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Abstract. It has recently been shown that the logarithmic barrier method for solving �nite-dimensional, linearly
constrained quadratic optimization problems can be extended to an in�nite-dimensional setting with complexity
estimates similar to the �nite dimensional case. As a consequence, an e�cient computational method for solving

the linearly constrained LQ control problem is now available. In this paper, we solve the linearly constrained LQG
control problem by generalizing the Separation Theorem. We show how the logarithmic barrier method can be
used to determine the optimal control for the constrained LQG problem.
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1. INTRODUCTION

The solution of the unconstrained linear quadratic (LQ)
optimal control problem is well known (Anderson and
Moore, 1989). Several methadologies for solving the lin-
early constrained case have also been developed (Fay-
busovich, 1982; Faybusovich and Moore, 1995; Faybuso-
vich and Moore, 1996). Faybusovich and Moore (1995)
and Faybusovich and Moore (1996), the interior point
methodology (IPM) for solving the quadratic program-
ming problems is extended to the in�nite-dimensional
setting with complexity estimates similar to the �nite-
dimensional case. When applied to the constrained
LQ optimal control problem, in the case of linear or
quadratic constraints, the authors show that the opti-
mal control can be obtained by solving a sequence of
unconstrained LQ problems together with a sequence of
�nite dimensional linear algebraic equations. In this pa-
per, our focus is on the stochastic model case and so for
simplicity we �rst derive essentially the same result as
in Faybusovich and Moore (1995) for the discrete-time
LQ optimal control problem. Next, we solve the linearly
constrained LQG optimal control problem by generaliz-
ing the Separation Theorem. We show that the IPM
result for the constrained LQ problem can be used to
solve the constrained LQG problem, with all the advan-
tages of IPM's being true (fast convergence and feasible
sub-optimal iterates). In future studies, we explore con-
tinuous time versions of this Separation Theorem.

In this paper, we shall consider linear integral con-
straints of the form (3) for the deterministic problem,
and (34) for the stochastic problem. As well as con-
straints of the form (3) or (34), many constraints which
arise in practise can be viewed as special cases of (3)
and (34) and include for example, bounds on the state
or control (eg, jxkj � ck, jukj � dk) or bounds on the
allowable change in the values of the state or control
(eg. jxk+1 � xkj � fk, juk+1 � uk � gk).

2. IPM APPROACH TO LQ CONTROL

The logarithmic barrier method is an iterative interior
point optimization method (den Hertog, 1994). In this
algorithm, an improved estimate of the optimal solu-
tion is obtained by adding a term known as a Newton
step to the current estimate. In this section, the re-
cent in�nite-dimensional generalization of the logarith-
mic barrier method (Faybusovich and Moore, 1995) is
applied to the discrete-time LQ optimal control prob-
lem. We show that the Newton step is calculated by
solving an unconstrained LQ optimal control problem
together with a �nite-dimensional system of linear alge-
braic equations.

Consider the linear system

xk+1 = Akxk +Bkuk; x0 = � (1)



with cost and constraint functionals
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Rm where Qk is symmetric positive semi-de�nite and
Rk is symmetric positive de�nite. The linearly con-
strained optimal control task is to �nd a control u� =
(u0; � � � ; uN�1), uk 2 Rm which minimizes the perfor-
mance index (2) and satis�es the constraints li(x; u) �
ci, i = 1; � � � ;mc.

If x = (x1; � � � ; xN ) and u = (u0; � � � ; uN�1) satisfy (1),
we shall refer to z = (x; u) as a feasible state-control
pair. For such z, we denote the Newton step, parame-
terized by � > 0 by
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�
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where � = (�1; � � � ; �N ) and r = (r0; � � � ; rN�1). Also,
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k = uk + rk. Let � > 0 be �xed, and z = (x; u) be a

feasible state-control pair. De�ne
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where �x = (�x1; � � � ; �xN ), �u = (�u1; � � � ; �uN) with
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Let � and r be the components of the Newton step (4)

and denote

di = li(�; r) (6)
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where v = (v1; � � � ; vN ), w = (w1; � � � ; wN) with
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Let the sets X and X? be de�ned by
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xk+1 = Akxk + Bkuk
x0 = 0

�
(8)
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�p = (�p1; � � � ; �pN)
�q = (�q1; � � � ; �qN )
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where

�pk = �pk�1 + A0k pk

�qk = B0
k�1 pk�1

with p = (p0; � � � ; pN ) being any sequence such that pk 2
Rn and pN = 0, and AN = 0.

