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Multinomial Representation of Majority Logic
Coding

John B. Moore and Keng T. Tan

Abstract—
Multinomial representations are derived for majority

logic operations on bipolar binary data. The coefficients
are given simply in terms of the readily computed lower
Cholesky factor of Pascal Matrices of order n for codes of
block length n.

I. INTRODUCTION

Majority voting on binary data is the basis of certain
nonlinear block coding schemes in communication sys-
tems [1], especially in the case where, extremely low
power radio wave communications is desired [2]. The
majority logic operation is used in both the coding and
decoding operations. Because of the nonlinearity of the
operation, there is difficulty in predicting system perfor-
mance, or seeing how to improve system performance.
Our view is that a crucial tool in this task is a multino-
mial representation of the majority logic operation.

A multinomial expansion for majority logic has been
partially studied in [3], [4], and the results applied in var-
ious communication contexts. General formulas for the
first and last coefficients in the expansion are stated, and
for bipolar binary vectors of length n, it is claimed that
the even numbered coefficients are zero for n even, but
we know of no sources which give other coefficients.

Here, we give a complete theory for the multinomial
representations of majority logic operations on bipolar bi-
nary data. The majority logic operation can be a classic
sign function of the sum of the binary data, as studied in
the earlier literature known to us. Perhaps more usefully,
we also give a theory for what we term here sign± func-
tions. These are sign operations where an output of 0 is
replaced by ±1. The approach extends to other nonlinear
functions of the sum of binary data, such as to sigmoidal
functions used in artificial neural networks. It also extends
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to arbitrary nonlinear functions of bipolar binary data vec-
tors that are invariant of the order of the data within the
vector.

The coefficients of the multinomial expansion are linear
in what we call a generalized Pascal matrix, which can be
factored in terms of the lower triangular Cholesky factor,
denoted here Pn, of a Pascal matrix of order n. The ‘new’
results are generalizations of the classical results. It would
not be surprising if at least some of the results were known
by Pascal, but the motivation for deriving them, or high-
lighting them, is coming from applications of nonlinear
coding for next generation wireless communications.

In Section II, the new results on multinomial expan-
sions of majority logic functions are derived. In Section
III, these results are applied to majority logic based non-
linear block coding. Conclusions are drawn in Section VI.

II. THE PASCAL MATRIX AND A MULTINOMIAL

EXPANSION

In this section, we introduce background material on
classical results in order to set up notation for the main
results of the following sections.

Our results concern nonlinear operations on a data n-
vector a = [a1, a2, . . . , an]′ with ai ∈ {+1,−1}. Now
any nonlinear function of a belongs to a finite discrete set
of no more than 2n elements. Indeed, such functions are
linear in an indicator 2n-vector ∈ {e1, e2, . . . , e2n}, where
ei is a zero 2n-vector save that the ith element is unity.

Our new results concern nonlinear operations that are
invariant of any ordering in the data, such as functions of
∑n

i=1 ai,
∏n

i=1 ai, or of
∏n

i=1(1 + ai). In this case, the
functions belong to a discrete set of at most n+1 elements.

Our focus is on (nonlinear) majority logic functions in-
volving sign operations on sums of partial products ai,
which map one-to-one to the data vector. The resulting
representations are termed multinomial representations.



A. Multinomial representation for majority logic
1) Nonlinear functions and majority logic: Consider

the sign function definition.

sign(x) :=







1 if x > 0
0 if x = 0

−1 if x < 0
. (1)

Let us also introduce derivative definitions, denoted
sign+ and sign− as

sign±(x) :=







1 if x > 0
±1 if x = 0
−1 if x < 0

. (2)

Consider now a set of n bipolar binary digits
{a1, a2, . . . , an}, that is where ai ∈ {+1,−1}. The ma-
jority logic operation on this n-block of data is simply
sign∗(

∑n
1 ai), where we have used sign∗ to denote ei-

ther sign, sign+ or sign−. The latter two options can be
used if the output of the logic operation is constrained to
be also bipolar binary.

2) Multinomial representation: Early literature [3][4],
presents a multinomial representation for the majority
logic sign operation, which we here also mildly gener-
alize as

sign∗

(

n
∑

i=1

ai

)

= ρ0 + ρ1

n
∑

i=1

ai + ρ2

∑

all i>j

aiaj

+ρ3

∑

all i>j>k

aiajak + · · · + ρn

n
∏

i=1

ai. (3)

for suitable selections of coefficients ρ :=
[ρ0, ρ1, . . . , ρn]′, which will depend on which of the
sign operations is used. The selection of the coefficients
and their properties is the study of this paper.

