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Abstract

J.nthis paper we use an information-state approach to obtain the
solution to the linear risk-sensitive quadratic Gaussian control
problem. With these methods the solution is obtained without
appealing to a certainty equivalence principle. Specifically we

consider the case of tracking a desired trajectory. The result gives
some insight to more general information-state methods for non-
lineru systems, Limit results are presented which demonstrate the

link to standtwd linear quadratic Gaussian control. Also, a risk-
sensitive filtering result is presented which shows the relationship
between tracking and filtering problems. Finally, simulation

studies are presented to indicate some advantages gained via a
risk-sensitive control approach.
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1 Introduction

Recently there has been much interest in risk-sensitive control
techniques. Such conmol policies lead to an optimal solution
for which the controller’s sensitivity to risk can be varied. One

application area for risk-sensitive control has been economics

where risk-sensitivity is termed hedging or risk-aversion, for ex-
ample Karp [10] and Caravani [6]. Jn these papers it is seen

that advantages can be gained from the risk-sensitive approach,
for problems such as dynamic trading and futures market pre-
diction. In particular, the modified control policies are of a
non-symmetric, exponential form.

The discrete-time risk-sensitive linear quadratic Gaussian (LQG)
output feedback conhol problem was first solved by Whittle [13],
where use was made of a risk-sensitive version of the certainty
equivalence principle. This allowed the state estimation and
control optimisation to be decoupled, solved separately and then
re-coupled. The continuou s-time case was solved by Bensoussan
and van Schuppen [5] using a different technique, one which

generalises to the non-linew case. Recent developments in risk-
sensitive control have included a solution to the output feedback

control problem for non-linear systems, using information-state
techniques (James, Brwas and Elliott [9]). While not requiring

the use of a certainty equivalence principle, the solution is of

course infinite dimensional. In this paper we present the output
feedback risk-sensitive LQG solution derived via the methods in
[5, 9]. Specifically, we consider the case of tracking a desired

trajectory. We show that for regulation problems, the equations
are consistent with those presented in [13] and that in the “risk-
neutral” case, the standard LQG solution results.

The key to the technique used in this paper is that an information-
state is chosen in such away that it represents both a state estimate

and the cost incurred to the time of the estimate. A change of
reference probability measure is used to arrive at a linear recur-

sive update equation for the information-state. Then dynamic

programming methods are employed to obtain the solution to

the control problem, having been re-formulated in terms of the

information-state. This derivation is fundamentally different to

Whittle’s approach [13], being more closely linked to Bensous-
san and van Schuppen [5].

An important feature of this paper is that it presents a finite
dimensional solution to the risk-sensitive output feedback control
problem. It therefore provides an example of the quite general
methods derived in [9], and gives insight to the non-linear control
solution,

This paper is, in part, an extension of the work presented in [1],

where hi-linear systems were considered. In the work of this
paper, however, the tracking solution is discussed in addition to
regulation, and the control solution is solved explicitly. Simu -
lation studies are also presented in an effort to demonstrate the
effect of variations in the controller’s sensitivity to risk. Vari-

ous tracking problems are considered to show the advantages of
the risk-sensitive approach. For a more thorough investigation
into simulation results, the reader is directed to [7], where exten-
sions to the system model are considered, such as the inclusion
of integrators in the control design. Also in [7, 4] are results
for risk-sensitive control of hidden Markov models, which have

application to discrete-state systems.

Finally in this paper, a discussion on risk-sensitive filtering is

presented, to demonstrate a link between filtering and @acking.
The results presented are derived using the risk-sensitive cormol
solution, with a modification to the cost criteria,



2 State Space Model 4 Information State

Consider the following discrete-time system on the probability
space (Q, F, P) with complete filtration {Xk }:

Xk+l = Azk + ~uk + ?Jk

!/k+l = Cxk + Wk (1)

zk+ 1 = Dzk

over the finite time interval k = O, 1, ..., T. The state of the
system is represented by the process z. The observable part of
the system is represented by the process y. In this paper we will

consider the problem of output @acking, and denote the desired
trajectory by 2. The process which is to follow 5 is defined
by z. The random variables Ok and ~k have normal densities
@ * fV(O, X)and@ - N (O, r) respectively, where X and r are
n x n and p x p positive definite matrices. The conlrol, u, takes
values in Rm. The complete fil@ation generated by ( VO, . . . . yk )

is denoted by ~k, and the admissible controls u are the set of
Rm -valued {~h } adapted processes. We write Uk,1 for the set
of such control processes defined on the interval k, . . . . 1.

