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ABSTRACT

In reducing high order controller designs, such as arise from H> or LQG
techniques, to more practical low order ones, a reasonable objective is to pre-
serve the controller robustness/performance properties. In this paper, stan-
dard balanced truncation or Hankel norm model approximation methods are
applied to augmentations of the controller which emerge when characterizing
the class of all stabilizing controllers in terms of an atbitrary proper stable
transfer function.

In the method, scaling parameters are at the disposal of the engineer to
achieve an appropriate compromise between preserving performance f{or the
nominal plant and a certain type of robustness to plant variations. There
are a number of unique features of the approach of the paper. One feature
is that a straightforward re-optimization of a reduced-order controller is
possible within the framework of the method. A second feature of the paper
is that for controllers designed for simultaneous stabilization of a number
of plants, the method seeks to preserve the performance/robustness of the
reduced order controller for each plant.

1. INTRODUCTION

The model reduction methods of {1} provide a priort bounds on reduction
errors in terms of L™ measures. A simpler technique, termed balanced
realization, has guaranteed bounds which are not quite so good, see also {1],
[2]. Such techniques are then attractive to achieve controller reduction, but
without modification do not take into account the fact that the controller is
in a control loop and needs to achieve performance and robustness properties.
In the reduction, these techniques without modification weight all frequencies
equally.

The notion of a frequency-weighted model reduction based on the tech-
niques of (1], (2] has been explored in (3}, {4}, {5]. It is not clear from these re-
sults how best to use knowledge of the frequency characteristics of a plant, or
closed-loop, to frequency-weight the controller reduction. Special frequency-
weightings based on controller characteristics are studied in {5).

A technique for controller reduction for linear quadratic gaussian designs
is given in [6]. This exploits the fact that the innovations process is white
(as in the techniques of [7]) and reduces the subsystems of the controller
driven from this white noise. In effect there is a particular coprime stable
factorization of the controller, and it is proposed that reductions on these
be implemented using standard methods (balanced realizations without fre-
quency shaping). A possible disadvantage for this approach is that stability
of the original controller design is not guaranteed in the reduction.

In this paper, a novel controller reduction approach is proposed. It is
based on the application of standard model reduction techniques to a system
calculated from both plant and controller. The method utilizes theory for the
class of all stabilizing controllers (8] based on the work of {9]. Thus referring
to TFligure 1.1 with plant G(s) € Ry, controller K(s) € Ry, then the class of all
stabilizing controllers is given in terms of J(K,G) € R, and arbitrary Q(s) €
RH®™, where I, denotes the class of rational proper transfer {unctions and
RH®™ the class of stable rational proper transfer functions.

The selection of J(s) we consider is where the block Jy1(s) is in fact
the controller £ (s), and the other elements J;;(s) are appropriately scaled.
Using the circumflex to denoteAa low order appraximation, we propose that
J(s) first be approximated by J(s) using standard model reduction (possibly

frequency-weighted). Then the reduced order controller K(s) is taken as the
11-block of this. That is,

K(s) =[J(s)l1 where K(s) = Jii(s) . (L.1)

This contrasts the more direct application of model reduction where only
Ju(s) = K(s) is approximated, so that K (s) = J(s)i,.

An extension of the approach proposed is to work with the ¢lass of con-
trollers of Figure 1.1b with Q(s) constrained as constant. Thus consider the
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class
K(Q,5) = Ju(s) + J12(s)QU — J22(8)Q) "' Ja1(5), Q constant (1.2}
and its reduced order versions
F(Q5) =) + V©haQl - Ue)nQ) U (13)
Here K(s) of (1.1) is equal to A (Q = 0,5). Also note that
degree K(Q | @ = constant, s) = degree A(Q = 0,s) (14)

In this paper one proposal is that R(Q | @ = constant, s) be re-optimized
over constant Q in terms of the original (or related) controller robust-
ness/performance objectives.

To maintain performance which penalizes some internal variables or their
estimates e, a refinement of the above method is to modify the J(s) or
K(Q,s) blocks in Figure 1.1 to have an additional output e. Denoting
these blocks as J,(s), K.(Q, s) we propose the reduction of K(s)} via J.(s)
or K.{(Q,s) to maintain performance as well as robustness. Again scaling
gives desired trade-off between performance and robustness. When A'(s)
is designed to achieve simultaneous stabilization of a number of plants, it
is proposed to maintain its performance/robustness properties for each of
these plants by working with appropriate augmentations of J(s). Details
are given in the paper. A dual version of the method is where the role of
G{s) and K(s) are interchanged.

