] can be applied for good numerical results. For cases where
Theorem 3.3.7 is applicable, it ought to also be possible to compute solutions by
the continuation method. Example 3.3.5 indicates that even a standard Newton
descent method can yield an approximate solution, albeit a crude one. There-
fore, it is reasonable to expect the more robust continuation method to give good
numerical results for such cases or for ones which are similar (i.e., almost can-
cellations of insignificant poles lying close to the boundary). Indeed, to support

this claim we rework Example 3.3.5 using the continuation method:

Example 3.4.1 Let cg,c1,c0 and V be as given in Fxample 3.3.5. Applying the
continuation method with step length parameter e=0.01 (see [50, p.1196]) yields
b(2)=1.1547 + 0.5773z — 0.57742%, a(z)=0.5774 + 0.8660z + 0.28872%, and the

corresponding solution s

05774 + 0.8660z + 0.288727
©1.1547 + 057732 — 0.577422°

f(2)

In fact, in Chapter 5 results will be developed that justify using the contin-
uation method for computing not only the bounded solutions discussed in this
chapter, but all solutions of the RCEP. Since convergence is better understood
for that method, this can be beneficial because at present there are no theoretical
convergence results for the alternative algorithm of [49]. Moreover, there are two
other attractive features of the continuation method. First is that the Hessian of
the modification of Jy given in [50] can be inverted in a fast and efficient manner
because of its special Toeplitz-plus-Hankel (T+H) structure [56, 57]. This kind
of structure does not seem to be present in the latter algorithm. Secondly, it
can be naturally extended to the setting of more general analytic interpolation
and moment problems [58]. Further discussion of the continuation method will
be postponed until Chapter 5. Thus, our results have extended the utility of the
earlier methods of [6, 50].
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3.5 Concluding remarks

The contributions of this chapter are some new theoretical results on solutions
of the RCEP corresponding to ¥ € 99, (n,C)\{0}, i.e., the case where the
parametrizing pseudopolynomial has zeros on T. In particular, we show that for
a solution to be in H>, it is necessary and sufficient that the minimizer of Jy is
stationary. Furthermore, we have shown that some solutions for this case can be
computed using methods that have been developed for ¥ which is free of zeros
on T, extending the utility of those methods. We also establish the sequential
continuity of a certain map based solely on the properties of Jy and independently
of the result on complete parametrization of all solutions of the RCEP (Theorem
3.2.3). Full exploitation of this result will be given in the next chapter.

We have also outlined the differences between our work and [51] which is also
based on convex optimization but applies to a more general class of interpolation
problems. We point out some interesting differences between the functionals Jg
and Ky, which are the main object of the analysis of, respectively, this chapter
and [51], and argue that our results do not obviously follow from [51] and that it
may be possible to generalize them to the setting of [51].

Note that although this chapter specifically treats the RCEP, the results pre-
sented here readily extends to the Nevanlinna-Pick interpolation with degree con-
straint as described in [14, 59, 60]. This more general setting will be taken up in
Chapter 5 when we further develop the method of [50] as a tool for computing

all degree constrained rational interpolants.



Chapter 4

Results on General Solutions of
the Rational Covariance

Extension Problem

4.1 Introduction

In this chapter, we continue to develop the ideas of Chapter 3, in which H*> solu-
tions of the RCEP were studied, and derive new results relating to all solutions
of the RCEP, including unbounded ones. As in Chapter 3, our development will
be based on convex optimization, similar in spirit to [51], for the special case of
the RCEP (but readily extends to Nevanlinna-Pick interpolation case). Again,
our analysis proceeds differently from [51] and continues the partial extension of
[5] developed in the preceding chapter. We have already noted there are some
important differences between the approach of that chapter and [51]. For ex-
ample, results of Chapter 3, such as a certain necessary and sufficient condition
for boundedness of a solution, do not follow obviously from [51]. The analy-
sis in [51] is carried out by reposing the problem in the setting of contractive
functions on the unit disc via a certain bilinear transformation. This transfor-
mation effectively avoids complications or awkward details which may arise when
dealing with positive real functions. In connection with the last point, it was
mentioned in the last chapter that the functional Ky studied in [51] always has
a stationary maximizer, whereas the minimizer of the functional Jy investigated
in the present and previous chapter need not be stationary. This chapter tackles
the problem directly in the original positive-real setting, without recourse to the

space of contractive functions. A possible advantage of this, for the special case

42
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of the RCEP, is that the analysis is done purely on a complex Euclidean space
instead of a function space as in [51]. Moreover, we show that solving the RCEP
is essentially equivalent to finding the minimizers of a class of (strictly) convex
functionals defined on a subset of the complex Euclidean space. This is done
by establishing a new result on a bijective correspondence between denominator
polynomials of non-strictly-positive solutions of the RCEP and the minimizers of
the class of convex functionals associated with non-strictly-positive pseudopoly-
nomials (Theorem 4.2.2). As a corollary to that result, we obtain an alternative
and constructive derivation of Theorem 3.2.3, and a new proof of a homeomor-
phism which was established in [61] for the special case of real interpolators.
An analogous treatment of what we accomplish here for the RCEP (and degree
constrained rational interpolation in general) may also be possible in the general
setting of [51] by considering some appropriate sub-class of positive real functions
and establishing some additional results.

Later in Section 4.3, we generalize the homeomorphism result to also allow
variation in the covariance data. In connection with this last problem, a rele-
vant work in the literature is [62]. However, there are two features of our treat-
ment which contrast it to [62]. The first contrasting feature is that [62] derives
the unique pair of (normalized) partial covariance sequence and positive definite
bounded spectral density which minimizes a certain Kullback-Leibler divergence
criterion under some moment constraints, whereas here we are not interested in
such an optimal pair, but we show that pairs of partial covariance sequence and
pseudoplynomial data are in homeomorphic correspondence with the graph sym-
bols of positive real rational functions of a bounded degree. In particular, we may
perform a continuous coordinate transformation from the first pair to the latter
pair and vice-versa. Secondly, the case where the associated pseudopolynomial is
non-negative, but not positive definite, is not considered in [62]. Indeed, in this
case, the solution of the RCEP may be unbounded and not integrable, while [62]
restricts the solution to be integrable (see Eq. (6) therein). On the other hand,
we allow for non-negative, but not positive definite, pseudopolynomials and do
not impose integrability of the solutions. The importance of considering simulta-
neous variation of the covariance and pseudopolynomial data lies in the fact that
in practice, for example in spectral estimation, both data are typically unknown
and have to be estimated. Continuity implies that the resulting spectral density
estimate will be robust to small errors in the estimates of the pair of data.

We also mention the paper [63] which was brought to our attention by a

referee for the paper [18]. It solves a generalized moment problem with complex-
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ity constraint; however, the problem treated there is rather different since the
non-negative functions p, which are monotone non-decreasing and of bounded

variation on a compact interval [a, b] of the real line, sought in [63] must satisfy
a finite set of moment conditions and can be expressed as Ccll—‘t‘ = % for some
functions P(t) and Q(¢) which are non-negative for almost all [a, b] and for which
the ratio % is integrable on [a,b] (the latter conditions on id% are also referred

to collectively as “complexity constraint”). This is not the case in general for the
RCEP since (unbounded) solutions f of the RCEP that have one or more poles

on the unit circle do not correspond, via the moment constraints

co =2f(0) = L /7r e *0dp(e”)

2 J_.
and ®(0)
_S0) 1T e i0
Cr = k! - % _71—6 d/L(e )7
for k = 1,...,n, to absolutely continuous functions p on [—m, 7] (see, e.g., [12,

eqs. (3.10)-(3.12), p. 36]).

This chapter continues to use the notation, definitions and results of Chapter
3. However, we now also make note of the following observation. The restriction
of any element of Q. (n, A)\{0} to T is a rational spectral density of McMillan
degree at most 2n, thus we shall often also view any such element as a spectral
density. Hence, to each d € M\{O} we may assoclate a wunique outer
polynomial of degree at most n, denoted by ¢(d), which is the unique canonical
spectral (CSF) of d satisfying: ¢(d)(0) > 0 and |¢(d)(z)|* = d(z) Vz € T. Details
on outer functions, spectral densities and CSF’s can be found in [64, 15] and will
also be given in the upcoming Chapter 6.

The discussion of this chapter is adapted from the paper [18].

4.2 An analysis of all solutions of the RCEP

For U € Q. (n,C)\{0}, consider once again the functional Jy introduced in
Chapter 3. Recall from Chapter 3 that the relationship between Jy and the
RCERP lies in its directional derivatives. For any ¢, qo € m, the directional
derivative at ¢ in the direction gy — ¢ is defined by:

. Julg+Nhlg—q) — Julq
qu_qJ\IJ(q):l}%?Ol qj( (Oh )) \II( )
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Let My denote the set of all ¢ € Q~1(Q4(n,C)) such that all roots of Q(q)
on T, including multiplicities, are all also roots of ¥ on T. V, _Ju(g) is given
Vg0 € Q1 (n,C) by:

ququ(q):{ R g on) (e a)itecste g

0o or —oo otherwise

where col(qo, q1, - -+, Gn) = ¢, c0l(qo0, G015 - - -, Gon) = Go, and gx(z) = 2F. If ¢4 is a
stationary point, i.e., V4. Jw(qs) = 0 for all o € Q. (n, C), then <$, k) = Ck
for k =0,1,...,n and it follows from the Herglotz representation [65] that there
is a unique f € C N 'H*™ such that f + f. = % and f is a solution of the
RCEP. As we had shown in the last chapter, stationarity of ¢, is in fact necessary
and sufficient for a solution to be in H*> (i.e., has no poles on T). By the
strict convexity of Jy, ¢4 is also its unique minimizer. The point ¢ could be in
the interior or boundary of Q~1(Q,(n,C)). However, when ¥ € Q. (n,C), the

minimizer is guaranteed to be an interior point [5, 14]. The following lemma states

this precisely. It was shown in [14] for the degree constrained Nevanlinna-Pick
interpolation problem, but which by inspection holds analogously for the RCEP
(actually, [14] shows that both a and b have no roots on D, that the same is true

for a + b follows from [9, Proposition 2.6] or by simply noting that ¢ +1 € C,.).

Lemma 4.2.1 If U € 9Q.(n,C) then qumn, the unique minimizer of Jy, is a
stationary point in Q= (Q4(n,C)). Furthermore, if b is the CSF of Q(qmm) and
a is determined uniquely from a.b+ ab, = ¥, then (a,b) is the unique pair with
b(0) > 0 such that a,b+ ba, =V, a + b has no roots on D and f = 7 € Ciisa
solution of the RCEP.

We shall use Theorem 3.3.8 and Lemma 4.2.1 as the basis of our analysis of the
RCEP. To this end, we introduce the following notation: If p(z) = >_,_, prz" is a
polynomial of degree at most n then «, is defined as col(pg, p1, . .., pn). Hence, p
can be written as p(z) = «, Z,(z), where Z, is a complex vector-valued function

defined by Z,(z) = col(1,z,...,2"). We also define ||g||.c = esssup|g(z)| and
z€T

llglle = ({g, g>)% for any complex function g which is measurable on T. In the
ensuing analysis, we shall make use of the following observation. By an argument

given in [61, Appendix A], the interpolation constraints

£(0) = %CO, FOO) = cpfor k=1,...m, (4.2)
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imply that there is a (n + 1) x (n + 1) matrix W, whose entries are continuously
dependent on the value of the associated PCS ¢y, ¢y, ..., c,, such that if a,b are
polynomials of degree at most n with b(0) > 0, and f = § satisfies (4.2), then a,
and ay are linearly related via o, = Wy, (note that f need not be Carathéodory).
To emphasize the (continuous) dependence of W on ¢ = (co, c1, ..., ¢,), we shall
at times write W (c) in place of W. The next theorem, which we are now in a
position to show, extends the known Lemma 4.2.1 to ¥ € 99, (n, C)\{0}:

Theorem 4.2.2 Let V be an arbitrary element of 0Q4 (n, C) \{0} and let guin be
as in Theorem 3.3.8. If b is the CSF of Q(qmin) and a is such that o, = Wy, then
(a,b) is the unique pair such that b(0) > 0, a+b has no roots on D, a,b+ab, = ¥

and [ = ¢ is a solution of the RCEP.

Proof. Let the sequences {W}i>1 and {Q(¢mink) }x>1 be as in Theorem 3.3.8.
Then {Q(¢qmink) }x>1 is a sequence of rational spectral densities having the prop-

erties:

i) there can be at most 2n roots of {Q(gmink)}r>1 on or approaching T as

k — oo, and

ii) it is uniformly bounded in magnitude by some positive number M (by The-
orem 3.3.8).

It follows that the sequence {Q(qminx)}r>1 of spectral densities satisfy a set of
sufficient conditions given in [66, Theorem 8] (Theorem 6.4.5 of Chapter 6) which
guarantee {10g Q(Gmink) }k>1 to be uniformly integrable on T, i.e.,

i sup (1 10g Qgumin i) () ><}» | 108 Q(Gumin k) [) = 0,

70 k>1

where I, is the indicator function for the set A. Let by = ¢(Q(qmink)) and b =
H(Quin)- Since Qlguint) ' Qdnin) (Theorem 3.3.8) and {10g Q{gins) bz

is uniformly integrable, it follows from [15] that by Lz, However, since by, — b

is a polynomial of degree at most n for all k, we also have that by Iz . Before
proceeding further, we make the following observation. From Lemma 4.2.1 we
note that when ¥, € Q. (n,C) then a; + by has no roots on T and f, = ‘;—: is
a solution of the RCEP if a; is uniquely determined from the equation ay.b. +
agb. = Wi, However, as given in [14, p. 831], the last equation is equivalent
to solving the linear equation S(ay, )a, = di for ag, with dy = Q7' (¥;) and S

being a continuous linear operator from R x C" to C"*! x C"*! (actually, [14]
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considers the case where b and a + b are free of roots on C\ID, but an analogous
argument holds in our setting). Uniqueness of a,, (hence also of ay) follows
from non-singularity of S(as,). However, given by, we also know that aj must
satisfy a,, = Way,. Therefore, when V), € Q. (n,C), determining a;, by solving
by + agby, = Yy, (as stated in Lemma 4.2.1) or via the relation a,, = Way, are
equivalent. Continuing on with our proof, let ay = aaTk Z, with a,, = Way, . Since
|bx —b||c — 0 as k — oo it follows that ||Way, —Way||s — 0 as k — oo. Defining
a via o = hm Way, = Way, we conclude that f = ¢ satisfies (4.2). For the
remaining partgoof the proof, we may assume ¥y, has no roots on T for all k. There
is no loss in generality in taking this assumption since g¢upin, as the limit of guin &,
is independent of the particular sequence {Wy}y>1 used in approaching W. Then
we have from Lemma 4.2.1 that f; = ‘;—: is a solution of the RCEP for all k. All
that remains now is to show that f € C. Define the set r(b) = {z € T | b(z) = 0}.
Since by — b and a; — a uniformly on D (by and ay, are in H*> and continuous
for all k), and b, and a; have no roots in D for all & (due to Lemma 4.2.1 and

our assumption of positive definiteness of W), we obtain:

{Z} %{Mb 9y -

Z

ag(z)
m 3‘%{ be(2)

k—o00

} > 0Vz e D\r(b).

Let us now consider points z in r(b). To this end, let 2y € r(b) be such that zq is
also a root of a. If zg has the same multiplicity as a root of a as it does as a root
of b then there is cancellation between the polynomials a and b, f is continuous
at zp, and it follows that R{f(z0)} = lim,_.., %{b } > 0 since R{f} > 0 on
D\r(b). For all other z € r(b), it is straightforward to see, again since R{f} >0
on D\r(b), that R{ Z((j;} = 0o. Thus we conclude R{f(z)} > 0 for Vz € D, i.e.,
f € C. Finally, since apbpy + agbr = Vi, and ai + by has no roots on I, for each

k, by taking passage to the limit as k — oo we easily see that @ and b must satisfy
a.b + ab, = V¥ and a + b also has no roots on D.

We shall now show the converse: If (a,b) is any pair with b(0) > 0 such that
a + b has no roots on D, f = ¢ is a solution of the RCEP (hence aq, = Way, is
automatically satisfied) and ab* + ba, = W, then necessarily b = ¢(Q(¢min)). If
f € H*®NC then we have (f+ f.,gr) = ¢, for k= 0,1,...,n (recall that g, = 2¥).
Noting that f+ f, = “*b+b“* , from (4.1) we see that Q~*(bb,) coincides with gupin,
the unique minimizer of Jy with U = a,b + ab,. Therefore, b = ¢(Q(Gmin))-
Suppose now that f has one or more poles on T. Note that such poles can only
be simple (i.e., poles of multiplicity 1) [12, p. 35-36]. Let us write f = where

b1(0)bo(0) > 0, 3= € H™, by has all its zeros on T, and by and wedladD)

_a_
bibo
are co-prime
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(ged(a, by) denotes the unique monic polynomial which is the greatest common
divisor of a and b;). Let by = TI{" (1 — e ™ 2) with m < n and 6,,...,60,, €
(—m,m] (0; # 0; whenever ¢ # j). Now, we may decompose [ as (see, e.g., [12,
egs. (3.11)-(3.12)]):

m A
ai K1+ e~ Wiy
f=—+ Z o T S
by = 2 1—ez

where $+ = fi € H* NC and K; are positive constants for [ = 1,...,m. Note

—10 .. : .
that for each [, the term %% is in C and has a pole at z = €% . Moreover, if

Uy = ay1by. + ay.by then, by the argument directly above [12, eq. (3.13)], we also
have that ¥ = a,b + ab, = V1bg.bg. Let us now define fy € C by

f2(2) = f(2) = fi(z)
- Kll+e_wlz

1 —
- 2 Kl(§ + ;e_Zkelzk), for all z € D.

Clearly, we may also write fy(z) = %6270 + Z co 2"+ higher order terms, where

k=1
cao = Y K and cop = Y Kiem™ for k = 1,...,n. Since f; € H*NC
and f1 + fi. = blel = b()bll;l(l) —— from the definition f, = f — f; it follows that
€20,Co15- -+, Cap are also given by o = cx — (f1 + fres r) = ek — (50 Ih)

for K =0,...,n. Defining ¢, = COl(qLQ, qiiy--- ,an) = Qil(blbobl*bo*), we have
for any q = col(qo, 1, - - -, ) € Q71 (Q+(n, C)):

Vo-adulq) = éﬁ{i (%—(%ﬂﬁ)*(q—ql)}

k=0
= %{Z Ki(qo— q10) + Z (Z Kze_ik01> (g — QI,k)}
=1 k=1 \i=1

= Z KR{(q0 — q10) + Z e (g — qur) }
=1 k=1
= Y KiQa-a)(™).
=1
Now, since Q(q1)(e®) = 0 for [ = 1,...,m, it is clear that Q(q — q,)(e') =

Q(q)(e”) > 0 for I = 1,...,m. We conclude that V, ,Jy(q1) > 0 Vg €
Q19+ (n,C)). By strict convexity of Jy it follows that ¢; coincides with guin,
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the unique minimizer of Jy. Since b(0)by(0) > 0 and recalling the definition of
¢1, this proves that biby = ¢(Q(Gmin))- O
The above theorem is a new result. The main idea of the proof is to show that
the bijective mapping from ¥ € Q. (n,C) to (a,b) in Lemma 4.2.1 continues to
hold for ¥ € 99, (n, C)\{0}. It is interesting because it reveals that, for any ¥ €
09 (n,C)\{0}, ¢(Q(gmin)) is actually also a unique denominator polynomial of
some solution of the RCEP. Combining this with Theorems 3.3.3 and 3.3.7 of
Chapter 3, we see there are three possible scenarios when ¥ € 99, (n,C)\{0}:

L. @min € Q4 (n,C) and is a stationary point of Jy
2. Qmin € 094 (n,C)\{0} and is a stationary point of Jy

3. Qmin € 094 (n,C) \{0} but is not a stationary point of Jy. This is precisely

the case when the associated interpolant has a pole on the unit circle.

The three possible scenarios are illustrated in Fig. 4.1.

Interior guin, Boundary gin, Boundary gin,
VI (4mn) =0 VI (qumn) =0 VI (Gmn) #0
\\\\ o ///' \\\\ ,’I' \\\\ //I'
(1) (1) (ii1)
Bounded Bounded Unbounded
interpolant interpolant interpolant

Figure 4.1: Three possible scenarios when ¥ € 99, (n,C) \{0}

Now, combining Theorem 4.2.2 with Lemma 4.2.1 we have the following corol-

lary:

Corollary 4.2.3 Let U be an arbitrary element of Q (n, C)\{0} and let quin be
as in Theorem 3.8.8. If b is the CSF of Q(qumin) and a is such that o, = Way, then
(a,b) is the unique pair such that b(0) > 0, a+b has no roots on D, a,b+ab, = ¥
and f = ¢ is a solution of the RCEP.
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Therefore, to every functional in the set {J \p}q,em\ (0} there is exactly one
pair (a,b) with b(0) > 0 and a + b having no roots on D such that f = ¢ is a solu-
tion of the RCEP, and vice-versa. As a byproduct we obtain a new constructive
proof, via the set of functionals {J‘I’}WGW\ (0y> of Theorem 3.2.3 on complete
parametrization of all solutions of the RCEP by elements of Q. (n,C)\{0}. As
another byproduct of Corollary 4.2.3, we also obtain a homeomorphism which
was first shown in [61] for real solutions of the RCEP.

Corollary 4.2.4 Let D = {d € R x C" | Q(d) € Q4 (n,C)\{0}} and A =
{b e (0,00) x C" | bTZ, is outer and WZ?X” is a solution of the RCEP}. Then
the map G : D — A defined by G : d — oagq) is a homeomorphism, where

9(d) = ¢(Q(qa)), qa = argmin  Jy, (¢), and V4(z) = do—i—z (dkzk + d,tz’k).
9€Q~ (24 (n,C)) k=1

Proof. That G is a bijection is already clear from results preceding the corollary.
Thus we only have to show that G and G~! are continuous. We will do this for

G, the same follows for G~! by a similar argument. Let d be any element in

D and define B; to be the set of all infinite sequences dy,ds, ... of elements in
D such that ||dy — d||2 "Z2°0. In first paragraph of the proof of Theorem 4.2.2

we have shown that ||g(dx) — g(d)||~ "22°0 for all sequences in By. Hence also

|l tg(an) — g(a)ll2 *29°0 for all such sequences. Suppose that G is not continuous
at d, then there must exist a sequence ej,es,... of elements in D such that
llex — d||2 220 but for which ||, — auall2 "25°0. This is a contradiction, so G

must be a continuous map and the proof is complete. O

4.3 Generalization of results to simultaneous vari-
ation of covariance and pseudopolynomial
data

Thus far we have only looked at the continuous relationship between ¥ and b when
¥ is varied and the PCS is fixed. However, the ideas used in deriving Theorem
3.3.8, Theorem 4.2.2 and Corollary 4.2.4 can be adapted easily to analyze the case
where the PCS is allowed to vary. In this section we shall state generalizations
of Theorem 3.3.8 and Corollary 4.2.4. Since the main ideas here are the same as
in the last section, we shall only sketch the proofs.

Let P = {(co,¢1,...,¢,) € R X C" | ¢g,¢1,...,¢,1s a PCS of order n} and
define the functional M. y exactly as on the right hand side of (3.3), but we now
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consider ¢ to be an additional parameter of the function alongside W. Notice that

P is a convex set. Then we have the following analogue of Theorem 3.3.8:

Lemma 4.3.1 Let ¥, Yy, Gumin, Gmin i be as defined in Theorem 3.3.8 with Jy, and
Ju replaced by M, v, and M.y, respectively, with ¢y, c € P. If klim lek — ¢l =0

then klglc;lo ||Qmin - Qmin,kHQ = 0 and ]}EEO ||Q<Qmm) - Q(len,k)”oo == 0

Proof. As in the proof of Theorem 3.3.8, let X (¢mm) = {¢ € R x C" |
lg — gminl| < e} NQ~1(Q 1 (n,C)) with e > 0 small enough such that 0 ¢ X (¢min)-
Then M.y (q) — M, w,(q)] < |lc = cill2D1 + [|¥ — ¥ |lwD2 for all ¢ € Xc(Gmin),
where Dy = Jnax llgll2, Do = Xn(1ax)<1,|log Q(q)|) and 1 : z — 1Vz € T. The

e(@min e(dmin

remainder of the proof proceeds along similar lines to the proof of Theorem 3.3.8
by taking a suitably large k so that both ||c — ¢ |2 and ||¥ — Wy ||« are sufficiently
small. 0

Theorem 4.3.2 Let D be as in Corollary 4.2.4 and define S = {(a,b) € C" x

(0,00) x C™ | b Z, is outer and f = ZEZ €C}. Then the map H: P xD — S

defined by H : (c,d) — (W (c)ag(c,a), gc,ay) 5 a homeomorphism, where g(c,d) =

?(Q(qc,a))s Ueqy= argmin M.y, (¢), and Y4(z) is as defined in Corollary
qeQ~1(0+(n,0))
4.2,

Remark 4.3.3 Note that, as stated in the Introduction, a stronger version of the
above theorem for the domain P x Interior of D has been given, by differential
geometric techniques, in [67, Theorem 6.6] in the context of the Nevanlinna-Pick
interpolation problem with degree constraint. Qur innovation in the theorem is
extending the weaker property of homeomorphism to P x 0D by utilizing a different

technique.