In order to reformulate the system model (l), a new probability

measure, ~, can be defined by setting

(2)

where

Here, Ao,k is an ~k martingale, and ~[AO,k] = 1. Now, under

~, Zk and yh are two sequences of independent< normally dis-

tributed random variables with densities ~ and @respectively.
This reformulated model results in a linear recursion for the un-

normalised information-state, as in Section 4.

3 cost

The cost function for the ri~-sensitive control problem is given,
for any admissible control u E UO,T– 1, by

[{
~(u) = E exp~ ~O,T–I + ~Z\~TXT }1 (4)

[ { }1= ~&,Texp8~f),T_]+~x&kfTXT,(5)
where

+ (2/+, – Dz/)’Q(5t+, – k)]

(6)

Here, O >0 is a real number and represents the amount of risk
in the control policy, For small values of 9, approaching zero,

the effect is to make control decisions assuming the st~hastic
disturbances are acting in an average manner. For larger values of

O, the control is effectively more conservative, or in other words,

has a higher sensitivity to risk.

In this section we present finite dimensional recursions for the
information-state which, as the name suggesta, provides infor-

mation about the state of the system [1 l](p. 81). III the case of

risk-sensitive control, it is convenient to also include a component

of the cost in the information-state. For the formulation presented
here, the information-state is a probability distribution (it can be
compared to the ‘past stzess’ in [13]). For small values of 0, ap-
proaching zero, the mean and variance of the information-state

become the state and covariance estimates for the linear Kalrnarr
filter.

For any admissible control u, consider the measure

crk(x)dz ~ ~[Ao,k eXp(@~O,k-l]I(Zk ~ dZ)[yk] (7)

where 1(. ) is the indicator function.

Lemma 4.1 The informutiomstate ok(z), as dejined in (7),

obeys the following recursion:

Proof:

Theorem 4.1 The information-state a k (x ) is an w-normalised

Gaussian density given by

~k(Z) = ~k(x,l’k)

= Zk L?Xp(-1/2)[(Z – /Lk)’~~’(Z – (ik)]
(9)

where Xk = (pk, Rk, Zk), and @k, R;’ and Zk are given by

the following algebraic recursions:

where

Uk =C’F–’C –O(M + D’QD) +A’X–’.4 + R;’, (11)

Tk =t!~(–9N + B’~–’B)lLk + \LiR~’\Lk – e?~+lQ~k+l

–(KjR;’ – UjB’X-’A + yj+, r-’C – &i?j+lQD)a~’

(R;’pk -A’~-’hk.+ dr-’~k+l - @D’Qik+l) (12)

under the condition that Uk and Rk be positive dejinite for all k.



Proof: Due to the linearity of the dynamics, and the fact that v~
and uu are independent and normally distributed, we know that

a ~(z ) is an un-normalised Gaussian density. The recursions for
,Uk, R~’ and Z~ are obtained by evaluating the integral in (8).
The details are omitted. ■

Further mati manipulations yield the following, more familiar,
expressions:

@k.+1 = APk + Buk i- A~”k [c’r–](?/k+l – Cpk

–8rQ;k+,) + 9(M + D’QD)pk]

I/k & (R;l +c’r-]c –e(~ + D’QD))-l

Rk~l = Z + A&A’

)
which can be compared to the result presented in [13] for the
case where Q = O.

Limit Result:

Equations (13) can be re-expressed in the following form:

fik+l ‘A flklk + B~k

~klk 5 #k + Kk[yk+i – c~k
–@(rQjk+l – rc-’(~ + ~’Q~)#k)]

~k ~ (R;’ –6’(M + D’QD))-lC’

[c(R:’ -6J(M + D’QD))-’C’ + r]-’
Rk~, = ~ + ARk~kA’

&/k ~ R~ – I%rkCR~

(14j
In the case when O approaches zero, it can easily be seen that the

equations in (14) reduce to the standrud Kalmarr filter equations
[2] (p. 40).

5 Alternate Cost Representation

In this section we show that the cost function can be expressed
in terms of the information-state. This allows the optimisation
problem to be solved by dynamic programming, without any

appeal to a certainty equivalence principle.

Theorem 5.1 For any admissible control u, the risk sensitive

cost can be expressed in the form

J(U) = z [(cIT(,x T),BT)] (15)

where (f(.), g(.)) = ~~m f(z)q(z)dz, and

LZr(z) ~ exp(~c’MTx). (16)

Proof: We have from (5) that

J(u) = ~ AO,TeXp(6’~O,T-1) eXp(~x~h’fTZT)]— .—
=~ E [Ao,T eXp(6~0,T-l)8T( ZT)lyT]]

‘E ,.fRn @T(Z) ffT(Z)dx]

=E (aT(,xT),PT)]

6 Dynamic Programming

Following [9] we know that the alternative control problem can

be solved using dynamic pro~amming. Suppose that at some
time k, 0< k < T, the information-state Xk is x = (u, R, Z).