Of course, the expansion of the nonlinear function
∏n

i=1(1 + ai) has such an expansion as the right hand
side of (3) with coefficients ρ = [1 1 . . . 1]. The mapping
from the set {ai} to the set of the sums of products in (3)
via the coefficients of the ρi, is known to be one to one.

The earlier work has given specific formulas for the co-
efficients ρ0, ρ1, ρn of (3) in terms of permutation oper-
ations nCi = n!

i!(n−i)! , at least for the case of the classic
sign function. It is also noted in the early work that in
this case ρi = 0 for n, i even, but other coefficients have
not been studied to our knowledge.

In our applications of such expansions, it is important to
have readily calculated coefficients for all the coefficients
ρi, and to see relationships between them in order to un-
derstand experimentally observed relationships in major-
ity logic coding for communication systems.

In order to proceed, we first review relevant results of
the Pascal matrix.

B. The lower Cholesky factor of the Pascal matrix

The well known (second) Pascal matrix, is a lower
Cholesky factor of the original (first) Pascal matrix. We
will refer to this (second) Pascal matrix simply as the
Pascal matrix, and use the notation Pn = (pi,j

n ) for such
an n × n matrix. Its elements, for i, j = 1, 2, . . . , n are
defined in terms of the binomial coefficients , so that the
i, j element for i ≤ j is

pi,j
n =

[

(−1)j−1.i−1Cj−1

]

(4)

:=
(−1)j−1(i − 1)!

(j − 1)!(i − j)!
, for i ≥ j.

The key property which we exploit subsequently is that
Pn is involutary in that

Pn = P−1
n , PnPn = In. (5)

III. MULTINOMIAL COEFFICIENTS

To lead into the derivations of our main results, consider
the polynomials (s − 1)i for i = 0, 1, 2, . . . , n for some
nonnegative integer n and scalar s, organized as













(s − 1)0sn

(s − 1)1sn−1

·
·

(s − 1)ns0













= Pn+1













sn

sn−1

·
·
s0













. (6)

Now consider the multinomial (3) for all possible po-
lar binary sequences {a1, a2, · · · , an}. Clearly, the ex-
pansion is invariant of the ordering of the ai, so that
there are only n + 1 selections, namely where there are
k = 0, 1, 2, · · · , n values of ai = 1, with correspondingly
n − k = 0, 1, · · · , n values of ai = −1. Indeed the terms
involving sums of products of the ai in (3) are given, for
each k = 0, 1, 2, · · · , n, as the coefficients of the expan-
sion (s − 1)k(s + 1)n−k.

A. A generalized Pascal matrix

A useful generalization of (6) is then












(s − 1)0(s + 1)n

(s − 1)1(s + 1)n−1

·
·

(s − 1)n(s + 1)0













= Rn+1













sn

sn−1

·
·

s0













(7)

for some readily calculated (n + 1) × (n + 1) matrix
Rn+1 := (ri,j) consisting of elements ri,j , and termed
here a generalized Pascal matrix. In particular, the ith row
of Rn+1 consists of the sums of products of the ai in (3),



for k values of ai = 1, with correspondingly n − k val-
ues of ai = −1, and are the coefficients of the polynomial
(s − 1)k(s + 1)n−k.

For reference, the cases for n = 1, 2 are spelt out as,

R2 =

[

1 1
1 −1

]

(8)

R3 =





1 2 1
1 0 −1
1 −2 1



 (9)

A recursive relationship between the elements of Rk+1,
and that of Rk, being a generalization of Pascal’s equa-
tions, are given for k = 2, 3, 4, · · · , n, initialized by (8),
as

ri,1
k+1 := 1, for i = 1, 2, · · · , k + 1;

ri,j
k+1 := ri,j

k + ri,j−1
k , for j = 2, 3, · · · , k + 1;

rk+1,j
k+1 := rk,j

k − rk,j−1
k , for j = 2, 3, · · · , k + 1.

(10)
This result is proved in a straightforward manner by in-
duction, and is not spelt out here.

B. Coefficients via the generalized Pascal matrix

As already noted, the multinomial (3), for each possible
a1, a2, · · · , an selection, is invariant of the ordering of the
ai, and there are then but n + 1 possible multinomials.
These can then be organized as,

s∗ :=













sign∗(n)
sign∗(n − 2)

·
·

sign∗(n − n)













= Rn+1













ρ0

ρ1

·
·

ρn













= Rn+1ρ.