Proof. That H is surjective (onto) follows from the definition. Injectivity
of H is also easily established since each pair (a,b) uniquely defines ¢ by the first
n + 1 coefficients of the Taylor series expansion of f = ¢ about z = 0 and d via
the relation ¥y = a*Z, (b7 Z,). + (a¥Z,).(b" Z,). Thus, H is a bijective map.

We now show that H is continuous. Let (¢, d) be an arbitrary element of P x D
and (a,b) = H(c,d). Let {d;}r>1 be any sequence in D such that ||d, —d||2 "=,
We also let {c}r>1 be a sequence in P such that ||c, — ¢l|2 "0, If (ax,br) =
H((cg,dg)) then from Lemma 4.3.1 we have that ||b — b2 "22°0. Recall that
ar = Wi(cp)bg for k=1,2,... and a = W(c)b. Since ||(ck, di) — (¢, d)]]2 2200, we

k—oo

have that [|[W(c) — W(ck)|loo — O (here || - ||« denotes the operator-norm of a
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matrix) and necessarily ||ax — allz = |W (cx)br — W (c)b|s "=°

0. The continuity
of H then follows from arguments similar to those in the final part of the proof
of Corollary 4.2.4.

The remaining part of the proof is only to show that H~! is continuous.

This is also quite straightforward. Let (c;,d;) = H '((a;, b;)) for i = 1,2, If

(a1, b1) — (a2, bs)||2 is small enough it follows that ||af Z, — Z l|loo and ||bF Z,, —
b3 Zn|ls will also be small. Letting f; = Z%Tg" and fo = bT Z , this implies that
1

|f1(2) — fa(z)] will be uniformly small on any compact subset K of D. From this
we see that necessarily ||c1 — ¢2||2 is small by examination of the Cauchy-integrals
| fo file)—f2(2) zl+1 dz| for [ =0,1,...,n over some closed path C' in K which encloses
the point z = 0. Since ||d; — dyl|2 is trivially small when ||(a1,b1) — (ag,b2)||2
is small, we conclude that |[(c1,d;) — (¢2,d2)||2 is small. Although the preceding
argument is purely formal, it can easily be made rigorous and we may conclude
that H~! is continuous. This completes the proof. O
By Theorem 4.3.2 we may perform a continuous coordinate transformation
from (a,b) to (c¢,d) and vice-versa. The theorem may also be interpreted as
saying that graph symbols of all positive real functions of degree at most n are
parametrized by pairs of PCS of order n and non-negative pseudopolynomial data.
There are also previous results which deal with variation in ¢ with d fixed, a, b, ¢, d
real, and ¥, not having roots on T, and again under those special assumptions a
stronger result of diffeomorphism can be shown [68, 6]. A work which considers
uncertain covariance data is [62]. However, as noted in the Introduction, the

purpose and results of that work are rather different to ours.

4.4 Concluding remarks

This chapter gives an analysis of the RCEP which yields new results in Theorem
4.2.2 for solutions parametrized by pseudopolynomials in 09 (n, C)\{0} and in
the part of Theorem 4.3.2 which extends the domain of the homeomorphism to
P x dD.

Previously, it has been shown that any real solution of the RCEP can be found
by solving non-linear equations for a; [61]. Corollary 4.2.3 of this paper shows
that elements of a; are actually the coefficients of ¢(Q(qmin)), where g, is the

minimizer of Jy. We are led to the following conclusion:

Solving the RCEP is essentially equivalent to
finding the minimizer of Jy for all ¥ € Q. (n, C)\{0}.
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From Corollary 4.2.3 also follow a new proof of a theorem by Georgiou on complete
parametrization of all solutions of the RCEP and a new proof, with an extension
to non-real interpolators, of a homeomorphism which was established in [49].
Theorem 4.3.2 is a generalization of this homeomorphism.

Differences between our convex optimization treatment and the extensive and
abstract generalization of [5] given in [51], some of which have been discussed in
the Section 3.4, can now be seen more clearly. The most of important of these is
that in [51], the case ¥ € 09, (n,C)\{0} is treated via analysis of a functional
Ky defined on a set of Schur functions satisfying a certain constraint (refer to
the discussion in Section 3.4). This amounts to solving an optimization problem
over a function space; a solution f of the RCEP is obtained directly as the unique
maximizer of Ky. Our treatment is via analysis of a functional Jy defined on a
convex subset of R x C" (which is a finite dimensional space) and by allowing W
to have zeros on T. From Jy we do not directly obtain a solution f of the RCEP,
but a unique denominator polynomial of f. The associated numerator polynomial
is then determined by the PCS and the denominator polynomial. A possible
advantage of Jy, since it is defined on a closed, convex subset of R x C", is that
it could be amenable to numerical optimization algorithms. On the other hand,
[51] does not investigate how to (numerically) compute the unique maximizer of
Ky in the space of Schur functions, and the discussion of the RCEP in Section
5.1 therein is limited to the case where ¥ € Q, (n,C).

Although the functional Ky always has a stationary maximizer, the difficulty
with numerical optimization of Ky is that it is defined on a function space of
contractive functions. Implementation of an algorithm for finding the maximizer
of Ky on a finite memory computer would be impossible unless the trajectory
of the algorithm can be guaranteed to remain in a set of finitely-parametrized
functions. An alternative solution might be to consider the dual of Ky which may
be definable on a subset of some finite-dimensional space. On the other hand, a
pitfall of numerical optimization of the functional Jy is that its minimizer need
not be stationary (thus it may be difficult to “find” it) and the condition number
of the Hessian explodes for points tending to the boundary. However, it turns
out that these are problems which can be circumvented. As we shall see in the
following chapter, the optimization problem can always be reformulated to one
in which the minimizer is always stationary, regardless of whether W is strictly
positive or merely non-strictly positive, and in which the new functional to be
minimized is better behaved around and on the boundary.

For further research, we may pose the question of whether Theorems 4.2.2 and
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4.3.2 can be exploited to develop new fast and reliable numerical algorithms for
computing the minimizer of Jy, especially for the more challenging cases where it
is not a stationary point and/or lies very close to or on the boundary. Naturally,
efficient /fast computation of solutions is an important practical issue. As a step
in this direction, in Chapter 5 we analyze the homotopy continuation algorithm
due to Enqvist [50] for the case where V¥ is allowed to be non-strictly positive.
Note that it may be possible to give a treatment analogous to ours in the
general setting of [51] by considering some suitable sub-class of positive real-
functions. It may also be possible that the framework developed here can be
generalized to the case of matrix-valued RCEP. This can be considered in future
research. Moreover, as with the results of Chapter 3, the results of this chap-
ter also carry over to the setting of Nevanlinna-Pick interpolation with degree

constraint and will now be taken up in the next chapter.



Chapter 5

Computation of Degree
Constrained Rational

Interpolants

5.1 Background and motivation

In Chapter 3 we had derived a characterization of bounded solutions of the
RCEP which was followed up in Chapter 4 with some new results pertaining
to all solutions of the RCEP, bounded or unbounded. The present chapter deals
with computation of solutions of the RCEP, by exploiting some of the results
of Chapter 4. However, we now derive our results in the more general setting
of Nevanlinna-Pick interpolation with derivative constraints (i.e., involving in-
terpolation constraints of the form % f®)(2) = w for some positive integer k),
of which the rational covariance extension problem may be viewed as a special
case. We had already mentioned that the analysis of the preceding two chapters
carry over mutatis mutandis to this more general setting (which will be formal-
ized shortly). The required adaptations will become more clear as we proceed
through this chapter. To this end, let there be given {zg,z21,...,2,} C D and
{wo,wy,...,w,} C {z € C| R{z} > 0}. We make the convention that non-
unique z;’s are ordered sequentially. Moreover, for simplicity we shall assume
20 = 0 and wy is real. There is no loss in generality in taking this assumption
since the map z — f__—zzooz sends any zg € D to 0 and is a bianalytic map from D
onto itself. Secondly, we are allowed to subtract the imaginary part of wy from
wi, ..., w, without changing Problem 5.1.1 to be stated below. For further de-
tails, the reader may consult [60, Appendix A]. We consider the following degree

Hh)
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constrained rational interpolation problem:

Problem 5.1.1 Find all f € C of McMillan degree at most n such that, for
kE=0,1,....n, f(z) = wy if 2z is of multiplicity 1, and %f(j)(zk) = wy if 2z 18

of multiplicity m > 1 and zp, = 211 = ... = Zkym_1-

As with the RCEP, it is well known that the above problem has a solution
if and only if a certain (generalized) Pick matriz, constructed from the data
{wg, w,...,w,}, is non-negative definite [48, 69]. In the case of the RCEP this
Pick matrix corresponds to the Toeplitz matrix T in Definition 3.2.1. Also as
before, the solution is unique if the matrix is singular, otherwise there are in-
finitely many solutions. The following generalized version of Theorem 3.2.3 holds
for Problem 5.1.1:

Theorem 5.1.2 ([48, 51, 18]) For a given interpolation data with a positive
definite Pick matriz, and any monic polynomial n # 0 of degree n with roots in
D, there exists a unique pair of polynomials (a,b) of degree < n such that b(0) > 0,
a+ b has all its roots in C\DD, the pair satisfies the relation

ab, + ba, = K, (5.1)
for a fized k >0, and f = 3 is a solution of Problem 5.1.1.

Again, roots of the polynomial 7 in the theorem are referred to in the liter-
ature as “spectral zeros.” Problem 5.1.1 is of significance since there are many
engineering problems which can be reformulated into an interpolation problem,
whilst the degree constraint is naturally desirable from a practical point of view
as lower degree solutions typically mean simpler controllers, filters, etc. Some of
these applications include high resolution spectral estimation [70, 14], maximal
power transfer [14], and robust control [60, 55, 71, 58|.

A convex optimization approach for solving Problem 5.1.1, which parallels the
approach we have already seen for the RCEP in Chapters 3 and 4, was initially
developed in the papers [5, 14] for real  with roots inside the unit circle. However,
this method, without modification, suffers the same shortcoming as remarked in
Remark 3.3.6, i.e., it has features which makes it numerically unsuitable for com-
putation of solutions with poles close to or on the unit circle. A modification of
the method, by reparametrization and application of a homotopy continuation
method, was first introduced by Enqvist [50] for the rational covariance exten-

sion problem, and subsequently adapted by Nagamune [72, 59], and Blomqvist
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and Nagamune [60, 58] to Nevanlinna-Pick interpolation and moment problems.
However, the approach had not been studied and extended to the case where 7
has roots on the unit circle. From a practical point of view, spectral zeros on the
unit circle are important because they are associated with solutions of Problem
5.1.1 with poles on the unit circle (which, for instance, correspond to spectral
lines in spectral estimation [69]) and with solutions for which the restriction of
f+ f« to T is an absorption spectrum (i.e., a spectrum with some frequencies
having “zero spectral energy”), and, in control applications, solutions with poles
close to T are often required, making it essential to have a reliable method for
computing them. In [72, 59|, it was demonstrated that the homotopy continua-
tion method appears to be numerically robust and can compute solutions with
poles very close to T, but it has never been clear how close the poles can be to T
for the method to still perform satisfactorily. This chapter shows that it can in
fact compute solutions with poles anywhere on C\D.

No “complete” algorithm has been presented for the case where some spectral
zeros are on the unit circle, apart from [49]. The latter algorithm departs from
the ideas of [50, 72, 60, 59, 58] and proposes computation of all real solutions by
numerically solving some non-linear equations. However, it is important to note
that the algorithm of [49] is rather specific for rational interpolation problems,
while the method of [5, 50, 72] can be naturally extended to the setting of more
general moment and analytic interpolation problems, as shown in [58], in which 7
and a can belong to a more general class of continuous functions on T, instead of
simply being polynomials. Therefore, it is of interest to investigate applicability
of the homotopy continuation method of Enqvist if 7 is allowed to have zeros on
the unit circle. It has already been argued in Chapter 3 and indicated in Example
3.4.1 therein that such an extension seems to be feasible when the solution f is
bounded (has no poles on T). This chapter provides further justification for this
observation, by showing that the extension is indeed valid, and goes on to cover
the case of unbounded solutions as well. Later on in the chapter, the homotopy
continuation method is applied to several examples for practical illustration.

The discussion of this chapter is adapted from the paper [73] (joint work with
J. B. Moore).
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5.2 Analysis and main results

For zg,z1,...,2, € D (note that zy = 0 by our convention), define
z2+ z
ay(z) =
Z — Zk

whenever z; has multiplicity 1, and

Z+ 2k 2z
ag(z) = and apii(2) = ——7—
k( ) Z— 2 k+]( ) (Z—Zk)]_H
for y =1,...,m — 1 when 2, has multiplicity m and 2z, = 2p11 = ... = Zp1m_1-

The connection between «, and Problem 5.1.1 lies in the Herglotz representation

[65, 14, 58]. In this representation, any solution of Problem 5.1.1 is expressed as:

where p is a non-decreasing function of bounded variation on [—m, 7], called
the spectral distribution of f. The spectral distribution has the decomposition
= [tq + pts, Where p, is absolutely continuous while pu, is a piecewise constant
function with at most n — 1 jumps. This allows us to write each interpolation

condition in integral form:

= — , du(6
1 T ,
= 5 ag(e”)du(f) = wy
™ —T
and
Ly = £ 722
g! g 21 ), (e — z)it! K
1 4 ;
= Wiy, forj=0,1,...,m—1
whenever z, = zxy 1 = ... = Zpam—1. By a generalized pseudopolynomial we
mean a complex function of the form f(z) = ag + Z (apon + arags), where

k=1
0 <n < ooand (ag,ai,...,a,) € Rx C". The order or degree of the generalized
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pseudopolynomial f is defined as the largest k such that a; # 0 (thus the order
is zero if f is a constant function). Q(n,A) denotes the set of all generalized
pseudopolynomials of order at most n with (ag,ay,...,a,) € RxA" where A C
C. We induce a topology on this set by the || - ||oc norm on the unit circle:
|| flloo = esssup,er |f(2)], f € Q(n, A). Since oy has no poles on the unit circle,
it can be seen that ||f||~ is well-defined for all f € Q(n, A). We also define
Q4 (n, A) to be the subset of elements of Q(n, A) which are strictly positive
(> 0) on T. The restriction of any element of Q. (n, A)\{0} to T is a rational
spectral density of McMillan degree at most 2n, thus we shall often view any such
element as a spectral density instead of a generalized pseudopolynomial. Hence,
to each d € Q. (n, A)\{0} we may associate a unique outer rational function (i.e.,
having no roots and poles in D) of McMillan degree at most n, denoted by ¢(d),
which is the unique canonical spectral factor of d satisfying: ¢(d)(0) > 0 and
|6(d)(2)]* = d(z) Vz € T.

Let 7(2) = H}_o(1 — zi2) and H, = span{l,aq.,...,an.}. It will later
prove useful to note that H, has an equivalent description as H, = {f | f =
2,0 is a polynomial of degree at most n} [48]. Then, by definition, any f €
m\{()} can be written as f = g + g. with g € H, NC. Letting g = 2,
we have that f = % and by spectral factorization of the numerator we
may write f = f—f for some outer polynomial ¢ with deg(¢) < n. Therefore,

Q. (n,CN\{0} = {f | f = &£, € is some outer polynomial, deg(¢) < n}.

TsT

Define the mapping @ : R x C" — Q(n, C) by:

n 1 .
Q<QO7 q1,42, -+ QH)(Z) ={qo + Z §(Qk:ak‘ + Qkak*) (52)
k=1

Clearly, @ is a bijective map. Let ¥ = 21 with n being a polynomial as defined
in Theorem 5.1.2. Then ¥ € 9, (n, C)\{0}. Let us now consider a modification
of the functional Jy we had encountered in the preceding chapters, which we shall
again denote by Jy. This modified functional Jy : Q=1 (Q4(n,C)) — RU {oco} is

defined by:

Ju (q) = R{w*q — (¥,log Q (9)) }, (5.3)

where w = [wowy ... w,|", =g q1 ... )" and (f,g9) = o= [ f(e?)g(e™)*db.

The (modified) functional was first introduced and its properties studied for
U € 9,.(n,C) in [14]. As before, these properties continue to hold for ¥ €
09 (n,C)\{0} and they are same ones as given in Theorem 3.3.2 with Jg now
as being defined by (5.3). It is important to note that although Chapters 3 and 4

treat the the rational covariance extension problem, where 2o = 2y = ... =z, =0
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and ay(z) = 5 for k = 0,1,...,n, it can be seen that since Q(n,C) lies in
a finite dimensional space (i.e., span{a,...,a,} € H,) and contains functions
continuous on T, the analysis therein carries over mutatis mutandis to the current
setting without technical difficulty (one simply substitutes 2* with a.(z) and ¢,
with wy, etc).

For any ¢’ € Q~1(Q4(n,C)), let V,Ju(q) again denote the directional deriva-
tive of Jy at the point ¢ in the direction of ¢ — ¢, i.e.,

Ju(g+ M —q)) —Tu(q)

Vy-olu(q) = 1;551 A : (5.4)

Then we again have that Jy has a unique minimizer ¢,,;, which is stationary (i.e.,
Vo-odu(@min) = 0V¢ € Q71(Q+(n,C))) and lies in Q1 (Q4(n,C)) whenever
U is positive definite on T [6]. Tt follows that b in Theorem 5.1.2 is given by
b =7¢(Q(¢min)) and a can be found by solving the equation a.b + ba, = ¥ [14].
As for the case where U has zeros on T, we have the following generalized version
of Theorem 4.2.2:

Theorem 5.2.1 Let 1 be as in Theorem 5.1.2, ¥ = 1 € 09, (n,C)\{0} and

Gmin = argmin  Jy(q). Then:
4€Q (21 (n,0))

1. Vy_w(@min) = 0 for all ¢ — q € Q= (Q+(n,C)) if and only if the pair
(a,b) as defined in Theorem 5.1.2 is such that f = § € H>.

2. qmin € 0Q1(n,C) and Vy_Ju(qmin) > 0 for all ¢ € Q71 (Q4(n,C)) if and
only if the pair (a,b) as defined in Theorem 5.1.2 is such that f = ¢ has a
pole on T. Vy_oJw(qmin) is then given by:

Vq’qu\Il (szn> - Z Kl%{z Oék*<€iel)<q1/g - Qmm,k) }7 (55)
=0 k=0

wherem < n, Ko, K1, ..., K,, are some positive constants and 6y, 01, ...,0,, €

(—m, ], with 0; # 6; whenever i # j, are the discontinuity points of the

spectral distribution of f, i.e., €0, ... e are the poles of f on T.

Moreover, in both cases 2 = ¢(Q(qmin)) and all roots of Q(qmin) on T, includ-

T

ing multiplicities, are also roots of V.
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Proof. Although the proof is analogous to that of Theorem 4.2.2, for the
sake of clarity we shall here just detail a possibly not so obvious part in the
adaptation of the latter proof needed to establish Point 2 of the theorem. To
this end, as in Chapter 4, let us write f = f, + fs, where f, € C N"H> while
fs € C has one or more simple poles on T. We also have the representation
fal2) = 5= [T, S72dpa(0) and fu(2) = 3= [T SF2dps(9), where pi, and pig are,

-7 e¥—z 2 J—7 e —2
respectively, the absolutely continuous and singular part of the spectral distribu-

tion p of f. Since du,(0) = R{f.(e")}d0 and dus(0) = >°;", Ki6(0 — 6,)d6 for
some positive constants Ko, K, ..., K, (§(z) denotes the Dirac delta function),
we have that fo(zx) = (fa + fas, i) and fo(2r) = D220 Kiag(e”) (with obvious
modification if zj is a repeated interpolation point). Thus, we obtain the relation
f(zr) = fa(zk) = wi — (fa + fass ) = D 1to Kiau (), in analogy with that
obtained in Chapter 4 for the case zo = z; = ... = z, = 0. The relation is a key
one for establishing (5.5). The remaining arguments are then straightforward to
adapt from the proof of Theorem 4.2.2. O

An important conclusion to be drawn from Theorem 5.2.1 is that, regard-
less of whether U has zeros on T or not, the polynomial b of Theorem 5.1.2
associated with W is always given by b = 7¢(Q(Gmin)). Once b is computed,
a can be obtained by multiplying the coefficients of b by a certain matrix W
which only depends on the interpolation data (zy, wy), (21, w1), ..., (zn, wy) (see,
e.g., [18, 49] for further details), i.e., if a(z) = [1z ... 2"|[aga; ... a,])’ and
b(z)=[1z ... 2"]|[boby ... by)" then:

[ag ay ... an)" = Wlbg by ... b,]". (5.6)

The only discrepancy is that when W has zeros on T, Jy may have a minimizer
which is not a stationary point.

As we have remarked in previous chapters, although properties of Jy make it
convenient for analysis, it is not suitable for numerical optimization, especially
when ¢,,;, is close to or on the boundary. This is due to the fact that the

condition number of the Hessian of Jy tends to oo as ¢, goes to the boundary

of @71(Q(n,C)). Define

D(d)(z) = dezk
k=0

and D,, = {d = (do,dy,...,d,) € Rx C" | dy > 0,D(d)is outer}. Then for
U € 9Q,(n,C), one way to circumvent the difficulty with Jy, developed in [50,

72, 60, 59, 58], is to reformulate the optimization problem. Recalling from earlier
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that every Q(q) € Q. (n,C)\{0} can be written as Q(q) = 2L for some

TxT

d € D,, introduce the modified functional Jy : D,, — R U {o0}:
D(d)*D(d)’qj>.

T«T

Ju(d) = d*Kd — <10g

where d = [dy dy ... d,)" and K is a positive definite Hermitian matrix which
depends only on the interpolation data {(zx,ws)} k=01, ,; an expression for K
in terms of zg, z1, ..., 2, and wo, wy, ..., w, are given in [58, 72, 60, 59]. Observe

that Jg can be rewritten as:
Ju(d) = d*Kd —2R{(log D(d), )} 4+ 2R{(log 7, V) },

where the last term does not depend on d and is not essential in the ensuing

analysis. The main idea is, instead of minimizing Jy over Q='(Q4(n,C)), we
now minimize Jy over D,,.

It has been argued in [50], that the new functional is much better suited for
numerical treatment as the hessian and its condition number does not blow up
as d goes to the boundary of D,,. However, the modified optimization problem is
no longer convex since D,, is not a convex set. Fortunately, due to the bijective
correspondence between 9 (n, C)\{0} and D,,, Jy has a unique global minimum,
and it has been shown that it is locally convex around the global minimum. This
makes it possible to find the global minimum of Jy by constructing a convex
homotopy and solving a sequence of locally convex optimization problems as
detailed in [50, 72, 60, 59]. We have the following new result which has only been
shown previously for ¥ € Q. (n,C):

Lemma 5.2.2 For ¥ € 09,(n,C)\{0}, Jv again has a unique minimizer on
D,,. Moreover, this minimizer is also stationary.

Proof. Let s denote the bijective map that sends a € D, to Qil(W) €
Q- 1(Q.(n,C))\{0} and note the relation

Ju(a) = Ju(s(a)).

Let ¢nin be as in Theorem 5.2.1 and define d= 5 Y @min). Using the fact that
Jo(qmin) < Jw(q) Vg € Q=1(Q4(n,C)) (by Theorem 3.3.2), we then have that

A

j\p(d> = JW(Qmm)
< Ju(q) Yq€Q1(Qs(n C))\{qmin}
= Ju(s'(q)) Vg€ Q1 (Qs(n,C)\{gmin}-
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Therefore, Jo(d) < Jg(d) for all d € D,\{d}, implying that d is the unique
minimizer of Jy. This proves the first part of the lemma.