It is shown by Faybusovich and Moore (1995) that the
Newton step �(z; �) is the unique solution of the equa-
tion

�(z; �) = �
�1(z; �) [rf(z; �) � �(z; �)] (10)

where �(y; �) 2 X? is the unique vector which must
be determined so that �(z; �) 2 X where X and X?

are given by (8) and (9) respectively. Therefore, the
problem of �nding �(z; �) is equivalent to the one of
�nding the unique �(z; �) 2 X? such that �(z; �) 2 X.

Using the representation (4) for �(z; �) in (10), we ob-
tain
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Substituting (5) and (7) into (11), it can be shown after
lengthy manipulations that

�k+1 = Ak�k + Bkrk; �0 = 0 (12)

�pk�1 + A0k pk � �xk =
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Note �rst that we can rearrange (14) to get
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The solution of (12)-(15) is found using a similar proce-
dure to the one used by Faybusovich and Moore (1995).
Let

pk = �Kk�k + �k; k = 0; � � � ; N � 1 (17)

It can be shown after lengthy manipulations that if Sk
is the solution of the Riccati equation
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�Ak�1SkBk�1

�
Rk+B

0
k�1SkBk�1

��1
B0
k�1SkAk�1

SN = QN (18)

then

Kk = �Sk+1Ak

+Sk+1Bk [Rk + B0
kSk+1Bk]

�1
BT
k Sk+1Ak

KN = 0 (19)

�k+1 =
h
Ak �Bk [Rk +B0

kSk+1Bk]
�1
B0
kSk+1Ak

i
�k

+Bk R
�1
k+1B

0
k�k + �k

�0 = 0 (20)

�k�1 = �k+h
I � SkBk�1

�
Rk +B0

k�1SkBk�1

��1
B0
k�1

i
A0k�k

�N = 0 (21)

where

�k =h
I � SkBk�1

�
Rk + B0

k�1SkBk�1

��1
B0
k�1

i

�

"
Sk�k�1 � �xk �

mcX
i=1

dia
(i)
k

s2i (z)

#
(22)

�k = �Bk R
�1
k+1 �uk+1 � BkR

�1
k+1

mcX
i=1

dib
(i)
k+1

s2i (z)
(23)

The solution �k of (20) and rk of (16) are
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where �k, �
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(i)
k are known functions. To

calculate di, substitute � and r from (24) into (3). We
obtain
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This is a system of mc linear equations which can be
easily solved.

In summary, performance of a Newton step involves:
(a) solving the Riccati equation (18),
(b) solving the linear equations (21) and (20),
(c) solving the mc �mc linear system (25).
Note that steps (a) and (b) are performed when solving
the unconstrained LQ optimal control problem.

For � = (�1; � � � ; �mc
) 2 Rmc , let ak(�) and bk(�) be be

de�ned by
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Consider the state-control pair z(1) = (x(1); u(1)) which
is obtained after performing a Newton step from an arbi-
trary initial feasible state-control pair z(0) = (x0); u(0)),

that is z(1) = z(0) + �(z(0); �). By noting that u
(1)
k =

u
(0)
k + rk, the following result can be derived from (18)-

(20).

Theorem 2.1 Given any feasible state-control pair z(0)

= ( x(0), u(0) ), the implementation of a Newton step
z(1) = z(0) +�(z(0); �) results in the state-control pair
z(1) = (x(1); u(1)) with control
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and
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Note that Sk is independent of � and �. An immediate
consequence of Theorem 2.1 is the following.

Theorem 2.2 The optimal control of the constrained LQ
optimal control problem (1)-(3) is of the form

uk = � (Rk+1 +B0
kSk+1Bk)
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k Sk+1Ak xk+B

0
k hk+1(�
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where Sk and hk(��) are given by (28)-(29) and ��i � 0.

We make some important observations. First, if the

problem is unconstrained, that is if a
(i)
k = b

(i)
k = 0 and

ci > 0 for i = 1; � � � ;mc and k = 1; � � � ; N , then hk =
0. It is clear from (26) that the optimal control of the
unconstrained LQ optimal control problem is obtained
after one Newton step.

Second, the Lagrange multiplier �� = (��1; � � � ; �
�
mc

)
which yields the optimal control u� can be calculated
by solving a sequence of Newton steps and using the ex-
pression (27). In this way, the structure of the optimal
control is maintained and at the same time, each iterate
is feasible.