The value function for this control problem is [1, 9]:

where ok is an adjoint process defined by

~k(Z)=~[Ak+hT=!J(~~k,T-l)

eXp(~Z!MTZT)lZk = Z,YT]

(18)
The adjoint process is different to the ‘future stress’ in [13], as it

relates to output feedback, not stste feedback.

Theorem 6.1 [1, 9] The value fimctioo satisfies the recursion

V(x,k)= ~G:l,k~[v(xk+l(Xk,14)Yk+l),~+ l)llk= x]

(19)
and V(X, T) = (CIT(., ~), ~T).

7 Dynamic Programming Solution

Theorem 7.1 The value function is the tnponential of a
quadratic in p,

V(X, k) = Zk exp(~/2)[pLs:Ek + 2SL’,Uk + 5’;] , (20)

and the optimal control is linear in IL,

min _
uk — -(N + B’jk+, B)-’B’[~k+,i/Lk + Sj+, + 91@

(21)’
where

El=

ii=

M=
u=

b=

P=

((s;+,)-’ – 6’f’k~j)-’,
(~ +B’~k+2B)-’~’.~+,fifi,
$f+,rk6-l(rj@+, – @~ ’Q.h+l),
A~kdr-’c@,

[(c’rc)-’ + p-’Rk]’/2,

Ap-’ ,

(M+ D’QD)p-l ,

N+ B’%+IE ,

I ‘d’~&?+lrk,

I –6Rk(~ + D’QD)

Also, S; and S: are given by the following backwards recursions:

(22)
under the condition that (I – ~~~ S:+ ~~ k ) is posin”ve dejinkfor
all k, and C is positive dejinite except in the cases where C = D

or D=O.



Proof: By evaluating the dynamic programming equation ( 19)
for V(X, T – 1) it can be seen that the value function is the expo-

nential of a quadratic in p. The remainder of the proof is too long
for presentation in this paper, but is essentially an evaluation of

the dynamic programming equation (19), with appropriate vsri-
able transformations. ■

Remark : The condition that C be positive definite, is a mani-
festation of the variable transformation used in order to present

the results in a form which more readily demonstrates the link to
standard LQG results. As can be seen from the exclusion when
D = O, the condition only applies to the tracking part of the
solution, (ie. S: and h’: recursions). It is possible to solve the
dynamic programming problem without such a variable transfor-

mation and thus remove the condition on C. ❑

In order to demonstrate consistency with the results presented
in [13], where an appeal was made to a certainty equivalence

principle, and Q s O, we now set

IIk = S:[I+oRks:]-’ (23)

and Q = O, which results in the following recursion for II ~:

IIk = M + A’[II~;, + BN-’B’ – .!LZ-’A
(24)

under the condition that (~ – @RkHk ) is positive definite for au
k,

Substitution of equation (24) into (21), yields

Ur’n = -fv-’B’(II~; , +BN-’B’ – ox)-’

AII – OR~II~]-lU~
(25)

where the term [1 — t9R~II~]’1 ,Uk is sometimes referred to as

the minimum stress estimate.

Limit Result:

In the case where O approaches zero, it can easily be seen that
~k~ 1, ~ and M approach S:+,, A and M + D’QD respectively,
and the following equations result from manipulationsto(21) and

(22):

urn = –(N + B’S:+, B)-’B’[S;+,AW~ +S1+,]

S; = M + D’QD + A’[S;+l
–S~+113(N + B’S~+l B)–’B’S~+l]A

S~ = (A – B(N+ B’S;+l B)–l B’Sj+lA)’S~+l

–D’Q.ik~l

These are the standard LQG equations, as presented for example
in [3] (p. 32 and p. 81).

8 Risk-Sensitive Filtering Interpretations

In this section the risk-sensitive filtering problem is presented
in order to demonstrate its connection with the control problem
considered in the preceding sections. The risk-sensitive filtering
problem is shown to be solved by the same equations derived

previously for the tracking problem, but with a slight reinterpre-

tation of the cost function. These results for the linear filtering

case have already been solved, without the contiol interpretation,
in [12], and for the non-linear case in [8].

To see the connection to the control problem, the risk-sensitive

filtering cost function is now presented.