(11)
This relationship means that the desired coefficients are
the solutions of a linear equation as emphasized in the
lemma.

Lemma III.1: The multinomial representation of the
sign∗ function of (3) has coefficients ρ satisfying the lin-
ear equations (11), restated as,

Rn+1ρ = s∗, (12)

where Rn, the generalized Pascal matrix, is defined recur-
sively in (8), and (10).

C. Inverse and decomposition of the generalized Pascal
matrix

The nature of the inverse of Rn+1 now assumes impor-
tance. We next develop our second main result, namely

that Rn has a factorization in terms of the Pascal matrix
Pn, and inherits the involutary property to within a scal-
ing. In particular, we claim,

Lemma III.2: The generalized Pascal matrix Rn, as de-
fined recursively in (8), and (10), has the scaled involutary
property

R2
n = 2n−1In, R−1

n = 21−nRn. (13)
Proof: This result follows by induction arguments. We

work with matrices in lower triangular form. First define
Fn as the matrix Pn flipped both left to right and top to
bottom. In obvious notation, we write,

Fn := flip(Pn), or f i,j
n = pn−i,n−j

n . (14)

Also, define diagonal matrices, in obvious notation, as

Dn := diag{20, 21, 22, · · · , 2n−1}, Sn := diag(Pn).
(15)

To proceed with the lemma proof, a decomposition
lemma is now stated and proved,

Lemma III.3: The generalized Pascal matrix Rn, as de-
fined recursively in (8) and (10), has the decomposition in
terms of triangular and diagonal matrices as

Rn = 2n−1SnFnD−1
n Pn = PnDnFnSn. (16)

Proof: This lemma result follows by induction, which
is relatively straightforward because only upper or lower
triangular matrices are involved. Our approach is guided
by keeping in mind the connection of the matrix ele-
ments with polynomial coefficients. Thus an equiva-
lent result to (16) is to post-multiply Rn by the vector
[sn−1sn−2 . . . s0]′ and apply both (6) and (7) so that,












(s − 1)0(s + 1)n−1

(s − 1)1(s + 1)n−2

·
·

(s − 1)n−1(s + 1)0













= Pn













20(s + 1)n

21(s + 1)n−1

·
·

2n−1(s + 1)0













,

= Fn













(2s)n−1(s + 1)0

(2s)n−2(s + 1)1

·
·

(2s)0(s − 1)n−1













.

These equations are now in a form that they can be veri-
fied by straightforward induction arguments. The pattern
of the argument becomes clear in passing from n = 1 to
n = 2, and n = 2 to n = 3, so that passing from n to n+1
is then straightforward. It is necessary to exploit the Pas-
cal equations which are inherent in the Pascal matrix Pn

construction, and suitably adjusted for the ‘flipped’ ver-
sion Fn. Further details are omitted.



�

Proof: (Continuation of Proof for Lemma III.2) The
proof of (13) follows from (16) by substitution and noting
in turn that Sn, Pn, Fn are each readily verified as involu-
tary. Thus,

(Rn)(Rn) = (PnDnFnSn)(2n−1SnFnD−1
n Pn),

= 2n−1PnDnFnFnD−1
n Pn,

= 2n−1PnDnD−1
n Pn,

= 2n−1PnPn,

= 2n−1In.

�

D. Coefficients from columns of the generalized Pascal
matrix

The above Lemmas III.1, III.2 together give our main
result stated as a theorem.

Theorem III.1: The multinomial representation of the
sign∗ function of (3) has coefficients ρ satisfying the lin-
ear equations (11), restated as,

ρ = 2−nRn+1s∗. (17)

where Rn, the generalized Pascal matrix, is defined recur-
sively in (8), and (10), and satisfies (13) and (16).

This result means that matrix inverses are avoided in
calculating coefficients. This becomes significant for
large n.

This result for sign∗(sum) functions generalizes triv-
ially to any nonlinear function f(a1, a2, . . . , an) which
is invariant of the ordering of the ai. The s∗ vec-
tor is then replaced by a vector with jth element
f(−1,−1, . . . , 1, 1, 1, . . . , 1), where there are j elements
of the data set being −1, and n − j unity elements.

For completeness, we tabulate the coefficients for low
n, and point out certain properties which can be estab-
lished by induction.