Define the directional derivative of Jy in the direction of d’ — d analogously
to (6.12) and denote it by Vg _qJy, where d' € D,,. Note that since D,, is not
a convex set, Vy_qJy(d) is only defined for feasible d' (i.e., defined as those
d € D, for which (1 —h)d+ hd' € D,, for all 0 < h <1). Let By = {d € D, |
ess sup, et % < 00}. Then, by similar arguments to the proof of Theorem
3.3.7, we may show that Vy_4Jy(d), d € By, is given by:

Va_aJo(d) = 2§R{d* Z( gz \d, — d)}, (5.7)

where g;(z) = z°. Let d,n;;, be the unique minimizer of Jg. Since dpin = 5™ H(Gmin),
it follows that D(dyin) = 70(Q(qmin)) and dy, € By. Now, let Wy, k=1,2, ...,
be a sequence such that VU, € Q. (n,C) for all k£ and ¥}, converges to W uniformly
on T, ie., limy o ||U — ¥ylle = 0 and let ¥, = argmin,.p Jy,(d). Then as

shown in the proof of Theorem 4.2.2 :

khm | dimin — qum‘n||2 =0= khm | D(dimin) — D(dfnmmoo-
Furthermore, it has been shown (see, e.g., [58]) that Vy_gJw, ( = 0 for all
feasible d’ € D,, and for all k. Now, by the uniform convergence of ¥, to ¥ and

D(dk . ) to D(dpmm) as noted above, we have:

man

mzn)

lim Wz ) = L)

min

for a.a. z € T, (5.8)

with the exceptional points being the roots of D(d,,;,) on T (which are also roots
of U by Theorem 5.2.1). Since Wy = D(d¥, )D(Wd~, ). + D(d*,, ) .D(WdE,)

min min min min

(see Eq. (5.6) and the discussion on the associated page), we have that

u, vt .+ D)y
= ||D(Wd min/t D(Wd
o 5l = [P0V + Dy POV

< DOV + [Pk | povas,,)

mzn)

= 2|D(Wdp) |-

Now, since D(Wdk . ) "= INe= D(Wd,in) as k — oo, it follows that

min

min

sup || D(WdE, ) ||oo < 0.
k>1
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Consequently,
‘Ifk ‘
su < 00, 5.9
, the sequence { || ||oo,l<: = 1,2,...} is uniformly bounded. Now, by

pluggmg (5.8) into (5. 7) and invoking the Lebesque Dominated Convergence
Theorem [54] by using (5.9), we get:

Vai—aTv(dmin) = hm 2§R{<dfnzn)* (d —db,,) —

Z< )a‘I’k>(d§ - dfnm,i)}

= hm Vd' djwk( i)
= hm 0=0 for all feasible d' € D,,.

k—o0

This shows that d,,;, is a stationary point and completes the proof of the lemma.
(I

Lemma 5.2.2 shows a striking difference between [Jy and Jy: for
U € 09, (n,C)\{0}, the minimizer of Jy is always stationary while the minimizer

of Jy may not be. From the lemma the following is easily obtained:

Corollary 5.2.3 The functional Jy is locally strictly convex in a neighborhood

of its unique minimaizer.

Proof. Again, let d,,;, denote the unique minimizer of Jy and let By be
defined as before. Recall that d,;, € By since all roots of D(dnin)«D(dpin) on T,
counting multiplicities, are also roots of W. For d € By and a feasible d’, define
the function fyo on [0,[|D(d —d)|le) C R by fouw(x) = Ju(d + xm).
Let iz fa.@ denote the right sided second derivative of f;». Then we may,

analogously as before, show that 5 fd o is given by (recall that g;(z) = 2%):

&2 (d — d)*K(d — d)
(z) = 2R
Zya2 @) { Dl —d
9i9;
ZZ< : V) x
d' —d )
= = Pl 2 )?

(di — di)(dj — dj)}
ID(d = d)|z,
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In particular, % fa.r(0) exists and is bounded for all feasible d’ € D,,. Since

dpmin is the unique stationary minimizer of Jy (by the lemma) and di% Jdpin
is continuous on [0,0) for some § > 0, we must have that di% fdpnin.a 1S positive
definite on [0,d") for some 0 < ¢ < 4. Hence, Jy is strictly convex on any
sufficiently small convex subset of D,, containing d;,. O

Lemma 5.2.2 and Corollary 5.2.3 justify the use of the homotopy continuation
method for finding solutions of Problem 1 corresponding to 1 with spectral zeros
on the unit circle. Although the functional is not globally convex, we do have
a unique stationary minimizer and local strict convexity around that minimizer.
This is enough to allow us to use a homotopy continuation to circumvent the lack
of global convexity, and solve a sequence of locally convex problems, as is done
for the case where all spectral zeros are strictly inside the unit circle. In the next
section, we put our assertions to the test by applying the continuation method
to compute the different kinds of possible solutions as summarized in Theorem
5.2.1.

5.3 Numerical examples

In this section we present numerical results from application of the continuation
method for computing solutions of Problem 1 with spectral zeros on T. Al-
though our results have been developed for a general case, in the examples we
restrict our attention to the rational covariance extension problem, i.e. zy =
21 = ... = z, = 0, which is the special problem of interest in this thesis.
Moreover, to avoid complex arithmetics, we shall only consider the real case,
where wo, wy,...,w, € R and ¥ € Q,(n,R)\{0}. We implement the homo-
topy continuation algorithm as described in [50] and use the stopping criteria:
em = ||V Tu(dn) — VTg(dm_1)||2 < € for a specified tolerance ¢ > 0, where V. Jy
denotes the gradient of Jy and cfm denotes the iterate (approximation of d,,;,) at
the m-th iteration of the algorithm. In all examples, we take the step size p = 0.1
(see [50, p. 1196]) and set ¢ = 1078, The computations were executed in Matlab
with double precision, but to avoid unnecessary clutter, we shall only display the
numerical results up to four digits behind the decimal. In the following, 7 has

been chosen in accordance with Theorem 5.1.2.

Example 5.3.1 Let the true f € C be:

(z—=2)(z—1)

f(z) = (z—4)(z—5)
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Then wy = 0.2, wy = —0.1050 and we = —0.0023. Suppose we choose n(z) =
(z — 1)(z — 0.74053618) having a root at z = 1. The algorithm returns d,;, =
(3.6694, —1.6512,0.1835). Whence, b(z) = 3.6694 — 1.6512z + 0.18352% and a(z)
can be computed to be a(z) = 0.3669 — 0.5504z +0.1835z2. The computed solution
f 18:

; 0.3669 — 0.55042 + 0.18352>

I = Sa691 - 165125 + 0183522
2 — 32+ 22
20 — 9z + 22’

which happens to coincide with the true solution. The example illustrates the case
where there are spectral zeros on the unit circle, yet b is in the interior of D, (cf.
Point 1 of Theorem 5.2.1). Another example of this type had also been given

in Bxample 3.53.4 of Chapter 3 but was computed using the convex optimization
approach of [5].

Example 5.3.2 Let the true f € C be:

z— 2

fl2) ==,

Then wy = 1, wy = —0.125, and wy = —0.0313. Now, we choose n(z) =
(z+1)(2—0.38196601). The algorithm returns dp;, = (1.0093,0.7569, —0.2523).
Thus, b(z) = 1.0093 4 0.7569z — 0.25232% and a(z) can be computed to be a(z) =
0.5046 4 0.2523z — 0.252322. Thus, the computed solution is:

; 0.5046 + 0.25232 — 0.25232>

T = 100934 0.7569- — 025232
B —2—z+22 22

—4—32+422 2-4

It may be inspected that both a and b has one root near —1 (which should cancel
in the absence of numerical errors). This example serves to illustrate the case
where a,b and ¥ all share a root on T and 3 € H*. Note that another example

of this type had been given earlier in Example 3.3.5 of Chapter 3.

Example 5.3.3 Let the true f € C be:

2—2 11+4¢€%z 11+e %6z

z—4 41 —¢isy  4l—e o2

f(z) =

and note how f has two simple poles on T. Then wy = 2, w; = 0.7410, wy =
0.4687, and ws = —0.0078. Set n(z) = (2 — €'5)(z — e7%5)(z — 0.38196601).
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The algorithm returns dy,;, = (1.0092, —2.0004, 1.4463, —0.2523). Thus, b(z) =
1.0092 — 2.0004z + 1.44632% — 0.252323, a(z) = 0.5046 — 1.1263z + 0.94162% —
0.25232% and the computed solution f 18:

JE( ) = 0.5046 — 1.1263z + 0.941622 — 0.25232°
W= 1.0092 — 2.00042 + 1.44632% — 0.252323°

It may be inspected that b has roots almost at 4, e'c and e”'s , but a does not. The

example serves to illustrate the case where the true solution f is an unbounded
solution with poles on T (cf. Point 2 of Theorem 5.2.1).

5.4 Concluding remarks

In this chapter we have shown that a certain homotopy continuation method,
originally due to Enqvist, for computing solutions of degree constrained rational
interpolation problems with strictly positive parametrizing functions, remains
applicable when the parametrizing function is non-strictly positive definite (i.e.,
have zeros on the unit circle). This includes, as a special case, solutions with one
or more poles on the unit circle. It was not previously known that this method
can handle such cases, although it has been observed [72, 59] that it is able to
compute solutions with poles very close to the unit circle with high accuracy.

A potential advantage of the homotopy continuation method over the alter-
native method proposed in [49] is that of generality. Indeed, it has already been
adapted for computing strictly positive and absolutely continuous solutions of
more general moment and analytic interpolation problems with a complexity con-
straint [58]. Therefore, generalizations of the developments in this chapter may
allow for computation of non-strictly positive and non-absolutely continuous so-
lutions of these more general problems. Moreover, in [74, 75] fast algorithms have
recently been proposed for the original convex optimization approach of [5, 14]
and, because of some “structural similarities” between that approach and the
continuation method, it would be interesting to investigate if similar fast algo-
rithms can be developed to solve each of the local convex optimization problems
in the continuation method. These are some topics which can be considered for

future research.



Chapter 6

Spectral Factorization of a Class
of Matrix-Valued Spectral

Densities

6.1 Introduction

In this chapter we now develop a new approach to spectral factorization as mo-
tivated and outlined in Chapter 1, Section 1.1, using the ideas and convex opti-
mization techniques from Chapters 3 and 4.

Instead of directly approximating a spectral factor as with the methods de-
scribed in [64], the strategy employed here is to construct a rational approxima-
tion of the spectral density and perform spectral factorization on the approximate
spectral density to obtain a rational shaping filter. However, the latter spectral
factorization need not be performed separately, but becomes part of the pro-
posed procedure thanks to the continuation method described in Chapter 5. The
main question here is whether the approximate canonical spectral factor (i.e., the
unique spectral factor which is positive at the origin) that is obtained in this way
will be a good approximation of the true canonical spectral factor. This question
is equivalent to asking whether the operation of taking canonical spectral factors
is continuous. It has recently been shown that such an operation is sequentially
continuous: Given a sequence of spectral densities which converge to a limiting
spectral density (in the space of functions integrable on the unit circle) then their
canonical spectral factors will also converge to that of the limiting spectral den-

sity if a uniform log-integrability assumption on the spectral densities is satisfied

68
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[15] (for a related result, see also [76]). This property is then exploited to en-
sure that the resulting approximate canonical spectral factor is close to the true
one in an appropriate norm. In particular, we first derive some easily verified
sufficient conditions which guarantee uniform log-integrability of a sequence of
spectral densities.

The approximating rational spectral densities are constructed using the the-
ory of degree constrained rational covariance extensions studied in Chapters 3
and 4. Under some mild regularity conditions on a given spectral density, theo-
retical results will be derived to show that certain covariance matching rational
spectral densities, and also their canonical factors, will converge to, respectively,
the given spectral density and its canonical spectral factor (in the appropriate
vector spaces). Based on this construction a new algorithm is proposed which
give freedom in selection of spectral zeros for the approximating spectral densi-
ties. Conditions on the selected spectral zeros for convergence of the algorithm
in ‘H? and H> will be given as well as a heuristic scheme for their selection.

In the penultimate section of this chapter, several simulations are executed in
order to compare the performance of the new algorithm over the popular maxi-
mum entropy method for spectral factorization of possibly non-rational spectral
densities having one or more zeros on or close to the unit circle. As discussed in
Section 1.1, the maximum entropy method, while being able to handle quite a
general class of spectral densities, suffers from slow convergence when the spectral
density is non-coercive [12, 9, 10]. This can lead to approximate rational canoni-
cal spectral factors of unnecessarily high degree because each iteration increases
the degree of the approximation. The comparative simulations indicate advan-
tages of the new algorithm offers over the maximum entropy approach: lower de-
gree approximations with lower approximation error (defined in a certain sense).
In particular, in two simulations we successfully construct approximate rational
canonical spectral factors for the non-rational and non-coercive Kolmogorov and
von Karman spectral densities which are of interest in the study of atmospheric
and wind turbulence.

This chapter is organized as follows. In Section 6.2 we introduce some addi-
tional notation and recall some definitions and results from the literature. Follow-
ing that, in Section 6.3 we discuss a result on sequential continuity of the spectral
factorization mapping. In Section 6.4 we derive a new set of easily checkable and
sufficient conditions for uniform log-integrability of a sequence of spectral den-

sities. In Sections 6.5 and 6.6 we develop the theoretical foundation of a new
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approach to spectral factorization and introduce a new spectral factorization al-
gorithm for a class of matrix-valued spectral densities. We then present a number
of numerical examples using the proposed spectral factorization algorithm in Sec-
tion 6.7. Finally in Section 6.8 we give the conclusions of this chapter and discuss
potential applications of the results as well as directions for future research.

The discussion of this chapter is adapted from the papers [77, 66].

6.2 Additional notation and definitions

First we introduce some additional notation which will be required for this chapter
and generalize some of the definitions from previous chapters as well as recalling

some definitions and relevant results from the literature.

e R{A} = A+ A* denote the hermitian transpose and hermitian part of a
complex matrix A, respectively.

e A pseudopolynomial is a C*'-valued (with [ € N) function f of the form
f(z)= Z A;2", where 0 < m,n < oo and 4; € C¥! for i = —m, ..., n.

t=—m

e The || - ||, norm of a matrix A € C™*™ is defined as [15]:

1Al = { (Tr{(A*A)”/Q})’l’ if 1 < p< oo,

SUPyecr,|v)|<1 | Av]] if p = oo.

e 1 denotes the Lebesque measure on T.

o [P

mxn?

T to C™*" with a finite || - ||, norm defined by:

1 < p < 00, denotes the space of measurable functions mapping from

1l = { (G pdn)* i1 <p < oo
esssup,er ||[f(2)|le  ifp=o00
p

If n =1, we write L,,,,, simply as L? .

p

mxn Raving an

e HE ..., 1 < p < oo, denotes the subspace of functions in £

analytic continuation from T to D. If n = 1, we write H?, ., simply as H?,.

e H, denotes the parahermitian conjugate of a C"™*"-valued complex function

H: H.(z) = H(z*"1)*.
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or LP

If H is a rational element of H% D n

nxn then the degree of H, denoted
by deg(H), is defined to be the McMillan degree of H. Let P,, denote the linear
space of C"—valued trigonometric polynomials on T. It is well-known that this
space is dense in LP for all p € [1,00). In a similar fashion we define the linear
space P to be the set of C"—valued polynomials on C. We may view P as a
linear subspace of P,. A function p € H2 ., is said to be outer if pP;F = H2, i.e.,
the set of products pP;’ is dense in H2 [15]. In the special case where n =1 (the
scalar case) and p is a rational function, it is known that p is outer if and only if
all its zeros and poles lie in C\D.
A function W which maps from T to C"*" is a spectral density if 1) it is
in £}, such that W(e") =

H(e?)*H(e"?). Note that the definition implies that W* = W and W is non-
negative definite a.e. T. The function H is called a spectral factor of W. A

and 2) there exists an outer function H € H2,,

spectral factor can be uniquely specified if a condition is imposed on its value
at the origin. We call the unique spectral factor which is positive definite at the
origin the canonical spectral factor (CSF). We say that W is rational if each ele-
. (o0
ment W;; is of the form W;;(e) = % for some scalar pseudopolynomials P;;
and @;;. A precise characterization of spectral densities is given in the following

classical result:

Theorem 6.2.1 ([39, 42, 1, 64]) A non-negative definite function W € L}

nxn

is a spectral density if and only if [, [logdet W (z)| u(dz) < oo.

For a function f : T — R we write f > 0 (f > 0) if f is positive (non-
negative) definite a.e. T, and f > ¢ (f > ¢) will be taken to mean f —g > 0
(f —g>0). A spectral density W is said to be coercive if W > § > 0, otherwise

1t 1S non-coercive.

6.3 Sequential continuity of the spectral factor-
ization mapping

Let W be a spectral density and let ®(W) denote its unique CSF. Then the
mapping ® : W +— ®(W) is called the spectral factorization mapping. It was

recently shown in [15] that the mapping ® is sequentially continuous, that is
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Theorem 6.3.1 Let W be a spectral density, and let {W, },en be a sequence of

1

nxn s 1T — 00. Then the following are

spectral densities such that W, — W in L

equivalent:
1. The sequence {logdet W, },en is uniformly integrable.

2. d(W,) — &(W) in H?

o m @S T — 00.

Recall that a family of scalar measurable functions {X, | v € I'} parametrized
by a non-empty set I' on a measurable space (£, F) with measure M is said to

be uniformly integrable if lim, .o SUp, cr f{w€Q||X7(w)|>a}|X7(w)|M(dw) =0.

Remark 6.3.2 We shall refer to the condition in Point 1 of Theorem 6.5.1 as

uniform log-integrability.

Several conditions which are equivalent to uniform log-integrability are given
in [15, Proposition 4.2]. However, these conditions are general and do not indicate

how to construct a uniformly log-integrable sequence {W, },cn which converges

to W in L}

~«n- For this reason, we shall shortly develop more explicit sufficient

conditions.

6.4 A sufficient and verifiable set of conditions

for uniform log-integrability

In this section we shall derive a new set of conditions on the sequence of convergent
spectral densities and the limiting spectral density which ensures that the uniform
log-integrability condition of Theorem 6.3.1 is satisfied. To this end, for av > 0,

let us define:

A(a) = {z€T||logdet W,.(z)| > a},
A(a) = {z€T|detW,(2) > e},
A(a) = {z€T|detW,(z) <e *}

and note that A, (a) N A,_(a) = ¢ and A, (a) = A, (a) U A,_(a). The set
A, () is the collection of points at which det IV, has “large” values and which

may grow to oo as o — oo, while A,_(«) is the set of points where det W, take
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on “small” values and can diminish to 0 as a—o0. Then we have the following

inequality:

sup/ |logdet W,.(2)|dp < sup/ log det W,.(2)du
Ar(a) A (@)

reN reN

reN

+ Sup/ — logdet W,.(2)dp. (6.1)
Ar—(a)

The main idea here is to derive sufficient conditions for each of the two terms
on the right hand side of (6.1) such that they go to 0 as &« — oo. It turns out that
finding conditions to guarantee the desired effect on the first term is relatively
easy. As for the second term, the conditions are more complicated. To have
that term go to 0 as a — o0, the idea is to impose conditions which exclude the
existence of a set of positive Lebesque measure on which det W, decays to zero
as r — oo. Before going into the formal details, we note the following matrix

inequality:

Lemma 6.4.1 For any non-negative definite matric A € C™", logdet A <
[A]l1-

Proof. Note that the result is trivial if A is singular, since in this case we
have logdet A = —oo. Therefore we assume that A is positive definite. Let
01,09, ...,0, be the singular values of A, with o; > 09 > ... > 0. Since A is
positive definite, we have that det(A*) = det(A) and logdet A = 3 log det(AA*) =
Y py log o). On the other hand, we also have that ||A||; = Tr((AA%)z) = Y he 10k
and the result follows since logo, < o for k=1,...,n. O

First, let us make the following assumptions:

Al. esssup,cr [|[We(2)]]1 < oo for all 7 € N.

1

wxn t0 Was r — o0.

A2. The sequence {W,}, .y converges in £
Now we can show the following result:

Lemma 6.4.2 Under Assumption A1-A2:

lim sup/ log det W,.(2)p(dz) = 0.
Arg (o)

=00 reN

Proof. By Assumption Al and A2 we have i) lima—.co SUp,ery [, (o) IW(2) —
W (2)|l1pe(dz) = 0 and ii) lim,— oo sup, ey (A4 () = 0 (if the latter is not
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true then we would have sup, ¢y ||W;||1 = oo which contradicts Al and A2). It
then follows from ii that iii) lim, . SUp,cy fAT+(a) W (2)|lip(dz) = 0. Since
|W(2)]1 < [[W(2) = Wi (2)|[1 + [[W(2)]|1, we get from i and iii that

i sup [ W52 ) =
Art (o)

QA—0 reN

Lemma 4.1 then gives lim, .o sup, ¢y fAM(a) log det W,.(2)u(dz) = 0, as desired.
(I

Let us impose three further assumptions on {W,.},en:
A3. W,(e?) is a piecewise continuous function of @ for each r € N.
A4. Let Z, be the set defined by:
7, = {zo € T | liminf f, = 0 Vneighborhoods U of 2y, f, = inf det WT(Z)}
r zeUNT
Then the cardinality of Z, is finite.

A5. Let Z, be the set of all zeros of det W, (i.e., all points zy € T for which
inf,cpnr det W,.(2) = 0 Vneighborhoods U of zy). Then IM;, My, Ay, Ay > 0
such that for any r € N and any 6, € (—m, 7] such that ¢+ € Z, U Z,:

det W, () > My |0 — 6o,|"? V0 € [0y, — A1, 00, + Ao) N (=7, 7). (6.2)

Remark 6.4.3 Assumption A5 implies that the cardinality of Z,. is uniformly

bounded (away from oc).

We have the following result:

Lemma 6.4.4 Under Assumption A3-A5:

a—00 reN

lim sup/ — log det W,.(z)u(dz) = 0.
A (@)

Proof. Let 6,1,....6,,, be the angles (in (—m,7]) of elements of Z, U Z,.
Then n, < L for all r, where L is some positive integer. Define:
A_(a) = {#€ (-7 ]|’ €A _(a)} and
Ar_ila) = A_(a)[ {0 € (—m 7] | — A1 <0 -6, < Ao},

fori =1,...,n,. Note that 6, € fl,._(oz) for k =1,...,n, and that AT_,k can
be empty for some £’s. Clearly, Assumption A3-Ab5 imply that for some o large
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enough and o > max {ao, —log (Ml (min {Aq, AQ})M2> }, A,_ () are disjoint
for k =1,...,n,, independently of r, and flr_(oz) = Z;lAr—,k(Oé)- Furthermore,
without loss of generality we may take M; to have value less than 1. Hence the

following holds:

/ —logdet W,.(2)du = Z/ — log det W,.(e)d®,
Ar_(a)

k=1 A'r k(a)
< Z/ —log (M]0 — 6, ) 0
Ay k()
< —p(A—(@))log M,

Y /A log |6 — 64| d6. (6.3)
k=1 Ar— k(@)

Let a3 = max {ao, —log (M1 (min {A, Ag})M2> } Assumption A3-A5 also im-
ply that for & > oy there exists a number €(«) > 0, dependent on «, such that
lim e(a) = 0and A,_ j(a) C 0,4 +B(a) = {0 € (=7, 7] | 0 = 0,1 + w;w € B(a)},

where B(«) is a set independent of r defined by B(a) = {0 € (—m, 7| | —e(a)A; <
0 < e(a)Ay}. Therefore from (6.3) we have:

/ —logdet W,(2)dp < ZA (8, + B(a)) log M,
(@)

+M2 / — lOg ‘9 — 9r,k|d97
]CZ; 9r,k+B(0‘)

< —LA(B(a))logM1+LM2/ ~log |0]d6,

B(a)

where A denotes the Lebesque measure on (—m, 7. Since the right hand side of

the last inequality — 0 as o — oo independently of r, we conclude that

lim sup —log det W,.(2)u(dz) = 0, which is the statement we had set out
A= reN JA,_(a)
to prove. O

A direct consequence of Lemma 6.4.2 and Lemma 6.4.4 is the following theo-

rem:

Theorem 6.4.5 Under Assumption A1-Ab:

lim sup/ | logdet W,.(z)|u(dz) = 0,
Ar(a)

@00 reN

i.e., the sequence {logdet W} _ is uniformly integrable.
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Proof. Follows directly from Lemma 6.4.2 and Lemma 6.4.4 by taking the
limit o« — oo on both sides of inequality (6.1). O

The above theorem has the following important corollary:

Corollary 6.4.6 Let W € L] with || det W — f||; = 0 for some spectral density
f € LY having a finite number of zeros on' T (a zero is as defined in Assumption

A5) . If {W,},>1 is a sequence of piecewise continuous spectral densities such

that lim esssup |W(z) — W,(2)|ly = 0 then lim || (W) — &(W,)|]> = 0.
r—00 c r—o00

zeT

The corollary is a simple but useful result and relaxes the requirement W > 0
in [19, Theorem 1] (or [15, Corollary 6.2] with p = 2). We shall prove later
on, that a sequence satisfying the conditions of the corollary can be explicitly

constructed under some regularity conditions on W.