In the next Section 2, the controller reduction techniques for preserv-
ing robustness are given in details. A rationale for the proposed controller
reduction is given in Section 3, and examples are studied in Sectiond. Con-
clusions are drawn in Section 5.

2. DETAILS OF CONTROLLER REDUCTION

2.1 Definitions
Referring to Figure 1.1, let us first recall the formulation of Jy,(s) = N(s)
based on the theory for the class of all stabilizing controllers [12]. Let us



denote t

G(s)=C(sI~A)y"'B+D= [g g]T (2.1

Also, in the first instance let us consider that K (s) belongs to the sta-
bilizing controller class having the form of Figure 2.1 for the case Q(s) = 0.
Thus K(s) is characterized in terms of F, H (see also Section 2.7) as

. A | —H
1\(5):[H—0] €R, A"=A+BF+HC+HDF (22)
T

[T~ (A+BF)™,[sI - (A+ HC)|™' € RH™ (2.3)
where 11,, denotes rational strictly proper.
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Figure 2.1 Controller class

Clearly, the class of LQG controllers is a subset of this controller ciass.
From {12}, the class of all stabilizing controllers for G(s) has the form of
Figure 2.1, being parameterized in terms of Q(s) € RH*. Moreover J(s)

has the form
A* |-H B+HD
J(s) = 7 JJuls) = K(s) (2.4)
T

F \0
-C-DF\ I -D

It should be clear that Figure 1.1b for this case takes the form of Figure 2.1
with the Q(s) nonzero.
Other relationships of interest are reviewed. Defining
A+BF|B -H
x2 [M(s) U(s)] = [ 17 % } €RH®  (25a)
T

N VL \cyprlp 1
. A+HC|=(B+HD) H
PR =[ 0] ¢ nH
[—N(s) M(s)] F ‘ A '],
(2.5%)
then
F(s)X(s) = X(s).¥(s) = I (double Bezout) (2.5¢)

G(s) = N(s)M(s)~ = M(s)"'N(s), K(s)=U(s)V(s)™" = V(s)'U(s)

(2.5d)
Also
_[ants) Juas)) _ [ K(s) Vi(s)™!
=[50 0= [ i) 259
_ [ O K(s M(s) — K(s)N(s) ] ’
T | M(s) = N(s)K(s) —[M(s) = N(s)K(s)]N(s)
and referring to Figure 1.1c,
T(s) = Jaa(s) + Jar(8)G(s)I — T11(8)G(s)] ™ Juz(s) = 0 (25f)

2.2 Scaling

Before applying any multivariable model reduction technique go J(s)
to yield a J(s), it makes sense to scale the inputs y(t), s(t) and outputs
u(t), r(t) in such a way that they are given appropriate significance. e

t The top left, top right, bottom left and bottom right entries of the
partitioned matrix in (2.1) represent the system matriz, input matriz, oulput
matriz and direcl-feedthrough matriz of a state-space realization of J(s). The
matrix subscript T indicates that this notation is being used.

do not propose an optimal scaling selection. Based on experience we know
that scaling can be crucial to a good reduction. [n the examples studied
in this paper, we determine the scalings of the variables y(t), s(t), u(t) and
r(t) using their closed-loop auto-covariance responses to realistic stochastic
disturbances. This is achieved by solving a steady state Lyapunov equation
associated with the closed-loop system. Thus consider the stochastic closed-
loop system driven by the process noises w(t) and measurement noise v(t),

df!(tt) = Az(t) + Bu{t) + w(t) (2:6)
di
—d(zl—) = A&(t) + Bu{t) - Hr(1) @D

where r(t) = y(t)—[C2(t)+Du(1)], y(t) = Cz()+Du(t)+v(t), u(t) = Fi(1)
Elw(t)w” (7)] = Qué(t - 1), Elo(t)e™ ()] = Qu8(t — r)

The state/state-estimate auto-covariance matrix P satisfies the following
Lyapunov equation,

T I 0 1 017
PAC+ACP+[0 -H]Q"{O —H] =0 (2.8)

r=e (O] wm e avine] o= [% 2]