~k(ik) = ~ [Ao,keXpO~o,k(~k)l~k, &-1] , (27)

where

and i 1is the risk-sensitive state estimate of x~. Note here that the

cost is an expectation conditioned on the set of observations. This
is due to the fact that the filtering problem is one of optimization
in the forward direction (as opposed to the confrol problem which

is an optimization in the backwards direction), and as such, the
previous observations will be available when the optimization

procedure is carried out at each iteration.

Comparing (27) and (28) to (5) and (6) it can easily be seen
that (28) can be obtained from (6) by replacing Z+ 1 by it, and
setting D - I and B = M - N E O. Therefore, with the same
definition of information-state given in (7), the result presented in
Theorem 4.1 holds here as well, with the appropriate replacement
of symbols. Equation (10) can be compared to the equations
in [12] which differ only slightly since the prediction problem

was considered, rather than the filtering solution presented here.

From the information-state, a ~, the risk-sensitive state estimate,

i~, is obtained, as in [8], by solving the forward optimization
task of the following theorem.

Theorem 8.1 The risk-sensitive state estimate, ?k, dejined by

ik = argminJ,k(() , (29)
(

is given by the mean, @k, of the information-state, a k, dejined in

(7), where ~j,~ is given in (28), it+ 1 is replaced by it. D G I,
andB=M~N=O.

Proof:

ik =

——

——

——

——

——

—

——

where a = (OQ – R;’), Cl is constant with respect to <, and

a is positive definite. It can now be seen that the risk-sensitive
state WiOUIk is given by the mean, ~~k,of the infOM2atiOn-Stite,

Qk. ■



The recursion for this estimate is easily obtained by rearranging
the expression for p~ from (13), with the appropriate substitu-

tions for the filtering problem. The following equation results:

/,k+, =Apk +A(R;’ + C’r-lC –8Q)-’

[c’r-’(y,+, - Cflk) - 6(P, - i,)].

(30)
l%efinal recursive equation isobtained bysettingi~ equal to

p~, from Theorem 8.1, as follows:

i~+I = Ai~+A(R;’+C’I’-’OQ)QIC’IT’(y~ +l~Ci-i)]i)]
(31)

This filtering result corresponds, as noted before, to the prediction
result presented in [12].

9 Simulation Studies

We now present simulation studies to demonstrate the effect of
variations to the risk-sensitive parameter 0.

Example 1 : In this example we demonstrate a case where
modelling errors are present. The true system is given by the

following parameters:

T = 100,

N= O.1,

c = [1 o],
D = [1 o],

r = 0,01,
Q = 100,

and the trajectory to be followed, ;~, is a unit step at k = 20.
The modelling error is introduced by assuming in tie design that
A is given by

‘=[=:1
Table 1 gives vahres of the LQG, minimum variance, cost func-
tion (ie. VO,T_I + 0.5zjJ4TzT) averaged over 100 simulation
inns. It can be seen that in the case where no modelling error
is present, of course 0 = O gives lowest cost. However, when

the error is introduced, a higher value of O gives a lower mini-
mum variance cost. This example displays an advantage of the

risk-sensitive approach in the presence of modelling errors.

Unfortunately, the sample path properties may not improve with
a lower minimum variance COSLas one would wish, especially
if .9 is too large. Here, too large will depend on the type of
modelling error, and will of course be unknown to the designer.

Figure 1 shows a typical sample run for the case of no modelling
errors. It shows that the cost function chosen for the tracking task
considered, results in little difference in tracking errors between
the LQG and risk-sensitive policies. Figure 2 shows a typical
sample run for the case where modelling errors are present. Even
though the minimum variance cost is lower for the risk-sensitive

policy, the tracking performance might not be as desirable, having
much greater oscillations in the transient response. Therefore

the desirability of a risk-sensitive approach cannot be measured

purely by the minimum variance cost.

10 Conclusion

In this paper we have presented the solution to the linear risk-

sensitive quadratic Gaussian control problem. Results have been
derived for the case of tracking a desired trajectory. The solution

to the dynamic programming problem has been achieved without
the need to appeal to a certainty equivalence principle, and hence

gives insight to the solution for non-linear systems. Limit re-

sults have been presented which demonstrate the link to standard
linear quadratic Gaussian control. Also, a risk-sensitive filtering
solution is presented to demonstrate the link between filtering
and tracking problems. Simulation studies were presented in
order to show some advantages of the risk-sensitive approach.
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x 102 0 = O (LQG) 6’=0.1 ‘9=0.15

No model error 4.714 4.715 4.716

With model error 9.363 6,076 6.593

Table 1: Error analysis for risk-sensitive control
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