6.5 Construction of convergent rational spectral
densities with converging canonical

spectral factors

In this section we give the main ideas for the construction of a sequence of ratio-
nal spectral densities with CSFs converging to the true CSF. Let {W, },cn be a

sequence of rational spectral densities having no poles on T. We define

1 1
Ck:_/W(Z)Z_k,“(dZ) and ¢, = _/Wr(Z)z"“u(dZ) k=0,1,...
2 T 27 T

The sequences {cj}reny and {cg, }ren are the unique covariance sequences as-
sociated with W and W,., respectively. By the Riemann-Lebesque Lemma, ¢ — 0

as k — oo. The covariance sequence ¢, has the form:

Chr = CrASB + Y Dy Ak — m), (6.4)
m=0
where A,, B,,C,, and Dy,,D1,,..., Dy, , are n X n matrices with A, having

{ 1 if m=0
0 otherwise
The central idea of our construction is to require the sequence {W, },cn to satisfy

eigenvalues in D, (A, B,, C,) is a minimal realization, and A(m)=

deg ®(W,.) < nd,, (6.5a)
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cer=c¢, for k=0,1,....d,, (6.5b)

where {dr}reN is an increasing sequence of positive integers. That a sequence
{W, },en satisfying (6.5) exists and is computable is the content of the theory of
rational covariance extension with degree constraint [9, 16, 6, 48, 17, 18]. Since

|\W — W,|1 > sup||ck — crrlt > sup ||ck — crrll1, we see that the discrepancy
k>0 0<k<dy

between the first few terms of the covariance sequence of W and W, yields a lower

bound for the approximation error in £} . Therefore, it makes sense to impose

n-*

the condition (6.5b). Moreover, since it is desirable to have W, be as “simple”
as possible, the constraint (6.5a) is also well-motivated. Plugging in the Fourier

series expansion of W, in the definition of ||WW — W, ||;, we obtain:

/ 1 (2) — Wo(2)lluju(dz)
— i: R{cp2"}

+]{d <mr—1} Z D, sz} :u dZ
m=d,+1

Z R{crp2™}

where I4(z) is the mdlcator functlon for the set A and

M(dZ)+H/ R{C, A" (I — A,2)"'B,

)

p(dz) + R(W,,d,), (6.6)

1

R(W,, d,)

= || R{C, Ad’“H/(I — A.2)

If W satisfies esssup,cp [|[W(2)||1 < oo, the Fourier series of W converges to W
in £2 Therefore, the first term on the right hand side of

2 ., hence also in L}
(6.6) goes to 0 as r — oo and the following theorem is immediate:

nxn-

Theorem 6.5.1 Suppose esssup,cp |[|[W(2)||1 < oo and let {W, },en be a sequence
of rational spectral densities satisfying Assumption A4, A5 and the interpola-
tion constraints of (6.5). If Tlirgo R(W,,d,) = 0 then Assumption A2 holds and
i [2() = B(17,)] = 0.

It is reasonable to expect, at least intuitively, that there could be “many”
sequences which satisfy the condition of Theorem 5.1 if the spectral density W is
not too “irregular” . Indeed, we see later in Corollary 6.5.3 and Corollary 6.5.5
some particular instances where this is true. Moreover, we will show that the
approximating sequence {W,.} can be constructed explicitly under some further,

yet mild, assumptions on W.
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6.5.1 The scalar case

We shall give a constructive proof of the following result:

Theorem 6.5.2 Let W be a continuous scalar spectral density and |[W—U/V || =
0, where U and V' are, respectively, continuous and Lipschitz spectral densities.
If {U,},>1 is a sequence of non-negative definite pseudopolynomials converging

uniformly to U then the following statements hold:

1. If V> 0, there is a sequence {V,},>1 of non-negative pseudopolynomials
such that W, = U,(V,)™! satisfies (6.5b) (with n = 1) for all r sufficiently
large

2. If V40 but i) U (hence also V') is zero only at a finite number of points on
T, ii) W(e'?) = 0 whenever V() = 0, iii) U,(e?) = 0 only if U(e?) = 0
and iv) sup, |U,/Ul|« < 00, there is a sequence {V,},>1 of non-negative
pseudopolynomials such that W, = U,(V,) ™" satisfies 5= [ W, (2)z " p(dz) =
Ck — Sk, where sp, = Zf;l Kie*% k. € N is at mostd, — 1, Ky,..., K}
are some non-negative constants, and 6y, ...,0y, € (—m, 7| with 0; # 0; if
L F ]

In either case, {V,},>1 and {W, },>1 converge in L to'V and W, respectively.
Moreover, if deg U, < 2d,. then W, also satisfies (6.5a).

r

Let [ denote the (standard) set of all square-summable infinite sequences.
Let T'. denote the real linear space of all real-valued continuous functions on T.

Define the real linear space F. as

Fo={(q0,q1,..) €| qe = = [* e ™ W (e)df Vk > 0, for some W € I'.}.

27 J—m

Since a continuous function f is uniquely determined by its Fourier coefficients
[78, Theorem 2.4] and since the negative Fourier coefficients are merely conjugates
of the positive Fourier coefficients whenever f is a real-valued function, F, is
actually isomorphic to I'.. Therefore, we may uniquely identify any element of
F. with an element of I, and vice-versa. By endowing I'. with a topology induced

by the supremum norm and endowing F,. with a topology induced by the norm

Z R{qre™}

k=0
sum converges pointwisely for almost all z € T [78, Chapter 19]), we in fact have

llg|| = esssup (since any element of I'. is continuous, the infinite

oe(—m,m]

a homeomorphism from F. to I'.. Moreover, F, is then a closed set since I',. is. In
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the sequel, we denote the homeomorphic map from F, to I'. by ¢). The map Q) is
linear: Q(ayfi+asfz) = a1Q(f1)+a2Q(f2) for any ay, a; € R and any f1, f € Fe.
We now define some relevant convex subsets of I'. and F.. Define Il to be the
convex cone consisting of elements of ['. which are non-negative on T. We define
the convex cone F. analogously to F. by replacing I'. with I'7. In a similar
manner, we see that F is isomorphic to I'f. Endowing I'} (resp. F.") with a
topology derived from I'. (resp. F.), we also get that F." is homeomorphic to I'f
under @, i.e., if Q7 is the restriction of @ to F.f then @ is a homeomorphism from
FFtoT} . Define D, to be the subset of F." consisting of all ¢ = (qo, q1,...) € F.f
such that gy = 0 Vk > r and the trigonometric polynomial >, _, R{q.e**} > 0
VO € (—m,n]. Clearly, Dy D D, if s > r. Moreover, since the partial Fejér sums
of any f € ' are non-negative pseudopolynomials and approximate f arbitrarily
closely (for details on Fejér sums see [78]), it is immediate that U,>oD,=F. .
Recall that a function f on T is Lipschitz if || f(e?) — f(e™)|, < K| — 9|
V0,1 € (—m, 7] for some positive constant K, and observe that a scalar spectral
density W € I'f can be written as W = U/V a.e., where V' is any Lipschitz
scalar spectral density and U = WV. Let W have the covariance sequence
¢ = {cp,c1,...} €% Define ¢, = col(cy,cy,...,c.) to be the partial covariance
sequence of ¢ up to the 7" term, and let d, be an arbitrary element of D,. The

functional J" : D, — RU {co}, parametrized by ¢, and d,, is defined as:

I(g;erod,) = R{Y_ min{k + 1,2}¢igr — (Qr(dr), log Q,(a))}, (6.7)

k=0

where (f,g) = 5= [7_ f(€)g.(e")df and Q, is a map with domain D, defined by:

Qrldos @i+ ,0,0,..)(€7) = > Rfqre™}
k=0

Notice that @), can be viewed as the restriction of @) to D,.. The functional J" has
been introduced and analyzed in chapters 3 and 4 (actually, our formulation here
is slightly different from the previous chapters. However, it causes no difficulty
since the functionals in those chapters can be recovered by application of the
linear invertible transformation (qo, g1, - - -, ) — (qo, %ql, ey %qT) and redefining

D, in an obvious way). J” has the following properties:
P1. J" is strictly convex on D, and is continuous at all points except the origin.

P2. J” has compact sub-level sets and a unique minimizer in D,..
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P3. J” is infinitely differentiable along any line lying in the interior of D,.

Moreover, if J” has a minimizer ¢, which is stationary (i.e., the gradient is zero

at gs) then ggi)) satisfies <g((;l;))>9k> = ¢ for k = 0,1,...,7, where gi(2) = 2~

Note that ¢4 is always a stationary point whenever Q(d,) is positive definite [6,
Theorem 4.10].

Let us now consider another functional J : Ff — R U {oo} parametrized by

the covariance sequence ¢ and an infinite sequence d € F.f such that Q(d) = U.
It is defined as:

J(g;c,d) = R{H(q;c) — (Q(d),log Q(q))} (6.8)

where H(+; ¢) is a linear function on ., parametrized by c, defined by:
H(g;c) = lim Zmin{k‘ + 1,2} qr. (6.9)
k=0

Since ¢q € [> whenever ¢ € F, (recall the definition of F,) and ¢ € [?, it follows
that > ;- min{k + 1,2}ciqr < oo. Therefore, H(;c) is well defined Vg € F..
Let us define the convex set D.(J) = {q € F} | [;log” Q(q)(2)u(dz) < oo}
(where log™ x = max{0, —logz}); D.(J) is actually the effective domain (see, for
example, [79]) of J. Then clearly U,>1D, C D.(J). Since || - | is also a norm
on D.(J), we endow D.(J) with the topology induced by the || - || norm (this is
precisely the relative topology of D, (J) as a subset of F.": open sets in D, (J) are
sets of the form D.(J) N O for any O which is an open set of F.). Continuing
on, along the same line of arguments as for J” we may verify that J has property
P4 (given below), and property P3 with J© and D, replaced by J and D.(J),
respectively (an analogue of property P2 need not hold for J and will not be
required in the following).

P4. J is strictly convex on D,(J) and continuous on the interior of D.(J]).

In the remaining analysis, let us view Jy as a convex functional that maps
from the convex set D.(J) to R. We now derive an expression for the directional
derivatives of J following [17, 18]. Define

Ma = {q € Dc(J) | esssup Q(d)(e”)(Q(q)(e"))™" < oo}

oe(—m,m]

Let ¢ € FF, 0 < h < 1, and suppose that ¢ € Mq. We observe that if
Qg+ h(d —q))(z) = (1 —h)Q(q)(2) + hQ(¢')(20) = 0 for some zy € T and all
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0 < h < 1, then Q(¢) and Q(¢') must share a zero at the point z;. On the other
hand, if Q(¢+h(¢'—q))(z) > 0 for all z € T then Q(¢) and Q(¢’) cannot possibly
have a zero in common on T. As a result, by the mean-value theorem of calculus,

we obtain:

Q(d) (z) log Q(g+h(q —q)h)(Z)—log Q(9)(2)

=Q(d)(2) 2 1og Qg +v(¢ — 9))(2)

v=n(h,z)
Q(d)—-Q(q)
= QD)) gmemaar—ae (6.10)

for all z € T such that Q(¢)(z) > 0 (hence for almost all z € T since ¢ € Mg),
where 0 < n(h, z) < h. Moreover, ¢ € Mg implies that
Q(d)(2)

ess sup < 0. (6.11)

(e bxr Q@) (2) +n(h, 2)Q(¢" — q)(2)

Now, the directional derivative V,_,J at ¢ in the direction ¢’ — ¢ is defined as

Vo_oJ(g c,d) —1$J(q+h<q —q);;,d) —Q]](q;C’d).

(6.12)

Plugging in the definition of J into (6.12), and using (6.10) and (6.11) with the
Lebesque Dominated Convergence Theorem to bring h under the integral (this
is essentially the same argument used in [17]), and finally evaluating the limit
as h | 0, we obtain: Vy_,J(¢;c,d) = H(¢ — q) — (%,Q(q’) — Q(q)). Let
Fi denote the set of all elements a in D.(J) for which Q(a)(e”) is infinitely
differentiable With respect to 0, and suppose that Q(q) is Lipschitz and Q(¢’)

in 7f. Then quema (resp. Zq’ k) converges uniformly to Q(q) (resp.

Q")) [80, Theorem 2, p. 142] By plugging in the definition of H and by

another application of the Lebesque Dominated Convergence Theorem, we get:

Vodtaze.d) = Jin Smintie1, 20 (i - [ FEE A a0 |

q)(z

forallg € Mg andall ¢ € F/ . However, since 7/ is dense in 7, hence also in

D.(J), the preceding expression for Vy—4J(q; c,d) is valid for all ¢ € My and all

q € F.F. Now, setting g = Q' (V), hence Q(g4) is Lipschitz and ¢x € Mg, we
d *k

obtain Zmln{k +1,2} < / 632(( ))<( ))z u(dz)) = 0 for all r. Tt therefore
q#

k=0
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follows that Vg, J(qx;c,d) =0 V¢ € F, so gy is a stationary point of J and,
by Property P4, must also be the unique minimizer of J.
Suppose now that {d,},ey is such that lim ||d, —d| = 0 with d = Q~'(U)

as defined previously. Let J|, : p.: Dr — R U {oo} denote the restriction of J

to D, defined by J}D ¢;c,d) {Z min{k + 1,2}c g — (Q(d), log Qr(q)>}.

Since Q(d) = U is continuous on ’]T and is zero only on a subset of T of u-
measure zero, the analysis of J” in [5, 6] and chapters 3 and 4 readily carries
over to J |p, to show that the latter also has properties P1, P2, and P3 (with

J" replaced by J ‘ D ). Moreover, defining s, = argminJ | D (¢;c,d), then it is
" qeD,
clear that lim s, = qu. Hence, for any ¢ > 0 we will have |gx — s,|| < § by

taking large enough r. Then also ||¢ — ¢zl < |lg — s|| + ||sr — qz|| < € whenever
lg = se|| < § (recall that q,qu,s, € Dc(J)). Therefore, for all 7 large enough,
{aeDrlllg—sll <5} C{ge D) | llg — gxll < €} and:

sup == sup {Q(d) — Q(d,),log Q. (q))]
{4€Dyllg—s, <5} {4€D, |llg—s, <5}
{4€De(D)|llg—qsl<e}
< [[Q(d) —Q(d,)||D,
where D = maxX(gep, 3)|lg—g4 )| <e} / log Q(q)(e”)df|. Since lim, ., [|Q(d) —

Q(d,)|| = 0, it then follows that lim max
r—00 {g€D;|llg—srI<5}

0 for any € > 0. Due to properties P1, P2, and P3 of J|, and J", the pre-

ceding limit implies that hm sy — qur|| =0, where gz, = arg min J"(g; ¢, d,);
qeD,
for the details refer to the proof of Theorem 3.3.8 in Chapter 3 (replace ¥, Wy,

Jy and Jy, with Q(d), Q(dy), J‘Dk and J¥, respectively). Furthermore, since

( .C7d) Q)c’r’a ‘_

e — aurll < llgg — sl + [|Sr — g || and both terms on the right tend to 0 as
r — oo, we get lim ||gx — gu,|| = 0 and lim ||Q(gsx) — Q(ger)|| = 0. Conse-
quently, if V' > OTt_lfgn qy is in the interior gf Be (J) and the same is true for g4,
for all sufﬁciently large. Therefore, W, satisfies (6.5) for all r sufficiently large,

and W, = Qdr) _, py — Q) uniformly as r — oo.
Q(‘I# 'r) Q(q#)

If V' # 0 but assumptions i-iv in Point 2 of the theorem are satisfied, con-

vergence of {W,} to W in £ can again be established. Let V, = Q(qx,)-

Since V, — V uniformly, we have that for any 6 > 0 3R(0) € N such that

—§ < Vi(e?) — V(e?) < 6§ VO and Vr > R(J). However, since V,V, > 0
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and V,V, are continuous Vr, and 3R € N such that V,(¢?) > 0 Vr > R
whenever V(e?) > 0 (due to assumptions i and iii and the observation that
all zeros of V, on T are also zeros of U, [17, 18] and V, — V uniformly),
there is a continuous function fs; : T — [0,1] such that a) V' —dfs > 0, b)
(V = 6f5)(e?) = 0 if and only if V(e?) = 0, and ¢) —6f; < V, =V < § V0
and Vr > max{R(0), R'}. In particular, letting S(0) = max{R(5), R'} we may
always take fs5 to be fs; = sup,. g (V —V;)/d (and we shall do so in the sequel)
and satisfy all the requirements. Then V/V, < V/(V —dfs) = 1/(1 —dfs/V)
a.e. T Vr > S(J). Moreover, 1/(1 — gs/V) € L> for all ¢ sufficiently small,
where g5 = 0fs = sup,.g)(V — V;). To see this, first observe that property
a of fs implies gs/V < 1 a.e. T. Then we observe that gs | 0 (i.e., g con-
verges monotonically to 0) uniformly on T as ¢ | 0 and hence, since also gs <V
Vo > 0, for sufficiently small 6 we will have gs < V for all z € T except those
for which V(z) = 0. Therefore, ||gs/V]|c < 1 and 1/(1 — g5/V) < oo a.e. for
sufficiently small , as claimed, and it follows that sup,. g |V/V;]le < 00. Now,
let No(2) ={yeT||z—y| <0} for any z € T and ¢ > 0. Then we note that
V/V,. (resp. V/V, — 1) converges uniformly to 1 (resp. 0) on T\ U}, Ns(z),
where 21,. .., 2, € T are all zeros of V, for ¢’ small enough such that U, Ny (z)
is a strict subset of T. By uniform convergence of U, to U and assumption iv,
an analogous remark is also true for U, /U. Next, we make the observation that
\W,.—W|=|U,/V,-U/V| <W|U,/U—-1|V/V,+W|V/V, —1|. Then the proper-
ties of V/V, and U,./U just stated, along with assumptions i-ii and the continuity
of W, imply that both W|U,/U — 1|V/V,. and W|V/V, — 1| converge uniformly
to 0 as r — oo. To see this, let us consider the term W|U,/U — 1|V/V, and
let R” be large enough such that M = sup,.p [|U,/U — 1|oo||V/Villw < o0
(recall that sup,.g) [|V/Ville < ©0). Then, by assumption ii and the con-
tinuity of W, for any € > 0 we may choose ¢’ > 0 small enough such that
SUP{.eum Ny ()} W (2) < €/M a.e. followed by choosing r > R” which is large
enough such that supg.er\um vy, (03 [Ur(2)/U(2) = 1V (2)/Vi(2) < €/[[W]lo. In
other words, for any € > 0 3R"(e) such that |W|U,/U — 1|V/V,||oc < € Vr >
R"(¢€). The same line of arguments may then be applied to W|V/V,. —1|. In con-
clusion, we again have W, S W asr — co. That % fT W (2)z7*u(dz) = cx — sp.r
as stated in the theorem has been shown in the proof of [18, Theorem 8§].
Finally, we note that the preceding analysis remains valid if d, € D, is re-
placed by d, € Ug~,Dy. To see this, let d, be any pseudopolynomial, not neces-
sarily of degree at most r, and define J” as in (6.7). Then it may be verified that
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J" again has properties P1, P2, and P3, and if ¢ is a stationary point minimizer

of J then % once more satisfies <gg3,gk> =g¢, for k=0,1,...,7. The rest
of the analysis follows mutatis mutandis. This completes the proof of Theorem
6.5.2.

An important consequence of the theorem combined with Corollary 6.4.6 and

[19, Theorem 2] is the following:

Corollary 6.5.3 Suppose W € L' is a continuous spectral density with a finite
number of zeros on T and let {W,},>1 be a sequence as defined in Theorem 6.5.2.
Then lim || ®(W,) — ®(W)|2 = 0. If, in addition, W > 0 and LW (e) € L
then also lim [[B(1V;) — (W)l = 0.

Notice that the corollary gives a weaker condition for convergence in || - ||o
norm than analyticity (resp. rationality and boundedness) and positivity of W
given in [20, Theorem 1] (resp. [13, Theorem 3.4]) for the Szegd-Levinson algo-
rithm, and does not restrict ®(W,.) to have all its zeros at the origin. Note that

we say W is analytic if it can be continued analytically from all points in T.

6.5.2 The matrix case

For a matrix-valued spectral density W, the situation is slightly more compli-
cated. If W is a matrix-valued Lipschitz spectral density then we may write
W =W=1)~1 =det(W)adj(W)!, where adj(WW) denotes the adjoint of V. De-
fine U = PdetW and V = P adj(W) for any arbitrary scalar spectral density
P which is Lipschitz and positive definite. Then U and V are Lipschitz. The
representation W = UV ! a.e. can be viewed as the matricial counterpart of the
scalar fractional representation. If W is positive definite then so is V' and in this
case, by suitably redefining the sets I'., F., 'Y, F.f, D, and the associated norms
with their respective matricial counterparts, as well as suitably modifying the
functionals J" and J (see [55, eq. (V.5), p. 2180]), it is a relatively straightfor-
ward, but tedious, exercise to adapt the analysis developed in deriving Theorem

6.5.2 to the matrix case. Then we may show the following counterpart of Theorem
6.5.2:

Theorem 6.5.4 Let W =UV ! € [}

nxn

schitz spectral density, where U = PdetW and V' = Padj(W) for some positive
definite Lipschitz scalar spectral density P. If {U,},>1 is a sequence of positive

be a matriz-valued positive definite Lip-
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definite pseudopolynomials converging uniformly to U then there exists a (unique)

sequence {V,. },>1 of positive definite pseudopolynomials such that:

1. W, = U.(V,)™" satisfies (6.5b) for all r. If, in addition, degU, < 2nd,,
then (6.5a) is also satisfied.

2. {V.}y>1 and {W, },>1 converge uniformly to V- and W, respectively.
It then follows from Corollary 6.4.6 and [19, Theorem 2J:

Corollary 6.5.5 Let {W,},en be a sequence as defined in Theorem 6.5.4. Then
lim, o [|R(W,) — ®(W)[]2 = 0. If, in addition, W > 0 and LW (") € L2,
then also lim ||®(W,) — ®(W)|l = 0.

It is plausible that Theorem 6.5.4 and Corollary 6.5.5 can be extended to the
case where U has zeros on T. However, to do this, we must allow some spectral

zeros (see [55]) of W,. to be on T. This is currently an open problem.

6.6 A spectral factorization algorithm

We now introduce a new algorithm for spectral factorization of a special class W,
of spectral densities. ¥V, denotes the set of spectral densities W € £! which can

be continued analytically from every point z € T except from a finite number of

points wy, = € k=1,..., M, for which W (wy,) = 0 and lim,e . ., |Z_V[7“,”("Zl;lk <
oo for some integer my > 1. For n > 1, W, denotes the set of spectral densities
in £}, which are positive definite and can be continued analytically from every

point on T. We state the algorithm below followed by a discussion of the steps

involved and a convergence analysis.

6.6.1 The algorithm

Given: A spectral density W € W,, the desired accuracy ¢ > 0 and

maximum number of iterations ..

Initialize: Normalize W so that ¢y = I. Let e, ... e € T be local
minima of det W satisfying 0 < det W(eM) < a (o € R, a > 0.2. Rule
of thumb: a = 0.2). Let V; be all points in {e*,... et} from which
det W does not have an analytic continuation and V, = {1, ... et }\ V).

For [ = 1,..., L, define m; = min{k € N | lim_cp_ ., IZ;;E:;'k < oo} if
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e € Vy and m; = min{k € N | DFdet W(e') #£ 0} if e € Vy (here

Dy det W (eth) = %‘Z(ew)‘e:/\l). Let no(2) = 11y (z — v)?, where
1

v, = max{0,r;}eN (with r, = 1 — (%)W) if e € V,, and
. . 9

v = e if eM € V). Set r = 1, dy = L, and compute ¢, c1, ..., cr, and the

outer polynomial matrix Ry = ¢(Vp), where Vo = Q(argmingcp, J%(q))

(see Section 5).

Step 1. Select a point z,. € D. Then:

(a) If W is symmetric (i.e., W(e=®) = W(e?)) or 0, ¢ {0,7}, set d, =
dr—1+ 2, and 1, = n,—1(2 — 2,)(z — 2), otherwise

(b) Set d, =d,_1+ 1, and ., = n,_1(z — z,).

Step 2. Compute cq,_,41,...,¢q, and the outer matrix polynomial R, =
¢(V;), where V, = Q(argmingcp, J%(q)).

Step 3. Compute e, = L[|W — W, |\ + 1| ®(W,) — ®(W,_1)]2, where W, =
Nt (RyRye) 7L I €, > € and 7 < rpay, set 7 = r + 1 and return to Step 1.

End: z2%,.(R,)"'\/cy is the approximate CSF.

Computation of the polynomial matrix R,, r = 0,1,2,..., is given in [50,
55] and Chapter 5 of the thesis. The main idea of the algorithm is to find
a sequence zi,zs,... € D such that W, = U, V.1 satisfies (6.5) and W, —
W in L%,

Suppose €™ € V,, then det W has an analytic continuation to some open set

where U,(2) = nono.119" (2 — 2)(2 — z.).. It works as follows.

containing . Moreover, if Dy det W(e®*) = 0 for m = 1,...,l then also
(det W)™ (&) = (det W)(m)(z)‘zzew = 0 ((det W)™ denotes the m™ deriva-
tive of the analytic continuation of det ). Since €™ is a local minimum, we
have that Dp" det W (e"™) > 0. Let us take care of points z € T for which
det W(z) ~ 0. We take these to be the points e ... e*r as defined in the
algorithm. For e’ € V,, the Taylor series expansion of det W (z) about e gives
det W (z) & det W (e™™) + (—ie= )™ D" det W (™) (z — e™)™ for z sufficiently

close to €. To estimate a zero of det W(z) about e, we set det W(z) = 0

1
; i Ty , o
to get |z — | & (AT ). Assuming % = ne™ with 0 < vy < 1

. . det W (et my
for our zero estimate, we obtain |1 — ry| = (=W )™  Thys, we choose
D, " det W(e*)
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1
rno=1- (%)E and set v; = max{0,r;}e™ (hence automatically
vy = e if det W (e") = 0). As elaborated in Section 1, points z € T for which
det W(z) =~ 0 slows convergence down significantly due to slow decay of the so-
called Schur parameters [9]. The main idea in the algorithm is to reduce their
influence by suitably placing a zero of 7y in their vicinity as in [9, 5, 6], but here

we allow the degree of the approximation W, to increase as required.