Finally, the expression (30) for the optimal control u�

can also be derived from the Kuhn-Tucker conditions. It
follows that �� is the optimal solution of the associated
dual problem (an mc-dimensional, linearly constrained
quadratic optimization problem). However, if we solve
the dual problem using a di�erent iterative optimization
scheme, each iterate �̂k (�̂k ! �� as k !1) would not
give a feasible (sub-optimal) control (a desirable prop-
erty in many applications). Furthermore, it is known
that �nite-dimensional interior-point methods are very
e�cient for problems with many constraints: Few New-

ton steps required for a good sub-optimal solution. We
expect that the same is true for the in�nite-dimensional
case (in particular, this is relevant when applied to the
continuous-time problem).

3. CONSTRAINED LQG CONTROL

The Separation Theorem is a classical result from
stochastic optimal control. Though proven in the late
1960's (Wohnam, 1968), it continues to capture the at-
tention of researchers and alternative proofs are still be-
ing published (Davis and Zervos, 1995). We now gen-
eralize the Separation Theorem to the case where the
system is subject to linear inequality constraints. As in
Davis and Zervos (1995), we consider the discrete-time
linear stochastic system

xk+1 = Akxk + Bkuk +wk+1; x0 � N (�; P0)(31)

yk = Ckxk + vk (32)

where x0; w1; � � � ; wN ; v0; � � � ; vN are independent, zero
mean Gaussian random variables such that E[wkw

0
l] =

Q̂k�(k � l), E[vkv0l] = R̂k�(k � l). The random vari-
ables x0, wi and vi are all de�ned on a probability
space (
;F ;P). Let U be the set of all control processes
u = (u0; � � � ; uN�1) such that uk 2 L2(
;F ;P), and X
the set of all state processes x = (x0; � � � ; xN) such that
xk 2 L

2(
;F ;P). The cost and mc constraint function-
als are de�ned on X � U and given by
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The aim is to �nd a control process u = (u0; � � � ; uN�1)
from some class of admissible controls which minimizes
the cost functional f0(x; u) and satis�es the constraints
li(x; u) � ci (i = 1; � � � ;mc). The set of admissible con-
trols are subsets of U .

3.1. Deterministic full state information case

This is the problem (1)-(3). Let u� be the optimal con-
trol and de�ne

f(�; x; u) = f0(x; u) +

mcX
i=1

�i li(x; u) (35)
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u
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i
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then it follows from the Kuhn-Tucker conditions that
u� = u(��).

Theorem 3.1 Let �� be the optimal solution of
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subject to (28)-(29) and

pk(�) = pk+1(�) + (B0
khk+1(�) + bk(�))
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Then u� = (u�0; � � � ; u
�
N�1) is the optimal control for the

linearly constrained LQ optimal control problem (1)-(3)
where

u�k = � (Rk+1 +B0
kSk+1Bk)
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� [B0
kSk+1Akxk + B0

khk+1(�
�) + bk(�

�)] (38)

Remark 3.1 Since (29) and (37) are linear in �, (36) is
a quadratic optimization problem over �.

3.2. Stochastic full information case

In this case, there is full state observation, so (32) is
irrelevant. Let ~Fk 2 F be the �-algebra generated by
x0; w0; � � � ; wk. The class of admissible controls ~U is the
set of all measurable control processes u 2 U such that
uk is measurable with respect to ~Fk�1; that is, uk is
a function of at most x0 and (w0; � � � ; wk�1) or equiva-
lently, a function of at most (x0; � � � ; xk). Let ~X be the
set of state processes x such that xk is measurable with
respect to the �-algebra ~Fk�1; that is, xk is a function
of at most x0 and (w0; � � � ; wk�1). Then ~X � ~U is a
vector subspace of X � U and (31) (33)-(34) is a con-
vex optimization problem on a linear variety of ~X � ~U .
Furthermore, the Kuhn-Tucker conditions are necessary
and su�cient for optimality. Let f(�; x; u) be de�ned
by (35) with f0(x; u) and li(x; u) given by (33)-(34) re-
spectively. Once again, it follows from the Kuhn-Tucker

conditions that if

u(�) = argmin
u2 ~U

ff(�; x; u)g
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��0

�
min
u2 ~U

ff(�; x; u)g � �0c

�
= argmax

��0
[f(�; x; u(�))� �0c]

then u� = u(��) is the optimal control. The Separa-
tion Theorem for the full information constrained LQG
problem can be stated as follows.