Ely(t)y™(1)] = [C DFIPIC DFIT + [0 1]Q.[0 1)7 (2.9a)
Elu(t)uT(t)] = [0 F]Pl0 F|T (2.9)
Elr()rT(0) =[C -CIPIC —C)T +{0 1[Qa[0 1T (2.9¢)

It is not possible to calculate a value for E{s(t)sT (1)], because it is dependent
on the value of Q(s). Choosing a value that it too large will place too much
emphasis on the s(t) input in the reduction. One suggested selection is to
choose E[s(t)sT(t)] = E{u(t)uT(t)]. We propose that the square roots of
the diagonal elements of these matrices be used to generate scaling matrices
Dy, Dy, D,, D, to scale J(s) as follows

Ar | -HD, (B+HD)D,
Jocaied(s) = D;IF 0 D7D, (2.10)
D7MC + DF) | D7'D, -D'DD,

T

In the system Jucaied(s) the variances of the scaled input/output variables
in the closed-loop system will be unity.

Now model reduction techniques as in (1] can be applied to Jycaiea(s) to
yield low-order models,

. ) (A% | ~Tlicatea  *
J §)= |~ - 2.11
sealed Fucaled | Ducated  * @10
* * 5T
from which a reduced order controller is taken as
. (74?) -A, aled Dt N
K(s) = l i Y = Du[chlled(s)]llDy—l (212)

DyFucned l DuDycatea D5 r

More generally, K(Q, s) can be in terms reductions on J and constant Q as
in (1.3).

Other scaling possibilities can be envisaged. Observe that at the one
extreme with D, approaching zero, then [J(s));; — J11(s) and standard
controller reduction is achieved. At the other extreme with D, — 0, main-
taining prediction quality is emphasized—this is linked to maintaining qual-
ity of the state estimate feedback. When the prediction errors are white and
state estimation is optimal, then with D, — 0 these qualities are preserved
as much as possible.

Of course, a search procedure over D,, D, and D, may achieve an
improved compromise between performance and robustness. Such brute
force optimizations are not explored further in this paper. There is no proof
or rationale in this paper to suggest that a selection D, # 0 is always better
than a selection D, = 0. However, out experience has certainly shown that
it is sometimes better. One scaling technique has heen presented above
based on certain intuitions which appear to work well. It could be used as
the starting point for a search for an improved reduction.



2.3 Re-Optimization

Referring to (1.2)-(1.4), it is clear that a class of reduced order controllers
having the same dimension can be defined in terms of the sub-blocks of J(s)
and Q(s), with Q(s) constrained to be constant. These are parameterized
in terms of a constant Q matrix having the dimensions of the plant transfer
function matrix. A search over all constant Q can lead to improved reduced
order controllers over that of the simplest case where Q = 0 as in the
previous subsection.

Such a search over constant Q is relatively simple computationally com-
pared to a search over the scale factors D,, Dy, D, involving repeated
application of the balanced realization algorithm.

The search over constant Q(s) can be simplified exploiting the fact that
all closed-loop transfer functions are affine in Q(s) when J(s) = J(s), so are
“close” to affine in Q(s) when J(s) is “close” to J(s).

2.4 Estimation-Based Reduction

Control schemes based on state estimate feedback can be viewed as an
estimator/controller driven from both the plant inputs u(t) and outputs y(1)
with an output u(t). As depicted in Figure 2.2a, we can think of an aug-
mented plant G} (s) = [GT(s) I] with an augmented output [yT(t) u7(1)]7
driving a controller, denoted /{,(s). Now the corresponding K, (s) and J,(s)
are given from

A+ HC|{[~(B+ HD) H] 0

Ja(s)=| ~F [0 0 I (2.13)
c [-D 1 o],
Fi—— T l—“‘”r=y!—y
- G(s) y: - : G(s) 2 ,
1 ui ' !
S —— 4 S _‘
Ga(s) Gb(s)
J(s) J(s)
r
,

(a) (b)

Figure 2.2 Estimation-based reduction

Notice that J,(s) is stable so that reduced order approximations J,(s),
o K4(s) = [Ja(8))11 are also stable. There appears to be no other a priori
guideline in selecting between reducing this controller and the conventional
one, Clearly in any particular application one may be given a “better”
reduced order performance and robustness. A dual approach is to view the
plant as in Figure 2.2b, where the plant G,(s) = [G(s) I] has an additional
input which is added to the output of G(s). The corresponding transfer
function for Jy(s) is given by