Remark 6.6.1 vq,..., vy in D actually serve as estimates of zeros of det W in
some open annulus {z € C|1—0 < |z| <1} (0 < < 1). As such, other schemes
can be used to determine these points. The “rule of thumb” o = 0.2 is based on
the subjective view that it is “not too small” and “not too large”. If convergence
of the algorithm is slow, say, e, > 1072 in the first few (5-10) iterations, one may
try restarting the algorithm with « increased, or the next remark may be taken

nto consideration.

Remark 6.6.2 If det W has thin and sharp “spectral line”-like peaks then the
algorithm may perform poorly. This is because such a peak indicates the possible
presence of a (non-cancelling) pole and zero close to each other and to the unit
circle, while the zero is not included in ng [9]. To remedy the situation, let H € H?
be a scalar notch filter with narrow stop bands around frequencies corresponding to
the peaks, P = H,H and apply the algorithm to W' = W P. Then ®(W) ~ (W)
in H2.

The following theorem gives a requirement on zq, 25, ... for convergence:

Theorem 6.6.3 Let n, be as defined in the algorithm. Suppose that the polyno-
mial p,(z) = zdrzg:—g; = p, where p is continuous and has no zeros on T. Let
W e Wy (resp. Wy, n > 1), U.(2) = np(2)0:-(2) and V, is as defined in The-
orem 6.5.2 (resp. Theorem 6.5.4). Then z%n,.(®(V,))™! converges to ®(W) in
H? (resp. H2.,), and also in H* (resp. H,) if W > 0 and, when n = 1,

LW () € L2.

nxn

Proof. Assume that W has been normalized so that co = I. Let U = nop.pno«
and define V by V(e?) = limy_o U.(eMU ()W (e i’\)*l Then, by definition,
Ve Ly, and ||W UV e = 0. Note that n, = 2% n9p. and let U, = 0.1,
Then, since p, SN p, we have that U, SN By Theorem 6.5.2 and Corollary
6.5.3, or Theorem 6.5.4 and Corollary 6.5.5, whichever pair is applicable, it fol-

lows that V, and W, = U, V."! converge in £, respectively, to V and W, and

nxn?
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®(W,) converges to ®(W) in H2, and also in HSS,,, if W > 0 and, when n = 1,

LW (") € £? (by the definition of W, LW (e’) € L2, is automatically satis-
fied when W € W,,, n > 1). Since ®(W,) = ®(U,)(®(V;))™' = 2% 0. (®(V,) 7},
scaling back by multiplication of both ®(W) and ®(WV,) on the right with ,/cy

gives the desired result. U

Remark 6.6.4 Clearly, if z. = 0 for all r > R (R € N) then p, converges
R

uniformly to the analytic function p = H(l — 2;2) and the algorithm converges.
k=1

6.6.2 General approximation strategy

The algorithm requires W € W, for some n € N. If this is not the case but
W is continuous and has a finite number of zeros, then the strategy would be
to first construct an approximating analytic spectral density (which need not

be rational) in £,

Then we apply the spectral factorization algorithm to the
approximation to obtain an approximate CSF of (7). The fact that the analytic
approximation does not have to be rational affords us flexibility in choosing a set

of basis functions for the approximation.

6.6.3 Heuristic scheme for selection of spectral zeros

In Theorem 6.6.3 we gave an explicit condition on the spectral zeros zy, 2, . .. for
the spectral factorization algorithm to converge and mention a particular situa-
tion where this condition is automatically met. In the following we give an intu-
itive heuristic scheme for choosing z1, 29, . . . for scalar W. The idea goes as follows.
For each r (including r = 0) we have at Step 1 that [7_ (W, (e) — W (e'?)) df = 0.
If W, — W is not identically zero (for which the algorithm then terminates),
then it is easy to show, using the mean value theorem of calculus, that 36
such that W, (e?) — W(e®) > 0. Since a zero of W, can decrease the magni-
tude of W, in certain regions of T, the main idea now is to try to reduce the
excess (or overshoot) of W, over W at a point 6, for which the excess is rel-
atively large (preferably the largest). If W is not symmetric or 6, € {0,7}

then we place a zero at z, = Re® (with 0 < R < 1 so that z, € D) such that

Wy (2)|z—2 2 — Wea(e?r)
TS e = Ty (L

the required value of R for Step 1. In case W is symmetric and 6, ¢ {0, 7},

— R)?> = 1. From the last equality we obtain

we must place two zeros at z, and 2z} to ensure W, is also symmetric. By
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a procedure similar to the symmetric case, we find that a quartic equation

. cifr
‘1 — R|2|1 — Re‘l297- 2 _ W&/—(le(wr))

tion satisfying 0 < R < 1 is chosen. It is easy to see, since

= (0 must be solved for R and a real solu-

W (eiﬁr)
W < 1, that

the quartic solution always has such a solution. It is not theoretically guaranteed

that spectral zeros chosen by the scheme satisfies the requirements of Theorem
6.6.3 for convergence. However, in accordance with Remark 6.6.4, we may al-
ways proceed with the heuristic for a finite number of steps before terminating
the selection by setting z, = 0 for the remaining iterations. Simulation results
to be given in Section 6.7, however, indicate that this heuristic seems to work

reasonably well.

6.6.4 Reduction of computational time

The computationally intensive part in the proposed algorithm is Step 2 for com-
puting R,. This is because the homotopy continuation algorithms described
in [50, 55] involve solving a finite sequence of convex optimization problems.
However, it is important to note that the computation can be substantially re-
duced at higher iterations down to solving only one convex optimization prob-
lem. To see this, consider the case where the algorithm is convergent and F, =
|z R — 2% =1(n,_1). R |l — 0 as 7 — o0o. Since R, is invertible a.e. T
and sup,; || R, [ < 00, we also have E/ = ||z% 9. R,y — 2% (1),_1) Ry [oc — 0
as r — oo (by noting £ < ||R,_1||cEr||Rr|loo). Assuming for the moment that
2, € R and recalling that n,.(2) = (z — z)n.—1(2) and d, = d,_1 + 1, we get that
|(1 = z:2)R,—1 — R,||oc — 0. Therefore, ||(1 —2}2)R,_1 — R.||s will be small for
all r sufficiently large. In that case, we simply set the homotopy step-size param-
eter p (resp. A) in [50] (resp. [55]) to 1 and use the coefficients of (1 — 2} 2)R,_4
as an initial point in the algorithm for solving the single convex optimization
problem which gives the coefficients of R,. If z, ¢ R, then replace (1 — zz) with
(1 = 2.2)(1 — 2}z). This reduction scheme can be executed when e, < § for some
small § > 0.

If required, further reduction is possible. We note that the Hessian of the
functional to be minimized has a Hankel-plus-Toeplitz structure which can be
inverted (or solved if it is the coefficient matrix in a system of linear equations)
with fast algorithms given in [56, 57]. More importantly, however, is that these
algorithms have parallel (i.e., the Schur-type) versions which can be implemented

on parallel computers.
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6.7 Numerical examples

In this section we apply the new spectral factorization algorithm and heuristic of
the last section to compute approximate CSF’s of some rational and non-rational
non-coercive spectral densities. In each example, three different simulations are

carried out:

1. Simulation A: The spectral zero selection heuristic is applied at Step 1 until

termination of the algorithm.

2. Simulation B: The spectral zero selection heuristic is applied at Step 1 for

a finite, pre-specified, number of steps after which z, is set to 0.

3. Simulation C: All of Initialize are skipped except the computation of c¢g, 2,
is set to 0 in Step 1 for all r, and R, in Step 2 is computed recursively via

the Szego-Levinson algorithm. Step 3 is unaltered.

We set € = 107* in all simulations and apply the computational reduction
scheme of Section 6.6.4 in Simulation A and B when e, < 1072 is satisfied.
The algorithm was implemented in Matlab and executed on a computer with a
Pentium 4 processor with a clock speed of 3.2 GHz and 1 GB of RAM.

Example 6.7.1 Consider the rational spectral density W (e" )= 4_12:%?;20_829‘1’;%& 5

which is non-coercive with a zero at z= — 1. The exact CSF of W s known to
be (W) (z)=— \/1_0% The results of Simulation A, B, and C are shown
in Table 6.1 and Fig. 6.1 (in simulation B, only 5 zeros are selected with the
heuristic scheme). The exact error ||[®(Wio) — ®(W)l|e for Simulation A was

4.74526 x 107°.

Table 6.1: Simulation results

Number of | Final value Degree of Running time

iterations of e, approximation (seconds)
Simulation A 10 4.12909 x 1075 10 8.53
Simulation B 10 4.14906 x 107 10 7.593
Simulation C 151 1.98136 x 1073 151 73.063
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Simulation A o Simulation B Simulation C

Error curves (log scale)
Error curves (log scale)
Error curves (log scale)

0 5 10 0 5 10 50 100 150
r (iteration number) r (iteration number) r (iteration number)

Figure 6.1: Plots of Simulation A (left), B (center), C (right): |[W — W, ||y (dash-
dot line), || ®(W,.) — ®(W,_1)||2 (circle)

Example 6.7.2 The Kolmogorov spectral density [81], which is the spectral den-

sity of a continuous time stochastic process arising in the study of turbulence, is
1
£/ 1—o(iw)?
parameter. To use our approach, we first transform the spectral density from

defined along the imaginary axis as Wy (iw; o) = where o 1s a positive

the imaginary axis to the unit circle via the (invertible) bilinear transformation

el = % After applying the transformation we get a spectral density W on T
given by: Wik(e?; o) = Hcoséiz_o(sﬁcose). Notice that W{ has a zero at z = —1

which is not PLL (see discussions on PLL in Sections 2.6 and 2.7) and cannot
be continued analytically from that point. Setting o = 2, results from Simulation
A, B and C are shown in Table 6.2 and Fig. 6.2 (in Simulation B, only 10 zeros

are selected with the heuristic scheme).

Table 6.2: Simulation results

Number of | Final value Degree of Running time

iterations of e, approximation (seconds)
Simulation A 22 9.32203 x 107° 43 239.269
Simulation B 29 9.31331 x 107° 39 294.741
Simulation C 151 2.11347 x 1073 151 44.86

Transforming the approximate CSF of Simulation A from the unit circle back

to the imaginary axis gives us the frequency response shown in Fig. 6.3.
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Simulation A Simulation B Simulation C
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Figure 6.2: Plots of Simulation A (left), B (center), C (right): ||[W — W, ||y (dash-
dot line), [|P(W,.) — ®(W,_1)||2 (circle)
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Figure 6.3: Frequency response of approximate CSF from Simulation A

Example 6.7.3 The von Karman spectral density [30, p. 73] is the spectral

density of a continuous time stochastic process defined along the imaginary axis
1-2052(1.339)2 (iw)?
(1—-02(1.339)2(iw)2) &
used as a substitute for the Kolmogorov power spectral density of the previous

as Wy (iw;0) = 20 , where o is a positive parameter. It is often
example. After a transformation from the real line to the unit circle, we obtain a

spectral density W on T given by:

, 1 0+ 202(1.339)%(1 — 0
Wik (e o) = 20 Feosft 507 J(1 — cos )11 (1 +cosf)s.
(14 cosf + 02(1.339)%(1 — cosf)) s

oo

W has a zero at = = —1 which, as with the previous ezample, is not PLL and
cannot be continued analytically from that point. Setting o = 2, the results of
Simulation A, B and C are shown in Table 6.3 and Fig. 6.4 (in Simulation B,

only 10 zeros are selected with the heuristic scheme).
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Table 6.3: Simulation results

Number of | Final value Degree of Running time
iterations of e, approximation (seconds)
Simulation A 30 6.54517 x 107 49 926.656
Simulation B 47 8.97805 x 107 47 1014.2
Simulation C 151 7.98211 x 1073 151 64.392
Simulation A Simulation B Simulation C
100 P ‘ W TR ‘ ‘

Error curves (log scale)
Error curves (log scale)
Error curves (log scale)

10 20 30 10 20 30 40 50 50 100 150
r (iteration number) r (iteration number) r (iteration number)

Figure 6.4: Plots of Simulation A (left), B (center), C (right): |W — W,||; (dash-
dot line), [|®(W,.) — ®(W,_1)||2 (circle)

Transforming the approximate CSF of Simulation A from the unit circle to

the imaginary azis gives us the frequency response as shown in Fig. 6.5.

All examples indicate that both Simulation A and B give better results than
Simulation C (the Szegd-Levinson algorithm). Despite producing an approxima-
tion of substantially higher order, Simulation C gives a final error e, of magni-
tude 102 higher and it would seem many hundred more iterations are required to
achieve e, < 107 as in Simulation A and B. In Example 7.1 for a simple second
order spectral factor, Simulation C also runs much longer. Simulation A runs
faster than B, but gives an approximation of slightly higher degree. The latter
is not unexpected since Simulation B selects more real-valued zeros (i.e., at the
origin). The simulations do suggest that the heuristic is practically useful and
quite effective, regardless of whether a limited or indefinite number of spectral
zeros are selected.
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Figure 6.5: Frequency response of approximate CSF from Simulation A

6.8 Conclusions and further research

This chapter makes three primary contributions. First and foremost, we have
derived a set of sufficient, easy to verify conditions for uniform log-integrability
of a sequence of matrix-valued spectral densities. Secondly, we establish theo-
retical results on the existence of certain approximating rational sequences for a
class of matrix-valued spectral densities. Finally, we propose a new spectral fac-
torization algorithm for a more specific class of matrix-valued spectral densities
based on degree constrained rational covariance extensions, and establish conver-
gence results. Our approach does not require the spectral density to be coercive.
There is a freedom to choose a sequence of spectral zeros in the algorithm and a
heuristic has been proposed for choosing them. The performance of the new al-
gorithm is demonstrated in a number of numerical examples, where it performed
favorably compared to the popular Szego-Levinson algorithm /maximum entropy
method. In particular, the algorithm was successfully applied to the non-rational
and non-coercive Kolmogorov and von Karman spectral densities. Possible topics
for future research include development of fast algorithms for computing degree
constrained covariance extensions (as discussed in Section 4.4), relaxations of the
conditions presented here, and development of better heuristics for selection of
spectral zeros.

The results and algorithm of the chapter may be useful in applications in
which spectral factorization plays a prominent role such as in computation of
approximate solutions of algebraic Riccati equations (ARE’s) in optimal control
of linear systems, or in which signals with non-rational power spectra is a central

theme (e.g., control of aircraft subject to windgust, adaptive optics, and laser
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scintillation [30]). It may also prove to be useful in spectral estimation and

system identification research.
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List of Notation and Terminology
for Part 11

Notation

diag(-,...,-)

The set of real numbers
The set of complex numbers
Transpose of a matrix/array

For two Hilbert space operators A, B which maps a Hilbert
space into itself, [A, B] denotes the commutator of A, B de-
fined by: [A, B] = AB — BA, assuming that the products AB
and BA are well-defined on a common dense domain if either
A or B or both are unbounded

Tensor product
The adjoint of a (possibly unbounded) Hilbert space operator

If X is a matrix/array of Hilbert space operators , X# denotes

the operation of taking the adjoint of each element of X

Xt = ( X#)T

For square matrices My, ..., M,, diag(M,, ..., M,) denotes a
block diagonal matrix with matrices My, ..., M, on the diag-
onal block

For a square matrix 7', diag,,(7") denotes the block diagonal
matrix diag(7T,...,T) where T appears m times as a diagonal
block

97
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Lysn Denotes the n x n identity matrix. If n is not specified, it is

assumed that it can be determined from the context

O Denotes the nxm zero matrix. If n and/or m are not specified,

it is assumed that they can be determined from the context

P, A 2m x 2m permutation matrix defined by
P,a= T
ma [a1 as ... Aogm—1 QA2 QAgq ... agm],
where a =[ a1 as ... asm |T and ay,...,as, € C
Terminology

Permutation matrix

Hilbert space operator

Unitary operator

Commute

A full-rank real matrix whose columns (or, equiva-
lently, rows) consist of standard basis vectors for R™;
i.e., vectors in R™ whose elements are all 0 except for
one element which has the value 1. A permutation
matrix P has the unitary property PPT = PTP =]

An operator mapping from one Hilbert space to an-
other

A bounded Hilbert space operator, say U, possessing
the unitary property U*U = UU* = I, where [ is the

identity operator

Two vectors x,y of operators on a common Hilbert

space are said to commute if
zy" — (yz")" =0

on a dense subspace of the Hilbert space



Chapter 7

Quantum Linear Stochastic

Systems in Quantum Optics

7.1 Introduction

Recent successes in quantum and nano-technology have provided a great impetus
for research in the area of quantum feedback control systems; e.g., see [82, 83,
84, 85, 86, 87, 88]. It is reasonable to expect that quantum control is an area of
research which could play a vital role towards realization of conceptual quantum
signal processing systems and quantum computers that are being extensively
studied for potential benefits over their classical counterparts [89].

One particular area in which significant theoretical and experimental advances
have been achieved is quantum optics. In particular, linear quantum optics is one
of the possible platforms being investigated for building future quantum com-
puters [90], [89, Section 7.5], besides being an area of independent interest for
physicists. It is especially interesting from the point of view of an engineer, and

of a control theorist in particular, for two primary reasons:

1. A prominent mathematical tool for modelling of quantum optical devices
is quantum stochastic calculus, developed by Hudson and Parthasarathy
[91, 92], which is a generalization to the quantum context of the classical
Ito stochastic calculus. The latter is of course a familiar tool widely used

by engineers in filtering and estimation of stochastic dynamical systems.

2. Under the so-called rotating wave approximation and weak coupling as-

sumption (see detailed discussions in Chapters 3 and 5 of [93]), the approx-

99



CHAPTER 7. QUANTUM LINEAR STOCHASTIC SYSTEMS 100

imate dynamics of various devices in quantum optics takes on a form similar
to that of a linear time invariant stochastic system of modern systems the-
ory. More precisely, these devices are conveniently modelled as quantum
linear stochastic systems represented by a set of quantum linear stochas-
tic differential equations (QSDEs) driven by non-commutative/quantum

Wiener process:

dx(t) = Ax(t)dt + Bdw(t);
dy(t) = Cux(t)dt + Ddw(t), (7.1)

with A, B, C, D being constant matrices. Here w denotes a vector of non-
commutative Wiener processes. Regarding w(t) = [ wy(t) ... wn,(t) |7,
each operator-valued stochastic process w;(t), i € {1,...,n,}, when con-
sidered independently is equivalent to a classical Wiener process on some
classical probability space via the Spectral Theorem [94, Theorem 2.4]. The
distinction with classical Wiener processes is that two processes w;(t) and
w;(t), i # j, need not commute. That is, w;(s)w;(t) — w;(t)w;(s) need not
be zero for any s,t > 0. In this case, a joint distribution cannot be pre-
scribed for the two processes on the same classical probability space. This
means that they cannot be measured simultaneously, a distinctive feature

of quantum mechanics.

Due to the above observations, it comes naturally to ask whether one can
generalize various controller synthesis paradigms from modern control theory,
such as the LQG and H* paradigms, to the quantum optical domain. To make
a case for this possibility, recently James and Petersen [32] have proposed a
generalization of the H* synthesis method to quantum linear systems based on
a quantum extension of the Strict Bounded Real Lemma [95] of the classical
theory. For a given disturbance attenuation level, if a controller exists then it can
be synthesized via solving a pair of Riccati equations, similar to the classical case.
However, the synthesis only gives a partial model of the controller, i.e, not all of
the system matrices are fully prescribed. In an example given in [32], where the
plant to be controlled is a (quantum) optical cavity, they demonstrated that the
controller partial model can be completed by appropriately adding some quantum
Wiener noise and realized as another optical cavity. Thus, one interesting question
which arises from the H* synthesis procedure which we attempt to address in

this thesis is:
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“Is it always possible to add quantum noises to complete a partial model in
such a way that the controller models some physically meaningful quantum linear
system, such as a quantum optical cavity, linear amplifier or attenuator?”

In general, quantum linear stochastic systems represented by linear QSDEs
with arbitrary constant coefficients need not correspond to some physically mean-
ingful system. This is unlike classical linear stochastic systems (throughout this
part of the thesis we shall use the term “classical” to loosely refer to systems
which have no quantum mechanical components), such as those considered in
Part I of this thesis, which may be regarded as always being realizable, at least
approximately, via electronics and/or mechanical devices. Physical quantum sys-
tems must satisfy some additional constraints which impose some algebraic con-
ditions on the system coefficients A, B, C, D. One such constraint is that physical
systems must preserve the canonical commutation relations (CCR) among cer-
tain canonical quantum observables. For example, in a basic one dimensional
quantum harmonic oscillator [96] set on the Hilbert space L?(R), the space of
measurable and square integrable complex-valued functions on R, the canonical
observables are the position operator p : f(x) — zf(z) and momentum operator
q: f(x)— %f(x), or the annihilation operator a = ¢ + ip and creation operator
a* = p —iq (here * denotes the adjoint of an operator), defined on an appropri-
ate dense subspace of L?(R), and the CCR takes the form (in the Schrodinger
picture):

[p,ql =1,
or equivalently,

la,a”] =1,

where we take the Planck constant % to be 1. In the Heisenberg picture [96] the
CCR takes the form:

or equivalently,

where k(t), k can be either p, ¢, a or a*, are the time evolution of k£ under a uni-
tary evolution generated by the operator-valued Hamiltonian H of the quantum
harmonic oscillator given by H = 1(p* + ¢), i.e., k(t) = UJkU, and U, = &',
Vvt > 0.

Note that for convenience some authors may adopt a different convention

regarding the definition of position and momentum operators p and ¢ than the
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one given above, e.g. [97, 98]. Sometimes it is defined as scalar multiple of the
operator p and ¢ as defined above such as p : f(z) — 2z f(z) and q : f(z) —
V24 f(z), and the annihilation and creation operators as a = 2t and a* = 212,
Hence, the CCR in this case becomes [p, q] = 2i and [a,a*] = 1. This causes no
difficulties as long as the definitions and the CCR are used consistently, and is
more a matter of preference. In this chapter and the next we shall adhere to the
latter convention (see a footnote in Section 7.2).

We first give a description of quantum linear stochastic systems which will be
the focus of our investigation. Due to the substantial amount of background ma-
terials required to set up Part II, we shall omit them and assume that the reader
has some familiarity with the principles of quantum mechanics, quantum proba-
bility spaces, quantum stochastic processes, and quantum stochastic calculus. An
introduction to quantum mechanics on finite dimensional Hilbert spaces which
only requires knowledge of elementary linear algebra, but which shows most of
the essential features of quantum mechanics, can be found in [89, Chapter 2].
For a more general treatment of quantum mechanics, the reader may refer to the
standard text [96]. For an introduction to quantum probability spaces suitable for
engineers with working knowledge of applied functional analysis, the reader may
consult the tutorial paper [94], while for an introduction to quantum stochastic
processes (which includes quantum Wiener processes) and quantum stochastic
calculus, the reader may refer to the original paper of Hudson and Parthasarathy
[91], the text [92], Chapter 5 of [99], or the tutorial paper [94].

This chapter is an adaptation of the paper [100] (joint work with M. R. James
and I. R. Petersen). The contributions of the chapter include the derivation
of a necessary and sufficient condition for preservation of the CCR in quantum
linear stochastic systems (Theorem 7.3.1), the introduction of a formal notion
of physical realizability of linear quantum stochastic systems (Definition 7.3.5),
and explicit necessary and sufficient condition for physical realizability of such

systems (Theorem 7.3.6).

7.2 General quantum linear stochastic models

for quantum optics

We are generally interested in physical systems that contain one or more compo-

nents that are quantum in nature. It is helpful to have in mind an interconnection
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of components, some of which are “classical”’, meaning that non-quantum de-
scriptions suffice, and some for which “quantum” descriptions are required. Such
systems are common in quantum optics laboratories, and may occur, for instance,
in schemes for implementing quantum computing and information processing al-
gorithms. We use non-commutative or quantum probability theory to describe
the systems of interest. This framework is quite general and encompasses quan-
tum and classical mechanical systems. Quantum noise, which may arise from
measurements or interactions between subsystems and the environment, plays a
central role.

To be specific, the systems we consider can be defined on some quantum
probability space (&7,P) (e.g., see [94] and the references therein), where &7 is
a von Neumann algebra (of bounded operators on some Hilbert space) and P
is a state on this algebra. The von Neumann algebra can be thought of as an
abstract mathematical representation of the “observables” or physical quantities
of interest, while statistical attributes of these observables are determined by P.
We begin by presenting a general form of the system of interest, followed by a
formal discussion of the associated Hilbert spaces and algebras.

We consider linear non-commutative stochastic systems of the form

de(t) = Ax(t)dt+ Bdw(t); z(0)=x
dy(t) = Cuzx(t)dt+ Ddw(t) (7.2)

where A, B, C' and D are, respectively, real R™*" R"*"w R™*" and R"*"w
matrices (n,n,,n, are positive integers), and x(t) = [ x1(t) ... x,(t) ' is a
vector of self-adjoint possibly non-commutative system variables.

The initial system variables x(0) = x( consist of operators (on an appropriate

Hilbert space) satisfying the commutation relations*
[2;(0),24(0)] = 2O, j k=1,...,n, (7.3)

where © is a real antisymmetric matrix with components ©,;, and ¢ = /—1.
Here, the commutator is defined by [A, B] = AB — BA. To simplify matters
without loss of generality, we take the matrix © to be of one of the following

forms:

*In the case of a single degree of freedom quantum particle, x = (z1,22)7 where 21 = ¢
is the position operator, and zo = p is the momentum operator. The annihilation operator is
a = (q + ip)/2. The commutation relations are [a,a*] = 1, or [q, p] = 2i.
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e Canonical if © = diag(J, J,...,J), or
e Degenerate canonical if © = diag(0,/xpr, J, ..., J), where 0 < n’ <mn.