Theorem 3.2 Let �� be the optimal solution of the dual
problem stated in Theorem 3.1. Then

u�k = � (Rk+1 + B0
kSk+1Bk)

�1

� [B0
kSk+1Akxk +B0

khk+1(�
�) + bk(�

�)] (39)

is the optimal control for the full information linearly
constrained LQG optimal control problem (31) (33)-
(34).

Proof:

For any given � � 0, it can be shown using dynamic
programming that

min
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n
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The result follows from the Kuhn-Tucker conditions and
the fact that trfQ̂kSkg is independent of �. 2

Remark 3.2 If � results in a feasible control of the form
(38) for the deterministic constrained LQ problem, then
the control (39) will also be feasible. Therefore, the full
information problem can be solved by solving the deter-
ministic LQ problem using the IPM result in Section 2
and (27) with all the desirable characteristics associated
with IPM's (fast convergence and feasible sub-optimal
solutions) still being true.

3.3. Stochastic partial information case

This is the problem (31)-(34). Let �Fk be the �-algebra
generated by the random variables y0; � � � ; yk. The class
of admissible controls �U is the set of control processes
u 2 U such that uk is measurable with respect to the
�-algebra �Fk�1; that is, uk is a function of at most
(y0; � � � ; yk�1).

Let x̂kjk�1 = E[xkjy0; � � � ; yk�1] = E
�
xkj �Fk�1

�
. It is

a well known from estimation theory (Anderson and



Moore, 1979) that x̂kjk�1 is given by the Kalman �l-
ter

x̂k+1jk = Akx̂kjk�1+ Bkuk � K̂k�k; x̂0j�1 = � (40)

where the Kalman gain K̂ is

K̂k = Ak �kjk�1C
0
k (R̂k +Ck�kjk�1C
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k)
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�kjk�1 = E[(xk � x̂kjk�1)(xk � x̂kjk�1)
0] is given by

�k+1jk = Q̂k + Ak�kjk�1A
0
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h
R̂k +Ck�kjk�1C

0
k

i�1
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0
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�0j�1 = P0

and innovations process �k = yk � Ckx̂kjk�1 2 �Fk. We
state the following without veri�cation. The reader may
refer to Anderson and Moore (1979) for precise details.

E
h�
xk � x̂kjk�1

�
x̂0kjk�1

i
= 0:

Second, the innovations process is a white noise process
satisfying

E [�k] = 0; E
h
�kx̂

0
kjk�1

i
= 0; E [�k�

0
l] = Ĝk�(k � l)

It follows that

f0(x; u)=
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"
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NX
k=0

tr
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(41)

Note �kjk�1 is deterministic and independent of u.
Since it is true that E[xk] = E[E[xkj �Fk�1]] = E[x̂kjk�1],
the constraint functional (34) becomes

li(x; u) = E

"
NX
k=1

�
a
(i)
k

0
x̂kjk�1+ b

(i)
k

0
uk�1

�#
(42)

Therefore, the partial information problem (31)-(34) is
equivalent to the full information problem (40)-(42).
The Separation Theorem for the partial information
LQG problem follows from Theorem 3.2.

Theorem 3.3 Let �� be the optimal solution of the dual
problem stated in Theorem 3.1. Then

u�k = � (Rk+1 +B0
kSk+1Bk)

�1

�
�
B0
kSk+1Akx̂kjk�1+B

0
khk+1(�

�)+bk(�
�)
�

(43)

is the optimal control for the linearly constrained LQG

optimal control problem (31)-(34) where the conditioned
mean estimate x̂kjk�1 is the output of the Kalman �lter
(40).

Remark 3.3 Once again, if � results in a feasible control
of the form (38) for the deterministic LQ problem, it
also gives a feasible control of the form (43) for the par-
tial information LQG problem. The partial information
LQG problem can therefore be solved using the IPM
results from Section 2 (see Remark 3.2).

4. Conclusion

Based on the results obtained by Faybusovich and
Moore (1995) we have shown that the linearly con-
strained LQ optimal control problem can be solved by
solving a sequence of unconstrained LQ problems to-
gether with a system of �nite-dimensional linear alge-
braic equations. We have also proven the Separation
Theorem for the linearly constrained LQG problem and
shown that the IPM result for the constrained LQ prob-
lem can be used to calculate the optimal control for the
constrained LQG problem, while preserving favourable
properties associated with IPM's (fast convergence and
feasible sub-optimal iterates).
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