A+BF|H -B

his) = @2.14)
T
Comparison of (2.13),(2.14) with (2.5) reveals that
I 0
sy = [_ol ‘}] Ja(s) [ 0 1} ,
-1 0 (2.15)

‘V(s)=[_01 (} -OI]J°(“)[~01 _01]

This suggests the possibility of reducing X or A (s5) as another method of
controller reduction. The fractional decomposition of the reduced order
controller would be found by applying standard model reduction methods
to X or X(s).
2.5 Controller Reduction Maintaining Performance

Consider that a performance objective is to minimize the energy in some
internal variable, or its estimate, denoted e. For the controller class (2.2),
which can be interpreted as state estimate feedback, it is common for e to
be a linear combination of the states of I'(s). Thus here we assume that the

transfer function from u to e is E(sI —~ 4")~}(~H). Now, the augmentation
of the J(s) block of (2.4) to incorporate this transfer function is

A® - B

Je(s) =

—(CfDF) 9 _ID v Ke(s) = [Je(s)ln (2.16)
E 0 0 dr

Scaling of this in terms of D,, Dy, D,, D, and D, is now a natural exten-
sion of the scaling in (2.10). Likewise generalizations of (2.11) to Jucatea(s)
and K(s) = Dy[Jwcaed(s)l11D;! are straightforward. The relative signifi-
cance of D, determines the emphasis on performance of the controller in the
reduction process, and can be fine tuned by a trial and error procedure.
2.6 Frequency Shaped Reduction

Just as a frequency shaped reduction of /(s) can lead to improved re-
duced order controllers, so a frequency shaped reduction of J(s) leading to a
reduced A'(s) can give improvement. It might be that we require robustness
in a frequency band only. That is, we require robustness to Q(8) € RH™
in this frequency band. Under such circumstances it makes sense to insert
in Figure 1.1b a stable band pass filter between the residuals r(¢) and the
input to Q(s), and require robustness to all Q(s) € RH™ as before. The
band pass filter can be used as a frequency shaped augmentation of J(s),
being in series with J21(s) (or J12(s)) and J3(s). Again the augmented J(s)
can be reduced and the 11-block extracted as a frequency shaped reduced
controller K'(5). The augmentation increases the degree of J(s), while the
following step reduces the degree of J(s). In many cases, the effect of the
errors introduced by increasing the degree of J(s) in the intermediate step
will be outweighed by the improved robustness of the closed loop controller.

Of course general frequency shapings can be employed based on the
closed-loop transfer functions. In fact, it is sometimes impossible to obtain
a good reduction of J(s) uniess frequency weighted reduction methods are
used.

To avoid numerical difficulties when the combined order of J(s) and any
frequency shaping is high, it makes sense to first carry out a preliminary
unweighted reduction of J(s) and any frequency shaping using balanced
truncation. Such a reduction allows a degree reduction with relatively small
error.

2.7 Generation of F, H

When the plant and controller have the same degree, but a selection F,
H to satisfy (2.2) is not known a priori, then such selections can be found
for generic A (s), G(s) {10]. More precisely

Lemma 2.1 Consider the plant/controller pair G(s), K(s) with
minimal nth-order state-space realizations

Gls) = [%]T, K(s) = [”C’ ?]T (2.17)

The controller can only be represented in the form (2.2) if and only
if there exists a real, nonsingular solution Z to the quadratic matrix
equation

AZ+BC-2BCZ~Z2(A+BDC)=0 (2.18)
Moreover, when a real, nonsingular Z exists

F=CZz"' H=-2B (2.19)

Proof: The controller K (s) = C(sI — A}~! B has the same transfer
function as K(s) = —F(sl — A")~'H of (2.2) i and only if they
are related by a similarity transformation

ZAZ'= A", ZB=-H, CZ7'=F (2.20)

Algebraic manipulation with (2.20) leads directly to (2.18). 1
In the SISO case solutions £, H always exist (11} under

[4,B).[4, B] controllable, (4,C],{4,C] observable (2.21)
Remarks:
(i) Sufficient conditions for multivariable G(s), i'(s) are presently under
consideration.