Here, J denotes the real skew-symmetric 2 X 2 matrix

J:[() 1]7
1 0

and the “diag” notation indicates a block diagonal matrix assembled from the
given entries. To illustrate, the case of a system with one classical variable and
two conjugate quantum variables is characterized by © = diag(0,.J), which is
degenerate canonical.

Assume for the moment that © is canonical (hence n is even). Then the
operators x1(0),...,z,(0) satisfying (7.3) and the underlying Hilbert space, say
Hs, can be realized in the standard way via the GNS construction and Stone’s
Theorem; for details see [97, 92]. Important in this construction are the so-
called Weyl operators {W(zx); x € R"} of bounded operator on H,. They satisfy
the Weyl relations W (x)W (y) = e “@OWW (z + y) for all z,y € R™. Tt is well-
known that the Weyl operators generate the von Neumann algebra of all bounded
operators on H,. Let us denote this algebra by <7, and assign to it a state P, such
that xz is Gaussian. We shall denote the density operator associated with Py by
p and say that g is Gaussian with state p. If © is degenerate canonical, we first
construct a so-called augmentation of (7.2), which is developed in Section 7.3.2,
and perform the same construction as before on this augmentation to realize xg
and H,.

The vector quantity w describes the input signals and is assumed to admit

the decomposition
dw(t) = By (t)dt + dw(t) (7.4)

where w(t) is the noise part of w(t) and (,,(t) is a self adjoint, adapted process
(see, e.g., [91, 92, 94] for a discussion of adapted processes).

The noise w(t) is a vector of self-adjoint quantum noises with Ito table
dw(t)dw” (t) = Fydt, (7.5)

where Fj is a non-negative Hermitian matrix; e.g., see [92, 101]. This determines

the following commutation relations for the noise components:

[diio(t), i’ (t)] = diw(t)dw” (t) — (diw(t)dw” (t))" = 2Tydt, (7.6)
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where we use the notation Sg = 3(Fp + F), Ty = 5(Fs — F1) so that Fj; =
Se + Typ. For instance, Fg = diag(1,I + i.J) describes a noise vector with one
classical component and a pair of conjugate quantum noises (here [ is the 2 x 2
identity matrix). The noise processes can be represented as operators on an
appropriate Fock space (a particular, yet important, type of Hilbert space); e.g.,
see [91, 92]. Let us denote this noise Fock space by F and the algebra of all
bounded operators on F by # . We assume that # is assigned a Gaussian/quasi-
free state ¢ such that the noise commutation relations (7.6) hold. Indeed, later
in this section Fj is assumed a certain canonical form corresponding to ¢ being
a vacuum state.

The process 3, (t) serves to represent variables of other systems which may
be passed to the system (7.2) via a connection. Therefore, we require that (3,,(0)
is an operator on a Hilbert space H, distinct from Hy and F. We also assume
Bw(t) commutes with x(t) for all £ > 0 (two vectors z,y of operators are said to
commute if zy? — (y2T)T = 0); this will simplify matters for the present work.
Moreover, since we had earlier specified that 3,,(¢) should be an adapted process,
we make note that 3,(t) also commutes with dw(t) for all ¢ > 0. We denote the
von Neumann algebra of all bounded operators on H, by A, and assume that it
is assigned a state IP,.

Overall, the system (7.2) is defined on the composite Hilbert space H, =
H, ® H, ® F and all operators are affiliated to the von Neumann algebra o7, =
oy ® d, @ W for all t > 0. A self-adjoint operator X is said to be affiliated to
a von Neumann algebra & if (X +iI)~! € «/. Affiliation is a useful notion for
relating unbounded operators, such as the components of z(t), to an algebra of
bounded operators. Statistical attributes of the operators are determined by the
composite state P, = P, ® P, ® ¢. Therefore, the associated quantum probability
space for (7.2) is (<., P.). Note here that operators originally defined on Hs, H,
or F are implicitly “lifted” to the composite space H, by the standard operation
of ampliation (i.e., tensoring with appropriate identity operators). For example,
the ampliation of an operator X : H, — H, to H, is simply X ® I ® I where the
middle I denotes the identity operator on H, while the right most I denotes the
identity operator on F.

At this point, we stress once again that the most important fact to be noted of
the model (7.2) is that its similarity in form to the state-space model of classical
finite-dimensional stochastic linear systems. The main difference is that in the

classical setting, the vectors (), y(t) and w(t) consist of real- or complex-valued
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functions of time which commute with one another for all time ¢ > 0 and different
times s,t > 0, while in the quantum context they consist of operators on some
Hilbert space which need not commute with one another at any time ¢ > 0 nor
at any two time instances s,¢ > 0. But despite this difference, we shall show
in the next chapter that in the context of quantum H® control, to some degree
it is possible to work with them in a similar way as we do with their classical
counterparts.

To simplify the exposition, we now set up some conventions to put the sys-
tem (7.2) into a standard form. First, note that there will be no change to the
dynamics of x(t) and y(¢) if we enlarge w(t), by adding additional dummy noise
components and enlarging F and # if necessary, and at the same time enlarg-
ing B by inserting suitable columns of zeros. Secondly, we may add dummy
components to y by enlarging C' and D by inserting additional dummy rows to
each of these matrices. Our original output can be recovered by discarding or
“disconnecting” the dummy components/entries. Therefore, we make the follow-
ing assumptions on the system (7.2): (i) n, is even, and (ii) n, > n,. We also
make the assumption that Fj is of the canonical form Fg = I + idiag(/, ..., J).
Hence n,, has to be even. Note that if Fj is not canonical but of the form
Fgy = I + idiag(0, 5, diag(J, ..., J)) with n’ > 1, we may enlarge w(t) (and
hence also w(t)) and B as before such that the enlarged noise vector, say @', can
be taken to have an Ito matrix Fjz which is canonical.

Equation (7.2) is a linear quantum stochastic differential equation. General
quantum stochastic differential equations of this type are described in [91, 92],
though the specific linear equations (7.2) may be treated directly, with solutions
given explicitly by:

t
z(t) = eAtx(O)—i-/ eA(t’S)Bdw(s);
0

y(t) = /Ot Cx(s)ds + Dw(t). (7.7)

Here the integral with respect to dw(t) is taken to be a quantum stochastic
integral. By construction, z(t) depends only on the past noise w(s), for 0 < s < t;
i.e., it is adapted, and a property of the Ito increments is that dw(t) commutes
with x(¢).

Equations (7.2) describe a general non-commutative linear stochastic system,
which need not necessarily correspond to a physical system, such as an optical

cavity, attenuator, or amplifier. This issue does not normally arise in physical
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modelling, but we shall see in the next chapter that it is of considerable impor-
tance when we come to synthesizing physically realizable controllers. In particular,
we will describe a quantum H*®° control framework for quantum linear stochastic
systems due to James and Petersen [32]. This framework returns a partial model
for a quantum linear stochastic controller which may not represent any physically
meaningful system. The main idea is to complete the partial model by suitably
adding additional channels of quantum Wiener processes to the partial model
such that the completed model does indeed represent some physically meaningful
system. In the next section, we shall formalize what we mean by “physically
meaningful” by introducing a precise notion of physical realizability for quantum

linear stochastic systems represented by the QSDE (7.2).

7.3 Physical realizability of linear QSDEs

As mentioned at the beginning of this chapter, a basic requirement of any phys-
ical quantum system is that canonical commutation relations (CCR) between
canonical operators of the system must be preserved for all time ¢ > 0 (in the
Heisenberg or interaction picture of quantum mechanics [96]). In our context,
the canonical operators are elements of the vector z(t) and the preservation of
the CCR translates to the condition:

[z;(t), z;(t)] = 2i0;; Vi,j=1,...,n and Vt >0,

or equivalently,
r(t)z(t) — (z()xt)") =2i0 Vvt > 0.

The following theorem provides an algebraic characterization of precisely when

the quantum system (7.2) preserves the commutation relations as time evolves.

Theorem 7.3.1 Under the assumptions of Section 7.2 for the system (7.2),
-[2:(0), 2;(0)] = 2i©;; implies [z;(t), x;(t)] = 2i©;; for allt > 0 if and only if

iA© +i0A" + BT;B" = 0. (7.8)
Proof. To preserve the commutation relations for all 7,7 = 1,...,n and all
t > 0, we must have d[x;,x;] = 0 for all 7,5 = 1,...,n (for convenience, in this

proof we shall drop the time index t). We now develop a general expression for
d[x;,x;]. Indeed, let ex, =[0 ... 0 1 0 ... 0], where the 1 is in the k-th
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row. It is easy to see that for any i, € {1,...,n}, [z;, ;] = e] xaTe; — ef zaTe;.
Therefore, d[z;, z;] = el d(za™)e; — efd(xx")e;. Now, we expand d(xz”) using
the quantum Ito rule (e.g., see [92]) as follows:
d(zz") = (dr)a” + zd(2") + ded(a")
= Azz'dt + Bdwz" + zz” ATdt + xd(wT) BT + Aza’ AT dt?
+Azd(w)dt BT + Bdwdtz" AT + Bdw(dw)" B"
= Awxz'dt + Bdwa” + xa ATdt + xd(w") BT + B(dw)(dw)" BT,
Substituting dw = B,dt + d into the above and noting that £3,8Ldt* and
Buwdw? dt vanish to order dt gives
d(zax’) = Azxz'dt + BBya’dt + Bdiwx' + za’ ATdt + 28 BT dt + xdw’ BT +
Bdiwdw" B”.
We now write A= [ AT AT ... AT ]Tand B=[ BI BI ... BT ]", where
the vectors A and By denote the k-th row of matrices A and B, respectively.
Then we have
el d(zal)e; = el AzaTe;dt + e] BBya"ejdt + e] Bdwx'e; + el xa’ Ale;dt
+e;xB BT e;dt + e;xdiv” BT ej + e] Bdw(dw)" B'e;
(B;dw)(Bjdw). (7.9)
Also we have

efd(xxT)ei = Ajzxdt + B;f,xdt + Bjdox; + x;A;xdt +
2, B;Budt + ;B,di + (B;dw)(Bidw).  (7.10)
Subtracting (7.10) from (7.9) gives us
el d(xa’)e; — ejrd(xxT)ei
= ((Air)r; — 2j(Aiz))dt + ((Bifw)z; — 2;(Bifw))dt
+(Bidw)x; — x;(Bidw) + (z;(Ajx) — (Ajx)z;)dt
+(@i(B;fw) — (Bjfw):)dt + (xi(Bjdw) — (B;jdw)x;)
+((Bidw)(B;dw) — (Bjdw)(B;dw))
= ((Aw)r; — zj(Aix))dt + ((Bifw)z; — 2;(Bifw))dt
+(i(Ajr) — (Ajz)z;)dt + (24(B;fw) — (Bjfw)r:)dt
+((Bid)(B;dw) — (B;di)(Bidi)). (7.11)
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Here we are using the fact that elements of diw commute with those of x and 3,

due to the adaptedness of x and (3,,. Hence,

el d(zz")e; — eJTd(m:T)ei
= [Aiz,xj]dt — [x;, Bify]dt + [z, Ajx]dt + [z, BjBy]dt +
[B;dw, B;dw]

= Z A,k[l’k, fl]j]dt — Z Bik[xja ﬁwk]dt + Z Ajk[xi7 {L‘k}dt
k=1 k=1 k=1

+ Z Bji|xi, Bukldt + Z Z By, Bj|dwy, diy)
=1

k=1 1=1
. <2i S 44 4203 Au = 3 BuCi 3 By
k=1 k=1 k=1 k=1
+ Z Z B Bji(Fip i1 — Fw,m)) dt, (7.12)
k=1 1=1
where ijﬁ’“ = [24, Bw;]- Since C‘”B“’:[ijﬁw]izl ,,,,, nj=1...ng, = 0 (by assumption)

and F; — FI' = 2T, equation (7.12) takes the form
d(za’ — (z2™)T) = 2(1A0 +iOA" + BT;B)dt (7.13)

from which the result follows. O
Thus we see that preservation of the CCR amounts to an algebraic constraint
(7.8) that must be satisfied by the system matrices A and B of (7.2). However, as
we shall see shortly, for (7.2) to be physically realizable there is actually another
constraint required in relation to the output signal y(¢). We shall now proceed
further by introducing the notion of an open quantum harmonic oscillator, which
acts as the basic “dynamical unit” (as opposed to static quantum optical com-
ponents units/devices such as beamsplitters and phase shifters) of a physically

realizable quantum system.

7.3.1 Open quantum harmonic oscillator

In order to formally present a definition of an open quantum harmonic oscil-
lator we will require the following notation. For a square matrix 7', diag,,(T")
denotes the block diagonal matrix diag(T,...,T) where T appears m times as
a diagonal block. The symbol P,, denotes a 2m x 2m permutation matrixz de-

fined so that if we consider a column vector @ = [a; as ... asm |7, then
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Poa=1[a as ... Gun1 G G4 ... Gy 7. Recall that an m x m permu-
tation matrix is a full-rank real matrix whose columns (or, equivalently, rows)
consist of standard basis vectors for R™; i.e., vectors in R™ whose elements are

all 0 except for one element which has the value 1. A permutation matrix P has

the unitary property PPT = PTP = [. Note that Pl a; as ... asm |1 =
[ a1 @mi1 @2 Gmyo oo G Qo |
Let us also further introduce the notation N,, = %* and N, = %y,

leli,
211 —i

and I' = Py, diagy (M). Moreover, let * denote the adjoint of a Hilbert space
operator (by this we mean that the operator is a map from one Hilbert space to
another), and let X# denote the operation of taking the adjoint of each element of
X, where X is a matrix/array of Hilbert space operators. Also, let XT = (X#)7.

Then we have the following definition of a quantum harmonic oscillator by

slightly generalizing a linear model given in [102, Section 4]:

Definition 7.3.2 Set (,,(t) = 0Vt > 0. Then the system (7.2) is said to be an
open quantum harmonic oscillator if © is canonical and there exist a quadratic
Hamiltonian H = z(0)" Rz (0), with a real and symmetric Hamiltonian matriz
R of dimension n X n, and a coupling operator L = Ax(0), with complez-valued

coupling matriz A of dimension n,, X n, such that:
z(t) =U@)z(OU({), wt)=U@)w®UE), 1=1,...,ny,

where {U(t);t > 0} is an adapted process of unitary operators satisfying the
Jollowing QSDE [102, Section 2.5] :

dU(t) = (—iHdt— %LTLdt+[—LT LT Tdw(t))U(t), U(0) = 1.

In this case the matrices A, B,C, D are given by:

A = 20(R+ I(ATA)); (7.14)

B = 20[—-ATAT]T (7.15)
¥ 0 1 [ A+a#

c = PY Ny PNy x P LA ; (7.16)
1 Onyxnve 2N, —iN 4 iAF
N ; -

D — sz;y Ny Ny X Ny PNw = [ Inany OnyX(nw—ny) ], (717)
L 0N, x N ZNy ] ‘

where ENy = [INnyy ONyX(Nw_Ny) ]
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As its name suggests, the open quantum harmonic oscillator is simply an
n—dimensional quantum harmonic oscillator with Hamiltonian H which is open in
the sense that it interacts with its environment (for a discussion of open quantum
systems, see [103], [99, Chapter 3]), which in this case are independent quantum
Wiener noise channels, and the interaction with the environment is linear via
the coupling operator L. Note that in quantum optics, a quantum Wiener noise
channel is an idealized model a of a free travelling quantized electromagnetic field,
which is precisely how these channels can be physically realized in the laboratory.

For a discussion see, for example, [93, 86].

Remark 7.3.3 In the definition, we have set B, = 0 since an open quantum
harmonic oscillator is a stand alone open system in its ambient heat bath, which
in this case are the quantum noise channels. Recall that 3, serves to represent

observables originating from another physical system wvia an interconnection.

Another important point to be noted in the definition of an open quantum
harmonic oscillator is that the output y(¢) has a specific form, that is, it is
the time evolved version of the noise channels w(t) after its interaction with
the oscillator (via the unitary evolution U;). This can be considered a natural
restriction because observables of a physical system of interest (such as an optical
cavity or an atom) cannot be observed directly, but only indirectly such as by
shining a laser or light source on the system and observing the light which is
reflected as a result of the interaction of the incident light with the system.
Here, w(t) plays the role of the incident light, while y(t) is the reflected light.
A intuitive visualization of the concept an open quantum harmonic oscillator is

given in Figure 7.1.

7.3.2 Augmentation of a linear QSDE

If © is degenerate canonical then we may perform an augmentation in which ©
is embedded into a larger skew symmetric matrix © which is canonical up to
permutation (this means O becomes canonical after permutation of appropriate
rows and columns). To do this, let 8 = [©;;]; j=n/+1,..n = diagn_Tn/(J) if n/ <n.
Here diag,,(J) denotes a m x m block diagonal matrix with m matrices J on the
diagonal. Define:
O sy O/ x (n—n") Ly sony
O = | Opnn)xn 0 Otnnyxn’ | -

_In’ xn/ Opr (n—n') O st
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Noise channel 4

Noise channel 1

' Open quantum 3
\ harmonic oscillator !

Noise channel 2 el - -7
Noise channel 3

Figure 7.1: Visualization of an open quantum harmonic oscillator

where the middle block of rows is dropped whenever n = n’. Then by definition
© is canonical up to permutation and contains © as a sub-matrix by removing
appropriate rows and columns of ©. Let 7 = n + 7/, the dimension of the rows
and columns of ©. By enlarging if necessary the quantum probability space,
define the vector Z(t) = [x1(t) z2(t) ... 2,(t) 21(t) 22(t) ... 2z (t)]T of variables.
We now define the following linear QSDE

) A Open. | - B
dz(t) = oA z(t)dt + BI]dw(t), (7.18)
gty =| C C'}g:«@)dHde(t)

where A’, A”, B’ and C’ are, respectively, some real n’ x n, n’ x n’, n’ x n,
and n, x n’ matrices, and the initial variables Z(0) satisfy the commutation re-
lations #0Z(0)T — (£(0)#(0)7)T = 2i©. We shall refer to the system (7.18) as an
augmentation of (7.2).

Remark 7.3.4 In the proof of Theorem 7.3.6 it is shown that the augmentation
can be chosen to preserve commutation relations whenever the original system

does.

An augmentation is useful for handling vectors x(¢) which may contain one or

more classical components, i.e., when © is degenerate canonical. The central idea
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here is that in an augmentation, any classical component of z(t), say xy(t), is con-
sidered to be “one-half” of a pair of canonically conjugate operators {xy(t), zx(t)}
satisfying [zx(t), zx(t)] = 2i, where z(t) also satisfies [zx(t),x;(t)] = 0 VI # k.
Here zp(t) acts merely as a “dummy variable” which becomes a component of
the augmented vector Z(t), in the sense that z(¢) has no effect whatsoever on the
dynamics of 2(t), as can be seen from the QSDE (7.18). Thus, here augmentation
presents a convenient way of treating classical components within the formalisms
of quantum mechanics, without having to develop new concepts or theories for
handling them. The fact that a quantum linear stochastic system which preserve
the CCR is guaranteed to have an augmentation which again preserve the CCR,
as stated in Remark 7.3.4, shows that classical components can be “embedded”

in a fully quantum mechanical augmentation in a consistent way.

7.3.3 Formal definition of physical realizability

With open quantum harmonic oscillators and augmentations having been defined,
we are now ready to introduce a formal definition of physical realizability of the
QSDE (7.2). A discussion regarding the definition follows after Theorem 7.3.6 in

which necessary and sufficient conditions for physical realizability are given.

Definition 7.3.5 The system (7.2) is said to be physically realizable if one of the
following holds:

1. © is canonical and (7.2) represents the dynamics of an open quantum har-

monic oscillator.

2. © is degenerate canonical and there exists an augmentation (7.18) which,
after a suitable relabelling of the components T1(t),...,T;(t) of T(t), repre-

sents the dynamics of an open quantum harmonic oscillator.

The following theorem provides explicit necessary and sufficient conditions for
physical realizability given in terms of the system matrices A, B,C, D. Hence,
whether a given system (7.2) is physically realizability in the sense of Definition
7.3.5 can be determined in definite manner (i.e., it is either ‘yes’ or ‘no’), which

is a useful practical result.
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Theorem 7.3.6 The system (7.2) is physically realizable if and only if:

iA© +i0A" + BT, B" = 0, (7.19)
Loy xn 0 I
B y XNy _ @CTPJz; Ny X Ny Ny x Ny PNy _
O(nw—ny)xny 1 —Inyxn, Onyxn,
oC! diagy, (), (7.20)

and D satisfies (7.17). Moreover for canonical ©, the Hamiltonian and cou-
pling matrices have explicit expressions as follows. The Hamiltonian matrix R
is uniquely given by R = %(—@A + ATO), and the coupling matriz A is given
uniquely by

1
A:—ﬁi Onyxn, Ingwn, | (DTHTBTO. (7.21)

In the case that © is degenerate canonical, a physically realizable augmentation
of the system can be constructed to determine the associated Hamiltonian and

coupling operators using the above explicit formulas.

Remark 7.3.7 Note that the Hamiltonian and coupling operators are determined
by (7.19), while conditions (7.17) and (7.20) relate to the required form of the

output equation.

Proof. (of Theorem 7.3.6) Let us first consider the case where © is canon-
ical. If the system is realizable then (7.14)-(7.17) holds. Since U(t) is unitary
for each t > 0, we have that d (z(t)z(t)” — (z(t)z(t)")") = 0; i.e., the canoni-
cal commutation relations are preserved. By Theorem 7.3.1 this is equivalent to
(7.19). Let My, Ms,..., My, be column vectors such that [M; M, ... My,] =
AT[ In,«xn, 0]". Then using (7.15) and (7.16) we obtain the following after

some algebraic manipulations:

B[ Inany Onyx(nw—ny) ]T = 21@[_AT AT]F[ ]nyXNy O"yx(nw—Ny) ]T
= 20[-S(M) ROM) ... — S(My,) R(My,)
T
0 -1
- O P]z; Ny X Ny Ny x Ny PNyO
! INany ONany
0 I
= OCTP} Mo Py
| —Inyxn, 0

= @CTdiagNy(J).
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Therefore, we conclude that (7.20), (7.19) and (7.17) are necessary for realizabil-
ity.

Conversely, now suppose that (7.20), (7.19) and (7.17) hold. We will ar-
gue that these conditions are sufficient for realizability by showing that they
imply the existence a symmetric matrix R and a coupling matrix A such that
(7.14)-(7.16) are satisfied. First we note that after some simple algebraic manip-
ulation —i© !B~ = i©OBI ! = [-Z# Z], for some complex matrix Z. Hence
B =1i©[-Z# Z|'. Substituting the last expression into (7.19) and after further

manipulations we get:
1
iAO +i0AT — §®(Z#ZT — 7710 =0.
Writing Z# 2T —Z 71 = 2i3(Z# Z7), we may rewrite the last expression as follows:

iAO 4+ i0AT — %@(Z#ZT ~ 770 = iAe +i0AT —ieX(Z2*ZT)e
= 0O 'A+ AT —3(Zz72ZT))e
= 0O 'A— (0t —3(z*7"))e
pu— O,

implying that ©71A — (@71 A)T — (Z#ZT) = 0. Since O7'A4 is real, we have
the decomposition O 1A = —OA =V + W for a unique pair of real symmetric
matrix V' and real skew symmetric matrix W and obtain the condition 2W —
S(Z#Z7) = 0. Hence, W = 33(Z#Z7). Setting R = 3V and A = 227, we
get A =20(R+ S(ATA)) and B = 2i0[—AT AT] as desired, and also prove the
second statement of the theorem. After substituting the expression, just obtained
for B (in terms of A, ©, and I') into (7.20) and more algebraic manipulations we
then get (7.16). Since the expression for D has been hypothesized as (7.17), we
conclude that (7.20), (7.19) along with (7.17) gives matrices A, B, C, D which are
the coefficients of a realizable system.

Now, we consider the case where © is degenerate canonical, i.e.,
0= diag(Onfxn/,diagn,Tm(J)).

Let us write
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with All € Rn'xn" A12 c Rnlx(n—n’)’ A21 c R(n_”’)xn/’ A22 c R(n—n,)x(n—n')’
By € R, B, € R (w—) ¢ ¢ Rw*" and C, € R™w*(=)  Consider the

following augmentation:

All A12 O
di(t) = AQl A22 O(nfn’)xn/ j@)dt +
ApA, A

dj(t) = [c O s }m)dﬁpdw(t)

0 I
where B = —C{ Py 7 Py,, and A}, A; and A" satisfy the following:
B/ T
A - (AT = i B o], (B1)
A —Ayding () | = —[ AL AL i B o] TBT

It follows by inspection that such matrices A}, A, and A” exist. Let A’ = [A] A}
and define

A O C=]C O |-

A/ A//

B, B,
B, 0

If (7.19) holds then it can be verified, by direct substitution, that the matrices A
and B satisfy:

iA© 4+ i0A” + BT,,B" = 0. (7.22)
Recalling that © is only canonical up to permutation, we now need to transform
it into canonical form. To do this, introduce the variable z = PZ where P is a
permutation matrix such that POPT = diag% (J). Then the components of z are

a relabelling of the components of z. This gives us the following dynamics for z:
dz(t) = PAPTz(t)+ PBduw(t)
dy(t) = CPTz(t)dt + Ddw(t).