Specific relationships between the coefficients are clear
from the tables and can be proved by induction arguments,
as follows. For Table I, for the sign operation,

ρ
(n)
i = 0, for i = 0, 1, 3, . . . and all n,

ρ
(n)
i = ρ

(n−1)
i , for all i and n = 3, 5, 7, . . . ,

sign(ρ
(n)
i ) = −1, for all n and i = 3, 7, 11, . . . ,

sign(ρ
(n)
i ) = 1, for all n and i = 1, 5, 9 . . . ,(18)

n=2 n=3 n=4 n=5 n=6 n=7 n=8
ρ0 0 0 0 0 0 0 0
ρ1

1
2

1
2

3
8

3
8

5
16

5
16

35
128

ρ2 0 0 0 0 0 0 0
ρ3 0 −1

2 −1
8 −1

8 − 5
80 − 5

80 − 5
128

ρ4 0 0 0 0 0 0 0
ρ5 0 0 0 3

8
5
80

5
80

3
128

ρ6 0 0 0 0 0 0 0
ρ7 0 0 0 0 0 − 5

16 − 5
128

TABLE I
TABLE FOR sign FUNCTION MULTINOMIAL COEFFICIENTS.

n=2 n=3 n=4 n=5 n=6 n=7 n=8
ρ0

1
2 0 3

8 0 5
16 0 35

128

ρ1
1
2

1
2

3
8

3
8

5
16

5
16

35
128

ρ2 −1
2 0 −1

8 0 − 5
80 0 − 5

128

ρ3 0 −1
2 −1

8 −1
8 − 5

80 − 5
80 − 5

128

ρ4 0 0 3
8 0 5

80 0 3
128

ρ5 0 0 0 3
8

5
80

5
80

3
128

ρ6 0 0 0 0 − 5
16 0 − 5

128

ρ7 0 0 0 0 0 − 5
16 − 5

128

ρ8 0 0 0 0 0 0 35
128

TABLE II
TABLE FOR sign± FUNCTION MULTINOMIAL COEFFICIENTS.

and for Table II, for the sign± operation,

ρ
(n)
i = 0, for i = 0, 2, 4, . . . ,

and n = 3, 5, 7, . . . ,

ρ
(n)
i = ρ

(n−1)
i , for i = 1, 3, 5, . . . ,

and n = i + 2, i + 4, i + 6, . . . ,

ρ
(n)
i = ρ

(n)
i−1, for i = 1, 3, 5, . . . ,

and n = i + 1, i + 3, i + 5, . . . ,

sign(ρ
(n)
i ) = +1, for all n and i = 0, 1, 4, 5, 8, 9 . . . ,

sign(ρ
(n)
i ) = −1, for all n and i = 2, 3, 6, 7, 10, 11, . . . ,

(19)

There is also symmetry in the coefficients for each odd
n. Indeed for this case the coefficients for sign and sign±

are identical (since then sign± ≡ sign).
We see that Table II can be constructed using these var-

ious properties and the entries in Table I. Moreover, all
coefficients can be constructed from the subset of Table I,
namely the ρn

i for i, n odd, i < n/2.
It is readily seen that for n > 2, and ei-

ther coefficient selection, in obvious notation, then



∑n+1
i=1 Pn+1(n, i)ρ

(n)
i−1 = −1, and

∑n+1
i=1 Pn+1(n −

1, i)ρ
(n)
i−1 = 0. There are other products of the rows of

Pn and ρ vectors which are also 0 or 1 not spelt out.
The generalized Pascal Matrix is the key to the coeffi-

cients. It is worth pointing out that although this matrix
is not orthogonal, induction arguments show that all odd
rows are orthogonal to all even rows, so that RnR′

n has
zero i, j entries where i is even and j is odd.

IV. CONCLUSIONS

Majority logic coding for communication systems has
attractive advantages in terms of the simplicity of the de-
coding. This is achieved at the expense of optimality. The
majority logic operations involved are highly nonlinear,
so there has been a paucity of theory for developing codes
and guaranteeing properties.

A key step in this direction, presented in this paper, has
been the generation of an explicit formula for the multi-
nomial representation of the various sign∗ operations in-
volved in majority logic. The formula is readily calculated
in terms of binomial coefficients, appearing in a proposed
generalized Pascal matrix. A factorization of this matrix,
in terms of a lower Cholesky factor of the original Pascal
matrix, turns out to simplify the proof and derivation of
the coefficients. The results are more complete than hith-
erto given for the case of sign, and are new for the sign±

case.
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