(i1) There are in general a class of nonsingular solutions of (2.18), giving
rise to a class of J(s), J(s) and K(s). For each J(s) the bounds on
[l7(s) = J(s)l| will in general be different, and each approximation will
have its own inherent frequency shaping. Clearly some selections of J ()
will be better than others. This has been borne out with examples



studied, but as yet there is no elegant method to select the best J(s) to use.
2.8 Staged Reduction

So far the simplest situation has been studied—namely when the degrees
of G(s),/{(s) are the same. Should K(s) be of a higher degree than G(s),
it makes sense to first perform a standard reduction of K(s) until it is
the same degree as G(s). Such preliminary reduction can usually be made
with negligible errors compared to subsequent reductions to achieve a lower
degree estimates /{(s). The same holds mutatis mutandis when G(s) is of
a higher degree than K(s).
2.9 Simultaneous Stabilization

Consider that K is designed to give acceptable performance/robustness
for a number of plants Gy, G;...Gxn. Associated with each plant G; there
is a corresponding J; with [J;]y; = K for each i. By bringing each J; to
the same co-ordinate basis it is possible to define a block J(s), Q(s) as in
Figure 2.3 such that

Ji= [ T

Jit1,1

By setting Qu = 0 for k,0 # i, i = 1,2... N, the class of all stabilizing
controllers for G; is characterized in terms of Q;; € RH™. This leads to the
following lemma.

Ti+1

Jit1i+1 (222)

LEMMA 2.2 With (2.22) holding, the class of all stabilizing con-
trollers for G; for i = 1,2... N is a subset of the class of all con-
trollers of Figure 2.2 with arbitrary Q(s) € RH®.
To achieve a reduced order controller K(s) for K(s), we propose the reduc-
tion of J(s) giving K = {J}11. When N = 1, this method reduces to that

presented previously. Scaling can be introduced to order the importance of
the various plants G;.

G(s)

:7(.:)

| NN |
Qs) { | |
| |
2y
Figure 2.3 New J and Q blocks
based on controller designed for

simultaneous stabilization of many
plants.

Q, € RH”

2.10 Neduced Order Plant

It may be that for simulation purposes a reduced order plant is required.
In the reduction technique described above it is possible to extract a reduced
order plant G(s) in addition to the reduced order controller as follows

A -BF-HC-HDF|B

G= - -
¢ Dl

(2.23)

where the estimates ;i.: H F.C and D are obtained from J. One problem is
that there is no guarantee that K close to K will ensure that G will be close
to G, or indeed, that K or K will stabilize G. Let us instead propose that
a reduced order G be obtained from a dual procedure to that giving K, so
that at least G is close to G and is stabilized by K. In the dual procedure
the roles of K, G are merely interchanged.
3. RATIONALE

3.1 Preserving Robustness Properties

The class of all stabilizing controllers for a plant G(s
denoted

) € R, shall be

Kg B {K€R,|HG K)e RH® det(I -GK) #£0} ¢ (3.1)

where I[(G, ) represents the closed loop transfer functions

o [I+K(I-GK)"'G KUI-GM™ _[1 -]
”(G'l‘)‘[ (-GKy'G  (I-GR) ] = [—G I ]
(32)

Such classes have a parametrization in terms of an arbitrary Q € RH* and
an abitrary factorization K = UV~! € K

Kg 2 {Ka(@Q) = (U+MQV+NQ) Qe RH® det(V + MQ) #0}
(3.3)
By duality, a controller K(s) € R, stabilizes a class of plants Gy, and the

reduced order controller K stabilizes a class of plants Gk
DEFINITION: The robustness properties of a stabilizing controller X'

with respect to a plant class G* are said to be preserved in a controller
reduction, yielding K when

G* CGxg =0k NGx (3.4)

Remarks:

(i) A dual definition of preserving robustness is as follows. With K the
class of all stabilizing controllers for a reduced order plant G, the ro-
bustness properties of a plant G with respect to a controller class A* are
said to be preserved in a plant reduction yielding G when

K*CKgsEKgNKg (3.5)

The class of stabilizing controllers for a plant G can similarly be param-
eterized in terms of Q € RH®™.