Denoting A = PAPT, B=PB,C = CP”, and © = diags (J) we see that (7.22)

implies that:
iA© 4+ i©AT + BT, BT = 0. (7.23)
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Continuing further using (7.20), we have the following:

B Inyxny - p B [nyxny
O(nw—ny)xny i Bi 0 O(nw—ny)xny
[ oCT | 0 T
= P Py P
—cr "M o |
[ or] 0 T
= PO PL P
Nol o |
- cT 0 I
= (peprPhp PL P
A AT pT U ANAT q;
= 00 Py, Py, = ©C diagy, (/). (7.24)

If D is given by (7.17) then (7.23) and (7.24) implies, as we have already shown
for the case of canonical ©, the system defined by the matrices (/1, B , C’, D) is
realizable in the sense of Point 1 of the theorem. Hence, the original system
defined by the matrices (A, B, C, D) is then realizable in the sense of Point 2 of
the theorem.

Finally, suppose conversely that (7.2) is realizable and let (A, B,C, D) be
a suitable augmentation. Then (PAPT,PB,C'PT,D) is a quantum harmonic
oscillator, with P as defined before. Hence, PAPT, PB, CPT, and D are given
by the right hand sides of (7.14)-(7.17) for a canonical © and some R and A. It
follows that A, B, C' and D are given by the same set of equations by replacing
O, Rand A by © = PTOP, R = PTRP and A = AP, respectively. We then

have, from the same line of arguments given for the case of canonical ©, that:

B 0 In,xn,

]n n A A
v =ed'py

Yy

Py, = (:)C’TdiagNy (J),

O(nw—ny)xny _[NyXNy 0

(7.25)
(7.22) holds, and D satisfies (7.17). Reading off the first n rows of both sides of
(7.25) then gives us (7.20), while reading of the first n rows and columns of both
sides of (7.22) gives us (7.19), as required. This completes the proof. O
The conditions of Theorem 7.3.6 are precisely what we would intuitively ex-
pect. As stated in Theorem 7.3.1, (7.19) is the condition for preservation of the
CCR, as required in a physical system. On the other hand, conditions (7.20) and
(7.17) arise due to the restriction on the form of the output of an open quantum

harmonic oscillator, as discussed at the end of Section 7.3.1.
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We conclude this section with the following remark.

Remark 7.3.8 [t should be possible, and can be convenient, to consider the prob-
lem of physical realizability more broadly than discussed here by including addi-
tional static components, such as beam splitters and phase shifters that commonly
occur in quantum optics (see [98, 57]). In a more general situation, one could

consider output equations of the form:
dy(t) = Ks(Cyx(t)dt + Dgdw(t)), (7.26)

where K, Cy, Dy are real matrices satisfying K;Cqy = C and K;Dg = D. Here
the matriz K represents the action of static devices connected to the output (t)

of a physically realizable system (in the sense of Definition 7.3.5) defined by:

dx(t) = Ax(t)dt + Bdw(t)
dy(t) = Cax(t)dt + Dydw(t),

where the quadruplet { A, B, Cq, Dy} satisfy the conditions of Theorem 7.5.6. Note
that y(t) = Ky(t). Therefore, in order that y(t) has the correct Ito table, Kj
should satisfy the constraint K F;K! =T+ diag,, (J). However, detailed devel-
opment of an efficient realization methodology, cémbim’ng static and dynamical

quantum units, for systems of the form (7.2) is beyond the scope of the thesis.

7.4 Concluding remarks

In this chapter, we have developed a notion of physical realizability of quantum
linear stochastic systems which are relevant in quantum optics, and give explicit
characterizations for physical realizability. In particular, we derive a necessary
and sufficient condition for preservation of the canonical commutation relations
for such systems, a prerequisite of any physical system.

Our results indicate that up to some degree one can work with quantum linear
stochastic systems just as one would with classical linear stochastic systems. The
key difference is that in the quantum case one has to take care of additional
algebraic constraints imposed on the system matrices by Theorems 7.3.1 and
7.3.6. These new constraints are not present in the classical case.

The developments here support the point of view that it may be plausible to
extend various controller synthesis methods that have been extensively developed

over the years for classical linear stochastic systems to their quantum counterpart.
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In the next chapter, we shall see that this is indeed the case for the well-known

H® synthesis methodology.



Chapter 8

Synthesis and Physical
Realizability of H°° Quantum

Linear Controllers

8.1 Introduction

Consider a given partial model of a quantum linear stochastic system, in which the
system matrices A, C' are completely specified, but the matrix B is only partially
specified and the matrix D unspecified. This situation arises in the context of a
H®> synthesis framework initiated by James and Petersen [32] for quantum linear
stochastic systems. As mentioned briefly in the last chapter, it is then natural
to ask whether one can complete the specification of B and determine D such
that the resulting completely specified model is physically realizable in the sense
of Chapter 7. James and Petersen have shown in some specific examples that
it is indeed possible to complete the model, but the general case was an open
question.

The purpose of this chapter is to address the general question of physical
realizability of a partially specified quantum linear stochastic system. The main
result is that given a partial model of a controller there always exists a physically
realizable completion (Theorem 8.3.5). The results are constructive in the sense
that we derive explicit formulas for B and D and the associated Hamiltonian and
coupling matrices for the completion (Lemma 8.3.6). More importantly, however,
is that our results show there is complete freedom to specify the commutation

matrix ©. This implies that in general one may in fact a prior:i specify the type

120
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of controller to be realized. This means the controller can be chosen to be fully
quantum, purely classical, or even a hybrid mixed classical-quantum controller.
From an H* perspective, the type of controller is inconsequential since the H>
performance is not affected by the particular choice of realization.

As with the previous chapter, this chapter is also based on the paper [100].
We begin with a discussion of the H* synthesis framework of [32]. This will
clearly show how the issue of physical realization of partially specified models

arises in the controller synthesis for quantum linear stochastic systems.

8.2 Dissipation properties

In order to develop an H* methodology for quantum linear systems, we first de-
scribe various dissipation properties frequently used in control engineering, suit-
ably adapted to the quantum context. These properties concern the influence
of disturbance inputs on energy transfers and stability. In particular, we give a
quantum version of the Strict Bounded Real Lemma (Corollary 8.2.5) which will
be employed in Section 8.3 for quantum H° controller synthesis. In this section,

we consider the following quantum system of the form (7.2):

de(t) = Ax(t)dt+[ B G ][ dw®)” do(t)T |";
dz(t) = Cax(t)dt+[ D H ][ dw®)" do@®)” ]" (8.1)

In this quantum system, the input channel has two components, dw = [3,,dt + dw
which represents the disturbance input, and dv which represents any additional

noise input.

Definition 8.2.1 Given an operator valued quadratic form

€T
B

r(z, Bu) = [¢" B,R

where
R— Ri1 Rio
Rl, Ry

is a given real symmetric matriz, we say the system (8.1) is dissipative with

supply rate r(z,(3,) if there exists a positive operator valued quadratic form
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V(z) = 2" Xx (where X is a real positive definite symmetric matriz) and a
constant A\ > 0 such that

(V(x(t))) —i—/o (r(z(s), Buw(s)))ds < (V(z(0))) + At ¥Vt >0, (8.2)

for all Gaussian states p. Here we use the shorthand notation (-) = P(-) for
expectation.

We say that the system (8.1) is strictly dissipative if there exists a constant
e > 0 such that inequality (8.2) holds with the matriz R replaced by the matriz
R+ el.

The term (V(z(t))) serves as the generalization to quantum stochastic sys-
tems (8.1) of the notion of the abstract internal energy for the system at time t.
On the other hand, the term (r(z(t), 5,(t))) is a quantum generalization of the
notion of abstract power flow into/out of the system at time ¢. Both of these are
notions which are widely used in the stability analysis of linear and non-linear
deterministic systems [104, 105]. The dissipation inequality (8.2) is a general-
ization of the corresponding inequality that was introduced for classical linear
stochastic systems by Dupuis, James and Petersen [106]. Note that the term At
on the right hand side of (8.2), which accounts for the variance of Wiener process
disturbances, pertains only to linear stochastic systems (classical and quantum);
it does not appear in the dissipation inequality for deterministic systems. For
details, see [106, 98]

The following theorem relates the property of dissipativeness to certain linear

matrix inequalities.

Theorem 8.2.2 ([32]) Given a quadratic form r(z,3,) defined as above, then
the quantum stochastic system (8.1) is dissipative with supply rate r(z,B,) if
and only if there exists a real positive definite symmetric matriz X such that the

following matrix inequality is satisfied:

ATX + XA XB
( + XA+ Ry R+ )SO. 53)

BTX + RI, Rao

Furthermore, the system is strictly dissipative if and only if there exists a real
positive definite symmetric matriz X such that the following matriz inequality is
satisfied:
ATX + XA+ Ry, Rip+ XB
< e <0. (8.4)

BTX + Ri, Rao
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Moreover, if either of (8.3) or (8.4) holds then the required constant A > 0
can be chosen as

o
)\:tr[ o X[B G}F (8.5)
where the matriz F' is defined by the following relation:
[ dw
Fdt — ] [ dw” T } . (8.6)
dv

We now present some corollaries to the above theorem corresponding to a

special case of the matrix R defined in terms of the error output operator

B.(t) = Cx(t) + DB,(1).

Definition 8.2.3 The quantum stochastic system (8.1) is said to be Bounded
Real with disturbance attenuation g if the system (8.1) is dissipative with supply

crc Cc™D T
DTC DTD — ¢%I Bw |

Also, the quantum stochastic system (8.1) is said to be Strictly Bounded Real

rate

r(x,Bu) = 018 = 9*Bubu = 275

with disturbance attenuation g if the system (8.1) is strictly dissipative with this
supply rate.

Using the above definition of a bounded real system, we obtain the following
corollary from Theorem 8.2.2 (e.g., see also [107] for the corresponding classical
result).

Corollary 8.2.4 ([32]) The quantum stochastic system (8.1) is bounded real
with disturbance attenuation g if and only if there exists a positive definite sym-

metric matriz X € R™™ such that the following matrix inequality is satisfied:

ATX + XA+ CTC CTD+ XB -0
BTX + DTC DD —g*1 | =

Furthermore, the quantum stochastic system s strictly bounded real with distur-
bance attenuation g if and only if there exists a positive definite symmetric matriz

X € R™™ such that the following matrix inequality is satisfied:

ATX + XA+ CTC CTD+ XB
<0.
BTX +D'C  DTD- g1
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Moreover, in both cases the required constant X > 0 can be chosen as

BT

A =tr ar

x| B G|F

Now combining this corollary with the standard Strict Bounded Real Lemma

(e.g., see [95, 108]) we obtain the following corollary.

Corollary 8.2.5 ([32]) The following statements are equivalent

(i) The quantum stochastic system (8.1) is strictly bounded real with disturbance

attenuation g.
(ii) A is a stable matriz and |C(sI — A)7'B + Dl|» < g.
(iii) ¢*I — D™D > 0 and there exists a positive definite matriz X > 0 such that
ATX + XA+ CTC+ (XB+C'D)(¢*T — D"D)"Y(BTX + D'C) < 0.
(iv) g*I — DTD > 0 and the algebraic Riccati equation
ATX + XA+ CTC+ (XB+CT'D)(¢*T — D"D) " Y(B'X + DTC) =0
has a stabilizing solution X > 0.

Furthermore, if these statements hold then X < X.

Some remarks regarding Corollary 8.2.5 are now in order. It has been shown
in [98] that a small gain methodology can be developed for quantum stochastic
systems that parallels the small gain methodology in [106] for classical stochastic
systems. The essence of the results of [106, 98] is that, properly formulated, the
small gain principle (see, e.g., [109]) applies in the same way for linear stochastic
systems and an appropriate class of quantum stochastic systems as they do for
deterministic systems. In particular, the quantity ||C'(sI — A)™'B + D||o, < g in
Point 2 of Theorem 8.2.5 implies that:

/0 (2(s)T2(s))ds < ¢ / (Bu(5)T Bu($))ds + s + piat, 120

for some real constants 1, gz > 0. In the terminology of [98], the system (8.1) is
then said to be mean square stable. The main point of the theorem is that the

last property is equivalent to (8.1) being strictly dissipative. Hence mean square
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stability is also characterized by strict matrix inequality of Corollary 8.2.4. Now,
according to the small gain principle of [98] the smaller the gain g, the more robust
the system (8.1) is with respect to some unmodelled dynamics and Wiener noise
disturbances which may be present between the signals z(¢) and w(t) (see Figure
8.1). In particular, if the gain from z(¢) to w(t) due to the unmodelled dynamics

and disturbances satisfies:
t t
[ uends < o [ (397 Bulo))ds s st 20,
0 0

for some real constants ), pus, > 0, and ¢’ > 0 is such that ¢'g < 1 then (8.1)
will remain mean square stable. In this case we say that (8.1) is robustly stable.
Moreover, the smaller the gain g the more robust the system becomes (since this
allows a higher gain ¢’ from z(t) to w(t) such that the condition ¢’g < 1 is not

violated).

Uncertainty

A

\ 4

Plant

[

Figure 8.1: The uncertainty block represents unmodelled dynamics and additional

quantum Wiener disturbances which may appear between z(¢) and w(t)

8.3 H™ controller synthesis

In this section, we consider the problem of H* controller design for quantum
systems. As we shall see, we do not restrict ourselves to classical controllers.
The closed loop plant-controller system is defined in Subsection 8.3.1, and then
in Subsection 8.3.3 we apply the Strict Bounded Real Lemma to the closed loop
system to obtain our main results. In Subsection 8.3.4 we provide conditions

under which a controller is physically realizable.
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8.3.1 The closed loop plant-controller system

The general linear model (7.2) described above is the prototype for the inter-
connection of components which will make up the quantum control system. In
control system design, we prescribe a system called the plant, and seek to find
another system, called a controller, in such a way that desired closed loop be-
havior is achieved. We now introduce our plant and controller models, and the
resulting closed loop.

We consider plants described by non-commutative stochastic models of the

following form defined in an analogous way to the quantum system (7.2):

dr(t) = Az(t)dt+[ By By By ][ dv(®)" dw®)” du®)” ] x(0) = z0;
dz(t) = Chix(t)dt + Diadu(t);

dy(t) = Coa(t)dt+[ Dy Do Onyun, |l do(t)" dw(®)” du(t)” ]". (8.7)

Here x(t) is a vector of plant variables. The input w(t) is represents a disturbance

signal of the form (7.4). The signal u(t) is a control input of the form
du(t) = B, (t)dt + du(t) (8.8)

where (t) is the noise part of u(t) and ,(t) is an adapted, self-adjoint process
commuting with z(¢). Also, dv(t) represents any additional quantum noise in the
plant. The vectors v(t), w(t) and u(t) are independent quantum noises (meaning
that they live on distinct Fock spaces) with [to matrices F,, F; and Fy which are

all non-negative Hermitian. We also assume that
2(0)2(0)" — (2(0)2(0)")" = O,

The plant is depicted in Figure 8.2.

y
) :
w e
Plant
u -y

Figure 8.2: Diagram of plant
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Controllers are assumed to be non-commutative stochastic systems of the form

dé(t) = Ag&(t)dt + Biadvk(t) + Brdy(t);  £(0) =&

where £(t) = [ £1(t) ... &,,.(t) |7 is a vector of self-adjoint controller variables.
The noise vk(t) = [wvri(t) ... vkg,(t) ] is a vector of non-commutative
Wiener processes (in vacuum states) with non-zero Ito products as in (7.5) and
with canonical Hermitian Ito matrix £}, , and lives on a distinct Fock space from

v(t) and w(t). We will also assume that

£(0)£(0)" = (£(0)5(0)")" = Ox.

By enlarging the underlying Von Neumann algebra if necessary, the controller can
be defined in the above quantum probability space. The controller is depicted in
Figure 8.3.

vf

«— Controller « )

Figure 8.3: Diagram of controller

At time ¢t = 0, we also assume that 2(0) commutes with £(0). The closed loop
system is obtained by interconnecting (8.7) and (8.9), by identifying (3, (¢) with
Cr&(t), to give

A ByC B ByB do(t
an(t) = Sl G B R B
Br(Cy Ag Bg Dy B dUK<t)
B
! dw(t);
By Do

d=(t) = [01 DlzCK]n(t)dtJr[O D12BKO] (8.10)

dv(t)
dUK (t)
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where n(t) = [ z(t)T &()T ]*. That is, we can write

dn(t) = An(t)dt+édw(t)+éd@(t):An(t)dt+[ B G} ZZ((;))]?
dz(t) = C‘n(t)dtJrfId@(t):C*n(t)dtJr[0 H] [Z;U((t?] 8.11)
where
i) = [Sgw A= chg iKOK B = ﬁKD]
G | By BaBro |
_BKD20 Bk

@)
I

[Cl D12CK]; F[:[O D123K0:|-

Note that the closed loop system (8.11) is a system of the form (7.2). It is depicted
in Figure 8.4.

) :
w
D e
Plant
u VK y
Controller <

Figure 8.4: Diagram of closed loop system

Remark 8.3.1 An important aspect to be noted about the way we have defined
our plant and controller models is that their outputs are specified such that there
is no direct feedthrough of their respective input signals. That is, in the plant

u(t) only influences y(t) indirectly via x(t), likewise in the controller y(t) only



CHAPTER 8. SYNTHESIS AND REALIZABILITY OF H>* CONTROLLERS129

influences u(t) indirectly via £(t). This avoids delicate and difficult physical issues
that arise when there is direct feedthrough, due to the self-interaction of both the
plant and controller in the feedback loop (for example, see [86, Appendiz 11]).

8.3.2 H* control objective

The goal of the H> controller synthesis is to find a controller (8.9) such that for

a given disturbance attenuation parameter g > 0:

/0 (2(s)72(s))ds < g / (Bu($)7 Bun(s))ds + 1 + put,

is satisfied for some real constants p, o > 0. This objective can be interpreted
as that of disturbance attenuation where the controller bounds the effect of the

Y

“energy” of the signal 3,(t) and the noise variances on the “energy” of the signal
z(t). Consequently, as explained at the end of Section 8.2, the controller is robustly
stabilizing. Naturally, one would like to have g as small as possible, but if it is
too small a desired controller may not exist. Necessary and sufficient conditions
for the existence of a specific type of controller which achieves this goal for a
given g are given in the next section, as well as explicit formulas for Ax, By and
Ck. The results parallel the corresponding well-known results for classical linear

systems (see, e.g., [110, 95]).

8.3.3 Necessary and sufficient conditions

In order to present the results on quantum H control, we will require that the

plant system (8.7) satisfies the following assumptions.
Assumption 8.3.2
]. DEDIQ = E1 > 0

2. DQngl - E2 > O

[ A—jwl B, |

3. The matrix e ° is full rank for all w > 0.
i @ Dys |
[ A—jwl B |

4. The matriz e ! is full rank for all w > 0.
i Cy Doy |
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The results will be stated in terms of the following pair of algebraic Riccati
equations:

(A— ByE;*DLEC)T X + X(A — BB DLCY) +
X(B1Bf — ¢*BoE'BY)X + g 2CH (I — Dy, By DL)CL = 0; (8.12)

(A— B1D§1E5102)Y +Y(A- BlD;Eglcz) +
Y(g2CTC, — CF Ey'CY)Y + Bi(I — DY, Ey Dy )BT = 0. (8.13)

The solutions to these Riccati equations will be required to satisfy the follow-

ing assumption.
Assumption 8.3.3
(i) A— BoE;'DEL,Cy + (ByBY — ¢*BoE; ' BY) X is a stability matria.
(ii) A— B\DLE;'Cy + Y (g72CTCy — CTES'Cy) is a stability matriz.
(#i) The matriz XY has a spectral radius strictly less than one.

It will be shown that if the Riccati equations (8.12), (8.13) have solutions
satisfying Assumption 8.3.3, then a controller of the form (8.9) will solve the H>
control problem under consideration if its system matrices are constructed from

the Riccati solutions as follows:

AK = A + BQCK - BKCQ -+ (Bl — .B[(.Dgl).B{‘XV7
Bx = (I-YX)'(YC] + BiD},)E; ™
Cx = —E7Y¢*BIX+ DLoy). (8.14)

We are now in a position to present the main result in [32] concerning H>

controller synthesis which follows directly from the classical results in [110, 95].

Theorem 8.3.4 ([32]) (Necessity) Consider the system (8.7) and suppose that
Assumption 8.5.2 is satisfied. If there exists a controller of the form (8.9) such
that the resulting closed loop system (8.11) is strictly bounded real with distur-
bance attenuation g, then the Riccati equations (8.12), (8.13) will have stabilizing
solutions X > 0 and Y > 0 satisfying Assumption 8.3.3.

(Sufficiency) Suppose the Riccati equations (8.12), (8.13) have stabilizing
solutions X > 0 and Y > 0 satisfying Assumption 8.3.3. If the controller (8.9)
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is such that the matrices Ax, Bg, Ck are as defined in (8.14), then the resulting
closed loop system (8.11) will be strictly bounded real with disturbance attenuation
g. Also the constant X > 0 in Definition 8.2.1 can be chosen as in (8.5) with B,
G, and F replaced by B, G and I, where F is defined by the relation:

dw(t)

Ft = [ do(t)

] | dw()” do(t)” |

Notice that the controller parameters Bgg, Bg1, and the controller noise vg
are not given in the construction described in the sufficiency part of Theorem
8.3.4. In fact, they are free as far as the H*™ objective is concerned. In the
next subsection, we show that they may always be chosen to yield a physically

realizable controller.

8.3.4 Physical realization of controllers

In this section we will show that given an arbitrary choice of a commutation
matrix Ox = £(0)£(0)7 — (£(0)£(0)T)T for the controller, there always exists a
physically realizable controller in the sense of Definition 7.3.5. This is a rather
surprising result since it implies that the controller can be chosen to be purely
quantum, purely classical, or a combination of quantum and classical components

at will.
Theorem 8.3.5 Assume
F, = DyF,Dj + Dy F,, D3,

is canonical. Let {Ak, Bi,Ck} be an arbitrary triple (such as given by (8.14)),
and select the controller commutation matriz O to be canonical or degener-
ate canonical, as desired. Then there exists controller parameters Byg, Bki,
and the controller noise vk such that the controller (8.9) is physically realiz-
able. In particular, 2i0x = £()ER)T — (E)E)T)T for all t > 0 whenever

2i0x = £(0)€(0)" — (£(0)5(0)")".

The proof of this theorem depends on the following lemma for the case in which
Of is canonical. For the degenerate canonical case, this lemma can be applied
to an augmentation of the controller. We shall use the notation of Section 7.3.1,
and as in the discussion in Section 7.2, we may take By to have an even number

of columns and C'k to have an even number of rows.
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Lemma 8.3.6 Let F), be canonical and { Ak, B, Cr} be such that Ax € R"<*"x,
Bi € Rrexme (e € REX"K pye = 2N¢, mig = 2Ny and lg = 2N, for positive
integers N¢, Ny, and N, and O = diagNE(J) is canonical. Then there exists an
integer N, > N, and Bk, € R & >2Nwge qpith Ny, = Ny, + Ny, such that the
system (8.9) is physically realizable with

)y 0 I
_ T Nu NuXNwK 2NUK><2NUK .
BKO — PNu 0 > PNwK 0 =
NuwaK Ny, kaQNvK

[ Inyxny Onyx(nwfny) ]7

1
R = 5(ZJFZT); (8.15)
Bg1 = |:BK1,1 BK1,2i|§ (8.16)
; T
A A 8.17)
i
Brin = —iOgCrdiagy, (iJ); (8.18)
App = —i[INnyy Ony x Ny, }PNydiagNy(M)B}C@K; (8.19)
Bgi, = 2i@K[—AZI A }PNvaNudiangK—Nu(M) (8.20)

where Z = —%@AK and Ny,,. > N, +1. Here Ay is any complex (N, — Ny) X g

matriz such that

1 1 0 I
AL Ay = Z+i (5(2 — 7" — ZCIT(P}\CU ; Py, Cx—
S(Alt?Abz)) : (8.21)

where = is any real symmetric ng X ng matrix such that the right hand side of

(8.21) is non-negative definite.

Remark 8.3.7 Note that the condition N,, > N, is significant since it implies
that there is no direct feedthrough of the signal y(t) to u(t) (see Remark 8.3.1) as
required for (8.9). For compatibility between the equations (8.9) and (8.7), it is

necessary that the corresponding Ito matrices satisfy the following condition:

F, = ByoF,, Biy. (8.22)
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However, since F,,. and F,, are, by convention, in canonical form, (8.22) is always
satisfied. To see this, we simply note that the 2N,, elements of Biovi are a subset
of pairs of conjugate real and imaginary quadratures in vi. Hence it follows that
if Fy, is canonical then F, must also be canonical and (8.22) is automatically
satisfied.

The proof of Lemma 8.3.5 uses the following lemma:

Lemma 8.3.8 If S is a Hermitian matriz then there is a real constant o such
that ol + S5 >0 for all o > .

Proof. Since S is Hermitian it has real eigenvalues and is diagonalizable. Hence
S = VIEV for some real diagonal matrix £ and unitary matrix V. Now let
agp = —A\, where X is the smallest eigenvalue of S. The result follows since
al + S =VTi(al + E)V while af + E > 0 for all a > ap. O

Proof. (of Lemma 8.3.5) The main idea is to explicitly construct matrices
R € Rxnx A € CNox x| By € R 2ok +Ny) and By € RE*2Nok | with
N, > N,, such that (7.14)-(7.17) are satisfied by identifying Ay, Bk, Ck,
| Bko Oiexmy Js & wi and w with A, B, C, D, z, w and y, respectively. To
this end, let Z = 10'A = —10xA, with O = diagNé(J). We first construct

matrices Ay, Ap1, Br1,1 and By 2 according to the following procedure:
1. Construct the matrix Ay according to (8.19).

2. Construct a real symmetric nx X ng matrix =; such that the matrix

Z-7" 1 0 I
EQ == El+2< ——C};Pg;u[ O

2 4 -/

Py,Cx — %(AZQAI,Q))

is non-negative definite. It follows from Lemma 8.3.8 that such a matrix =;

always exists.

3. Construct a matrix A,; such that AzlAbl = =Z,. This can be done, for
example, using the singular value decomposition of =, (in this case Ay will

have ny rows).

4. Construct the matrices By ; and By o according to equations (8.18) and

(8.20), respectively.
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Let R = 5(Z + Z"). We now show that there exists an integer N5 > N
such conditions (7.14)-(7.17) are satisfied with the matrix R as defined and with
Bi1 = Bk11 Bk ] and

L [ I il } P, Cl
A= A, . (8.23)
Apo

First note that necessarily N,, > N, +1 > N, since Bk, has at least 2V,, 42
columns. Also, by virtue of our choice of Ay; we have

1 1 0 I
S(ALA) = 8(E2) = 5(Z = 2") = JCRPy, | | PG = S(AAw),
and hence

. ; ; 1+ ] 0 1] 1 .
S(ATA) = S(AL M) + S(ApAw) + 7CRPY, |~ | PG = 5(Z = 27),

Since R = ZJFZZT, we have R + S(ATA) = Z. Therefore, (7.14) is satisfied.

Now, as in the proof of Theorem 7.3.6, observe that

Ok Brdiagy (MNPy =[ T —T# ]

Y

for some ng x N, complex matrix 7". But by taking the conjugate transpose of
both sides of (8.19) which defined Ay, we conclude that T = —Al,. Hence,

Bk = 2i0k[ —A}, AL, |Py,diagy (M). (8.24)
From (8.18) which defined Ay, we obtain
Br11 = —iOxCrdiagy, (i])
(

= —iOxCrdiagy (iJ)(2diagy, (M"))diagy (M)

-1 1

= i@KO[T(diagNu<[ T )diagy, (M)

-1 I

= OxgCLPY
1

Py, diagy (M). (8.25)
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Combining (8.20), (8.24) and (8.25) gives us

| Bkip Bri2 Bk |

) -1 T

= 20 | 3CEPL | P [ AL AT Povgev
il 1
[ AL, AL | Py, | PR Pr., diag,,, (M)

. | 1T pT | I ] T T 1T pT _ I ] T T ]

= 20k _ECKPNu . _Abl _AbQ §CKPNu ) Abl Ab2
—il i

Py, diagy, (M)

. 1,~T pT I ] T T 1T pT I ] T T
— 20, | —AT AT |T.

Therefore, (7.15) is also satisfied. Moreover, it is straightforward to verify (7.16)
by substituting A as defined by (8.23) into the right hand side of (7.16). Finally,
since Ny, > N,, it follows that [ Bxo 0j,xm, | is precisely the right hand side
of (7.17). This completes the proof of Lemma 8.3.5. O

8.4 H™ synthesis in quantum optics

Quantum optics is an important area in quantum physics and quantum tech-
nology and provides a promising means of implementing quantum information
and computing devices; e.g., see [90]. In this section we give some examples of
controller design for simple quantum optics plants based on optical cavities and
optical amplifiers coupled to optical fields; e.g., see [111, 93]. We give explicit
realizations of controllers which are fully quantum, fully classical, and mixed

quantum-classical using standard quantum optical components and electronics.

8.4.1 Quantum controller synthesis

We consider an optical cavity resonantly coupled to three optical channels v, w,
u as in Figure 8.5.
The dynamics of this cavity system is described by the evolution of its an-

nihilation operator a (representing a quantized single mode standing wave). In
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PN
/ —
K1 =26 \ /Kz 0.2

- Kk3=02

z u
Figure 8.5: An optical cavity (plant).

the quadrature notation of (8.7), z1(t) = ¢q(t) = a(t) + a*(t), z2(t) = p(t) =
(a(t)—a*(t)/i, v(t) = (v1(t), v2 (1), w(t) = (wit), wa(t))", ult) = (wr(t), u2(t))".
The quantum noises v, w have Hermitian Ito matrices F, = Fz = I +1¢.J. This

leads to a system of the form (8.7) with the following system matrices:

A = —%[; By = —/il; By = —\/ral; By=—\/rsl;
(v = K1 + Ko + K3)
C, = \//f_?)]; Dy =1
Cy = /ral; Dy =1. (8.26)

In this model, the boson commutation relation |a, a*| = 1 holds. This means that
the commutation matrix for this plant is Op = J.

In our example, we will choose the total cavity decay rate x = 3 and the
coupling coefficients k1 = 2.6, ko = k3 = 0.2. With a disturbance attenuation
constant of g = 0.1, it was found that the Riccati equations (8.12) and (8.13)
have stabilizing solutions satisfying Assumption 8.3.3. These Riccati solutions
were as follows: X =Y = 0y49. Then, it follows from Theorem 8.2.2 that if a
controller of the form (8.9) is applied to this system with matrices Ax, Bk, Ck
defined as in (8.14) then the resulting closed loop system will be strictly bounded

real with disturbance attenuation g. In our case, these matrices are given by
Ag = —1.11, Bx = —04471, Cx = —0.4471.

The form of the matrices A, By and Ck suggest that the controller (8.9) can
be implemented using an optical cavity in combination with some phase shifters.
Indeed, it is a straightforward exercise to devise an implementation as shown in
Figure 8.6.
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180°
phase
shift
Vi 180° I — v
——» phase ———» —_—
shift
K1 =0.2 ag Kig3=0.2
Kgo=1.8

Figure 8.6: An optical cavity quantum realization of the controller (O = J) for

the plant shown in Figure 8.5.

In the figure, ax is the annihilation operator of the cavity, & = ax + aj.,
& = (ax —al)/i and € = (£1,&)T. The implemented controller is a physically

realizable system with the following dynamics:

dg(t) = Ag&(t)dt+[ Bxy By ][ dvk dy” ]
du(t) = Cg&)dt +[ Inxa Ogxa | dv;( dyT ]T7 (8.27)

where Br1 = [ \/Ex1laxs —+/Fr2laxe | and v = [ vk, vk, |7, with kg = 0.2
and Kgo = 1.8. For this realization we have

—0.2236 —0.2236¢
R=050 A= 0.6708  0.6708:
0.2235  0.2235:

Note that the controller of Figure 8.6 requires two phase shifters. Alterna-
tively, if we consider realizing the controller as a cascade of a passive optical
device with a physically realizable system, see the discussion in Remark 7.3.8,
it is possible to remove one of the phase shifters. This alternative realization is
illustrated in Figure 8.7.

Now the controller is implemented as an optical cavity, with annihilation oper-
ator ax, connected at the output with a 180° phase shifter. The controller cavity

has coupling coefficients ki1 = 0.2, kgo = 1.8, kg3 = 0.2 and is a physically
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Figure 8.7: An alternative optical cavity quantum realization of the controller
(©x = J) for the plant shown in Figure 8.5.

realizable system with dynamics:

dg(t) = Ag&(t)dt+ | Bxy By ][ dvk dy’ 1"

dﬂ(t) = —CKg(t)dt—‘—[ ]2><2 02><4 H dU}; dyT ]T, (828)
where @(t) is the output of the cavity, Bx1 = | —\/kri1loxs —+/kr2laxs | and
v = [ vE, vk, |T. For the cavity we have that

0.2236 0.22361
R =052 A= 0.6708 0.6708i
0.2235 0.2235¢

The overall output of the controller is u(t), given by u(t) = K,u(t), where K, =
—I5yo. Here K, models the 180° phase shift at the output of the cavity (cf.
Remark 7.3.8). Thus, the overall controller is of the form (8.9) with Bry =
[— I 0] and Bg; as given before.

Notice that the By matrix in (8.27) and the By matrix in (8.28) differ in
the sign of the (1,1) 2 x 2 block, which is why the second realization does not

require a phase shifter in front of vg.

8.4.2 Classical controller synthesis

In subsection 8.4.1 we obtained a quantum controller corresponding to the choice

Ok = J. We now show that if we instead choose O = 0, the controller that is
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realized is classical, with appropriate transitions to and from the quantum plant.

Now, suppose we choose vg to be the quadratures of two independent noise
channels (i.e., F,,. = I1x4 +idiag(J, J)). Setting Ox = 022, Eq. (7.19) and the
compatibility requirement (8.22) in this context results in the following pair of

equations:

By JBj, + By diag(J, J) Bk, =0 (8.29)
Bro(Iyxa + idiag(J, J)) By = I +1iJ. (8.30)

In order to find By and By solving (8.29) and (8.30), we assume the following

forms for Bgg and Bgq:
Bgo = [ Bro 0Oax2 ] i Bri= [ O2x2 B } :
Since By = —0.4471, substitution of these forms into (8.29) and (8.30) gives:
Byo(I +iJ)Bf, =1 +iJ; 0.447°J + By JJ B}y = 0.

It can be readily checked, by direct substitution, that these equations are solved

- - ~ ~ 1 0
by Brgo = Isx2 and By = —0.4471, where [ = 0 . This completely spec-

ifies the classical realization of the controller, illustrated in Figure 8.8. The quan-
tum signal y is converted to a classical signal ¥, = (ye1, Ye2)? = (Y1 — Vi1, Voo +
y2)T by imperfect continuous measurement of the real and imaginary quadratures
of the optical beam, implemented in Figure 8.8 by a beam splitter and two ho-
modyne detectors [111]. The classical signal y,. is processed by a classical linear
system (Ag, Bg, Ck, 0) to produce a classical control signal ., which then modu-
lates (displaces) a field vy to produce the optical control signal du = u.dt +dvg;.
This classical controller achieves exactly the same H> performance as the quan-
tum controller of Subsection 8.4.1.

This classical controller has access to the full quantum signal y, and the quan-
tum measurement occurs in the controller. The algebra based on the commuta-
tion relations enforces the quantum measurement, and also the modulation. If we
were to include measurement as part of the plant specification, then in general
a different classical controller will result, with different H*> performance. To see

this, suppose that y is replaced by its real quadrature in the plant specification;
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Vel VK2
U, Classical system 4—| A2 |<—| HD(Re) |<— / —

Mod dé = Ax & dt + Bydy,

= Ye2
du; =Cy < dt 4—| \2 |<—| HD(Im)
50:50 beam
Homodyne splitter
detection

VK1

Figure 8.8: A classical realization of the controller (Ox = 0) for the plant shown
in Figure 8.5. The controller includes quantum measurement and classical mod-

ulation of optical fields.

this situation is described by the matrices

A = =1 By=—Vml; Bi=—il By=—/kl;

(v = K1 + Ko + K3)
C, = \/H_?,[; Dy = I
02:\//-@—2[10};1921:[10} (8.31)

and is illustrated in Figure 8.9. Thus the output of the plant is a classical single-

L
/
K;=2.6 \ /Kg—OZ (EI

- Kk3=02

a

Figure 8.9: An optical cavity (plant) with classical output. The (real) quadrature

variable signal.

v

measurement is achieved by homodyne photodetection (HD(Re)).

With a disturbance attenuation constant of g = 0.134, it was found that
the Riccati equations (8.12) and (8.13) have the following stabilizing solutions
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satisfying Assumption 8.3.3:

X:OO;YZOO ‘
0 0 0 0.121

It now follows from Theorem 8.2.2 that if a controller of the form (8.9) is applied
to this system with the following matrices Ax, Bg, Cx defined as in (8.14), then
the resulting closed loop system will be strictly bounded real with disturbance

attenuation g = 0.134:

[ 11 0 —0.447

A = i Bg = ;

K 0 —1.3] K [ ]

[ _0.447 0

Cx = . 8.32
K 0 —0.447] (8.32)

In this case, the controller (8.9), (8.32) is a classical system which can be im-
plemented using standard electronic devices. This second classical controller is
illustrated in Figure 8.10, and is different to the previous one. Here we have cho-
sen Bgg = I, Bii; = 0, and the quantum noise is canonical. The control signal

is du = u.dt + dvg, a coherent optical field.

u

Classical system
dé = Axédt + Bgdy
du, =Cx & dt

VK

Figure 8.10: Classical controller (O = 0) for the plant of Figure 8.9.

Finally, let us now return to the controller of Figure 8.8, which we had con-
structed “directly”, and show how it may be recovered using Lemma 8.3.6. To

this end, suppose we seek a physically realizable controller of the form:

d§(t) = Agé(t)dt + Bridv(t) + Brdy(l)
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with O = 0, and the real matrices By and By are unknown and to be deter-
mined. Since O is degenerate canonical, we need to consider some augmenta-
tion of (8.33) (Theorem 8.3.5). Suppose we consider some augmentation where

Ay, Bi, Cg are, respectively, augmented to the matrices Ay, By, Cr given by:

Ag 0252
_ _ By
Ag = 0 —0.4472/2 AT By = .
0.447%/2 0 K 2

Cx = [ Ck 0O2x2 |,

and let P be a permutation matrix such that PTO,PT is canonical. Now, ap-
plying Lemma 8.3.6 to the triplet {PAx PT, PBy,Cx PT} by choosing

0O 0 0 O
0 005 0
== and Ay =0 0.2235; 0 0.2235 |,
0 0 0
0 0 0 0.05

gives us a physically realizable dilation of (8.33) for some Byo and Bg;. By
extracting the sub-system of the dilation corresponding to our original system
(8.33), we recover the matrices Bro = [ Ioxa Oaxo | and Brr = [ 0 —0.4471 |

as we had before. This results in the controller given in Figure 8.8.

8.4.3 Classical-quantum controller synthesis

As a final example, we illustrate the synthesis of a controller with both classical
and quantum components. The plant has two degrees of freedom, and is formed
as a cascade of an optical amplifier [93] and the cavity discussed above. This
plant is illustrated in Figure 8.11.

The optical amplifier has an auxiliary input h, which is an inverted heat bath
with Ito matrix Fj, = (2N+1)I+iJ, where N > 0 is a positive thermal parameter
(for details, see [93]). The complete system shown in Figure 8.11 is of the form



CHAPTER 8. SYNTHESIS AND REALIZABILITY OF H>* CONTROLLERS143

PN

LA —
a
h K1:2.6 \ / K2=0.2
- Kk3=02

u Optical
I amplifier ,
z u

Figure 8.11: An optical amplifier-cavity system (plant).

(8.7) with matrices

N —rl 0 —/kal
A = a—_ ; Bo= ; By = 3
0 —eff 0 VB3I 0
—/ral
By = )
_Jal
(v = K1 + Ko + K3)
¢ = | Vml 0] D=1
Cy — [\/@1 o]; Dy = 0: Dy = 1. (8.34)

Here o and 3 are parameters of the optical amplifier. The signals have Ito
matrices F,, = Fgz = I +iJ and F, = diag(I + ¢J, (2N + 1)I + iJ), and the
parameters are chosen to be k; = 2.6, ko = k3 = 0.2, «a =1 and g = 0.5.

With a H* gain g = 0.1, the Riccati equations (8.12) and (8.13) have stabi-
lizing solutions satisfying Assumption 8.3.3: X =Y = 0gy9. Using (8.14), the

controller matrices Ag, Bi, Cx are

[ -18s0ar —0aazar [ 044721
Bl —o2r 0 —025n | T Ope |
Cx = [ 044721 gy ] . (8.35)

We would like to realize a controller with both classical and quantum degrees
of freedom. Suppose further that we want &, = (&,&)7 to be quantum and &, =

(&3,&4) be classical. For the sake of conformity with the setup of Chapter 7, let
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us relabel 6 aCCOrding (517 ’527 537 54)T = (537 547 517 £2>T = (gca fq)T- SUbsequentIY7
we also redefine Ag, By, Ck to be:

—025]  —02] ],BK—[ O ]

K= —0.44721 —1.38941 —0.44721

Oy = [ Oy —0.44721 ] . (8.36)

Therefore, for our realization we choose O = diag(0sx2, /). The realization
of the controller is shown in Figure 8.12, which consists of a four-mirror optical
cavity, a classical system, and homodyne detection and modulation for interfacing
the classical and quantum components. The quantum noises in Figure 8.12 are
all canonical. The cavity has coupling coefficients kg1 = kg3 = Kgs = 0.2 and
ki = 2.1788. The interconnection fields are given by dn, = \/@@dt + dvgs,
and d¢, = C.dt + dvgy, where 1. = (e1,Me2)” = (g1 — V31, g2 + vies2)” . For this
realization we have the dynamics (8.9) with

oo | 044720 —1ATELL Ope 04472
KUl 040 —0.13551 0.13551 0o ’

ngD = [ I 02x2 02x2 }7

~ 1
and v = (Vk1, Vi, Vs, Va) L, where we recall that I = 0 . To connect

this direct realization with the Lemma 8.3.6, consider the following augmentation
of the matrices Ag, By, Ck in (8.36):

- A 0 -
AK _ K 2x2 BK _
O4x0 0.4472J  0.251

Bk

02x2

Cx = |:OK 02x2]~

Let P be a permutation matrix such that POxPT = diag,(J). Then applying
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Lemma 8.3.6 to the triple {PAKPT, PB, é’PT} and choosing

[0 0 0 0 0 0
0 0.0092 0 0 0 0.05
_ |0 0 o0 o0 0 0
~ |0 0 0 00092 —-005 0
0 0 0 —005 05947 0
[0 005 0 0 0 0.5947 |
[0 0.0678 0 —0.0678 0.738 0.738i
App = | 0 —0.0678 0 —0.0678 0 0 ,
0 0 0 0 0.2236  0.2236i

gives us the controller realization of Figure 8.12.

> :

180°
phase
shift
VKi1 180° I > v
—» phase ———> ——
shift
K1 =0.2 ag Kkqs=0.2
&
4—
Mg Ki2 =2.1788 4—/
I Kig3=0.2 VK4
VKZ Mod

VK3
Ner B (C
—P\—’I HD(Re) |—>| 2 l—P Classical system

dé, =-0.25¢, dt -0.1355dn,

HD(Im) |—>| » lL, g, =& dt

50:50 Homodyne
beam splitter ~ detection

Figure 8.12: Quantum-classical controller (O = diag(0sx2, J)) for the plant of
Figure 8.11.

The above is, of course, not the only possible mixed quantum-classical real-
ization. To obtain a different realization we could have alternatively specified
that (£1,&)7 be classical and (&3,£4)T as quantum. Let us now do this and set
&= (&,&)T and &, = (&,&)". In this case we are already in the setup of
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Chapter 7 and it is not necessary to relabel £ or redefine A, Bi,Ck. In other

words, Ay, Bg,Cy are as given in (8.35). This alternative realization is shown
in Figure 8.13.

VK2
v Kkl = 0.21
ag \
VK3 \

«—

Kg> = 0.25 Kg3 = 0.04

DN E,
VKs
V4 67:33 A

Beam splitter

Hel

A% Z
M—P\—3>| HD(Re) |—>| \2 |—> Classical System e

dé, =-1.3894 ¢, dt +dn,

o li*{ &, = &di
Beam splitter HD(Im) |—>| A2 l—»

Homodyne ez
detection

21 = 0.8944y —(0.2236&,+ 0.4472vis)
22=0.4472y +(0.4472&, + 0.8944vk3)
zZ3= (V[@-Zz)/ \/2

Zy= (VK4+ Zg)/ \/2

Figure 8.13: Alternative quantum-classical controller (O = diag(Oax2,J)) for
the plant of Figure 8.11.

Note that the control signal u is now the output of the classical part of the
controller, modulated by the Wiener noise vgy. As before, we proceed to re-
late this alternative mixed classical-quantum realization with Lemma 8.3.6. The

suitable augmentation of Ag, By, Ck are as follows:

- A 0 - B
AK _ [ K 2%x2 ] BK: K

—0.1J 0.2J 1.38941 0252

Ck = [OK 02x2]
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Then application of Lemma 8.3.6 to {PAKPT, PBy, éKPT} with

0 0 0 0 0 0
0 045 0 0 0 0.1118
_ o 0o o 0 0 0
- o 0 0 045 —01118 0
0 0 0 —01118 0.125 0
0 0.1118 0 0 0 0.0125 |
0 0 0 0 0.2291i 0.2291;
Ay — 0 0.4472i 0 —0.4472 025  0.25i |
0 —05 0 =05 0 0
0 0 0 0 0.1 0.1

results in the controller of Figure 8.13.

8.5 Concluding remarks and future challenges

In this chapter we describe an H* synthesis problem for a class of non-commutative
stochastic models due to James and Petersen [32], and then show that the re-
sulting partial description of a controller from the H* synthesis can always be
completed, by appropriately adding additional quantum noise channels, such that
the complete controller model is physically realizable. It should be emphasized
that the novelty of the approach discussed herein is that it facilitates the design
of controllers which may have quantum freedom degrees of freedom, such as in
[87]. Moreover, the H* theory is applicable to a fairly general class of linear
non-commutative plants as well as being quite similar to the classical theory.

A particularly interesting insight obtained from our results is there is com-
plete freedom to specify the type of controller to be realized. Therefore, starting
with a partial description of a controller, one may at will choose to realize either
a fully quantum controller (with no classical components), a classical controller
(with no quantum components), or even a more elaborate hybrid type of con-
troller with mixed classical and quantum components. All these different types
of realization will achieve the same H* performance specification. In a number
of illustrative examples from quantum optics, we demonstrate the synthesis and
physical realization of quantum, classical, and quantum-classical controllers.

The initial results and insights of this work opens several avenues for future

research in quantum linear stochastic systems. We shall now list and discuss some
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interesting interrelated topics which can be themes for further investigations:

1. Fortuitously, the resulting system matrices in the synthesis examples have
a special structure consisting of blocks of scalar multiples of 2 x 2 iden-
tity matrices, thus enabling direct (or “manual”) realization the controller.
For a number of these direct realizations we also explicitly show how they
correspond to one of the infinitely many different realizations that can be
obtained from Theorem 8.3.5. However, there is no reason to believe that we
will in general obtain solutions with readily exploitable structures nor would
direct realization necessarily be sensible for a controller with many degrees
of freedom. The general approach would be to apply Theorem 8.3.5 and
Lemma 8.3.6 to obtain a pair of Hamiltonian and coupling matrices (R, A)
which completely specifies a particular realization, followed by a physical
construction of the controller. At present, an impediment to this approach
is, to the best of the author’s knowledge, a lacuna of results pertaining
to systematic engineering of linear quantum optical systems with arbitrar-
ily specified (R, A) from a bin of quantum optical components. There is
an interest in the quantum information science community in implementa-
tion of quadratic Hamiltonians but only of specific ones which will create
entangled Gaussian states useful for quantum cryptography and comput-
ing [112, 113, 114]. In [115], it has been shown that arbitrary quadratic
Hamiltonians can be implemented via applying appropriate sequences of
fast elementary operations and is investigated further in, e.g., [112, 113].
Despite this, it may still prove advantageous to be able to engineer the
Hamiltonian directly and in some situations this may be preferable. On the
other hand, engineering of arbitrary linear coupling seems to have attracted
even less attention, if any. With the advent of quantum control and the
increasing involvement of engineers, these implementation questions may in
the future gain more prominence. In any case, they are important ques-
tions and will be even more relevant if we are to develop other synthesis
methods in which we do not have the luxury of adding in quantum noise
without degrading the closed loop performance. It is hoped that this will
eventually lead to a constructive theory for the analysis and synthesis of

quantum optical networks which parallels that of electrical networks.

2. Due to the presence of the free parameter = in Lemma 8.3.6, we know that

there can be infinitely many different physical realizations for any particular
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partial model. As such it would also be of interest to consider whether it
is possible to find = which returns a realization which is in some sense
“optimal”. For example, it may be that one wishes to find a realization
with a minimal number of noise channels, that is, a realization with N,,
which is smallest among all possible realizations. Alternatively, we may
wish to bound the complexity of the controller and look for a realization

which can be built with a minimum number of components.

3. Here we have only considered a quantum generalization of classical H*°
synthesis. However, there are other controller synthesis paradigms such as
the LQG synthesis and the risk-sensitive synthesis. Thus, it is of interest
to investigate whether these other paradigms may also be extended to the

quantum linear stochastic systems setting.
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