Ke 2 {Ka(@Q) = (U+MQV+NQ™ | Qe RH™ det(V+NQ) =0}

o (3.6)

where i = U_V'l_is_a stabilizing reduced order controller for the reduced
order plant G = NM~%.

(ii) A controller or plant reduction that preserves the robustness properties

defined in (3.4), (3.5) should maintain G, ¢ close to Gy and K ¢ close

to K. In other words, the reduction should give R such that

AGEG NG, or AKZK;AKg issmall t (3.7

(iv) The fractional maps (3.3), (3.6) can be depicted as in Figure 3.1.

JLs) J (:( s)

M

K J0) KHQ)

Figure 3.1 Linear fractional maps

3.2 Closeness Measures

Standard L2 or L*™ norms define measures of closeness of G, (Q} to
Gr(Q) for any specific @ € RH*, with such norms highly Q@ dependcnt
functions. The controller reduction method based on the reduction of X(s)
or Jo(s) suggests convenient measures of closeness of the classes Gr Gk
being B

[|aX (s)]| or [|[AJa(s)|| respectively (3.8)
where AJq(s) = Jo(s) — Ja(s) ete.

The next lemma shows that a sufficient condition for the controller re-
duction objective that G, (Q) is close to G (Q) is that ||A. (s)|| or ||AJa(s)|]
in (3.8) be small. A dual argument can be developed for the corresponding
plant reduction.

LEMMA 3.1 With the definition (3.8) and
IAF] < ¢ or ATl < € (3.9)
then for generic Q € RH*®, as ¢ — 0

1G4 (Q) = Gx (@)l — 0 with O(e)
Proof: Observe that from (3.10)
Gr(Q) - 6x(Q) = (N+VQ)M+UQ)™ = (N+VQ)(M +UQ)™
= (G, (Q)AM + AUQ] — [AN + AVQIHA + Uai]-l :
3.11

t Here the binary set operator A is the symmetric difference defined as

AAB=(ANBYU(ANB).

(3.10)




For generic Q and with [JAY]| < ¢, as AM, AN, AU, AV — 0,

G £ (Q) =G 1 (@) — 0 with O(AM, AN, AU, AV) and the result (3.10)
follows. Since from (2.14) ||AJ,|| < ¢ implies [[AX || € VZ¢, then [|AJq]| < €
implies (3.10) also. []
Remark:

By appropriate scaling, the controller red_uct,io_n methods can be spe-

cialized to those of {13] involving only AU,AV. Clearly the methods

proposed take into the account both the plant and the controller dy-
namics.
4. EXAMPLES

The method described in Sections 2.1-2.2 has been applied to the reduc-
tion of a 55th order LQG controller for an advanced active control research
aeroplane [14], {15]. Figure 4.1 shows the block diagram of a fiutter sup-
pression and gust load alleviation design. The controls used are the elevator
and the outboard aileron surfaces. Measurements of pitch rate and wing tip
acceleration are used to estimate the aeroplane’s rigid and elastic motion.
Also shown in parentheses in Figure 4.1 are the root-mean-square responses,
at various points in the control loop, to a 10fts=! vertical Dryden turbu-
lence. These values were used to scale Jycaiea(s) of (2.10), and Hankel norm
approximation was used to obtain the reduced order Jycasiea(s). Reduced
order controllers of as low as fourth order could give a satisfactory closed
loop performance.

Table 4.1 summarizes the results for different controllers, ranging from
the original controller to the fourth order controller. Robustness properties
have been evaluated based on single loop phase and gain margins, and the
worst-case stability margins have been recorded in the table. Note that
the margins of stability have been preserved in accordance with the design
requirements ( gain margins of 6dB and phase margins of 30°). Similarly,
the damping of the flutter mode always exceed the design requirement of
0.015. Further reduction leads to an unstable closed-loop system. With
other controller reduction methods such as modal residualization, the min-
‘imum order for the reduced order controller is ten. It is perceived that if
the options described in Sections 2.3, 2.5-2.6 were considered, then {urther
improvements in the controller reduction could be expected. This will be
left for future work.

Table 4.1
Reduction of a 55th order Flutter Suppression and Gust Load
Alleviation Controller?

Order  Tlutter Stability Bending Shear Torsion
Mode Margins Moment
Damping (in-lbs) (Ibs)  (in-1bs)
55 0.074 14.0dB,58.6° 2.348 x 10° 854  4.437 x 10°
10 0.034 14.0dB,59.0° 2.593 x 10 890  4.200 x 10*
9 0.039 5.8dB,70.0° 2.318 x 10> 859  4.495 x 10*
8 0.032 10.0dB,69.0° 2.610 x 10° 930  4.821 x 10*
7 0.032 15.04B8,38.0° 2.345x 10° 862 4.779 x 104
G 0.027 7.04B,28.0° 2.362x 10° 871  4.968 x 10*
5 0.016 15.0dB,81.0° 2.371x 10° 997  7.117 x 10*
4 0.016 7.5dB,70.0° 2.680 x 10° 1102  7.877 x 10%

! The bending moment, shear force, and torsion are root-mecan-square re-
sponses to a 10fts™! vertical Dryden turbulence.

We will now make some remarks on a second example, one which is well
studied in the literature {5}, {6];{13]). Our aim here is not to demonstrate the
superiority of our various methods, since the inbuilt frequency weighting in
the reduction technique of [6] turns out to be highly suited to this example;
a simple application of our methods does not do as well. Rather, our aim
is to be convinced that the methods here can be competitive, depending
on the engineering criteria for judging robustness/performance. Indeed, for
a frequency weighted version of our technique we claim equality with, and
perhaps marginal superiority to, some of the methods of [13].

An eighth-order controller is reduced to a fifth-order controtler using
various controller reduction methods. The original plant and counttoller are
given in [5] (case q=100). The plant has one rigid body mode and three
lightly damped structural modes ({ = 0.02). The command response cor-
responding to the full order controller does not exhibit any lightly damped
structural modes. This is due to the fact that with precisely placed notch
filters in the feedback controller, the residues at the structural mode fre-
quencies are negligible. Reduction of the controiler order alters the location
of the notch filter poles and zeros, and may introduce large residues at the
uncontrolled structural modes.

Reduction of a stable right coprime factorization of the controller [6]
produces a good approximation in the low frequency region, and introduces
residual responses at the second structural mode frequency. Comparison of
the frequency weighted balanced truncation method of [5] with other reduc-
tion methods is given in {6}, {13]. Frequency weighted balanced truncation
is here applied to the controller structure J.(s) described in previously (see
Figure 4.2). The criterion function in the cost function is appended to the
outputs of J.(s) to maintain performance. The scale factors applied at the
inputs and outputs of J.(s) are determined by evaluating the closed-loop
covariance responses. This reduction technique yields a reduced order con-
troller with good robustness/performance properties in a systematic fashion,
with fewer iterations than the method of {13]. (In [13], an augmented output
is also included in the reduction to improve performance.)

For comparative purposes a reduced order controller, obtained by direct
optimization via the SANDY design algorithm [16], has also been studied.
The reduction was based on the same cost objective, process noise, and
sensor noise characteristics. The resulting step response agrees closely with
the original design. The low order controller has the advantage that it only
excites the plant at the first structural mode frequency.

5. CONCLUSIONS

A class of controller reduction methods have been proposed which pre-
serve the robustness and performance qualities of the controller. The meth-
ods can be viewed as consisting of three steps. The first is organizing the
plant and controller information. The second is applying standard model
teduction techniques, and the third is extracting and re-optimizing (if nec-
essary) a reduced order controller from the second step results using a con-
stant stabilizing controller structure. Trade-ofls between performance and
robustness can be achieved by scaling, and indeed by certain extreme scal-
ings, other methods in the literature can be recovered.

The proposed methods are, in the first instance, most appropriate for
controtler designs organized as state estimate feedback schemes. However all
stabilizing controlier designs can be organized as such [12], and our methods
do extend of stabilizing controllers. Simulation studies have supported the
rationale for the methods proposed.

Turbulence (10 fu/s) Dynamic Loads
Elevator (0.592 mrad) (Bending Moment, Shear, Torsion)
Qutboard Aileron ﬁg&ggaﬁgc Pitch Rate (0.8606 rad/s)
(2.35 mrad) MODEL Wing Tip Acceleration
(55-th Order) (96.32 inJsfs)

(55-th Prder)

LQG
CONTROLLER

Figure 4.1 Block diagram of the flutter suppression and

gust load alleviation system.
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Figure 4.2 Frequency-weighting at the controller inputs.



