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MINIMUM VARIANCE CONTROL HARNESSED FOR NON-MINIMUM-PHASE PLANTS
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Abstract. Minimum variance control is applied to non–minimum phase plants
augmented with adaptive compensators. The objective of the compensators is
to achieve, asymptotically, a minimum phase property for the augmented plant.
With this property, the minimum variance controller gives a stabilizing
control signal.

Results are developed for discrete-time, linear, stochastic plants for which
the s.eriesand feedforward parallel moving average compensators have coeff-
icients updated based on plant parameter estimates.

The schemes perform well on simulations and were further supported by a
global convergence theory.

For tracking problems, preprocessing the desired trajectory may give improved
performance. The design of the preprocessor can be achieved using a system-
atic approach.
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INTRODUCTION

In this paper, we develop a novel approach,
yet involving standard techniques, to the
adaptive control of general, linear, finite-
dimensional, discrete-time plants, Also, a
convergence analysis theory is developed to
refine and justify the scheme.

In particular, the power of adaptive minimum
variance control for minimum phase system is
harnessed for non-minimum-phase plants.
Minimum variance control is applied to the
plant augmented with adaptive series and
parallel compensators which adaptively asaign
the augmented plant “transfer function zeros”.
State variable techniques can be employed in
tracking schemes to optimally preprocess the
desired trajectory if required.

The neareat competitor for the scheme of this
paper is the adaptive pole assignment scheme
of Wellstead, Prager and Zanker (1979). For
the deterministic case, using a least squares
parameter estimation scheme and easily con-
structed “sufficiently rich” control signals,
the plant parameters are learnt in a finite
number of steps (as low as n ste~where n
is the dimension of the state vector). With
knowledge of the true plant parameters, the
plant poles can be asaigned arbitrarily by
means of feedback compensators. A local con-
vergence theory for the case of a suboptimal

projection parameter-update algorithm is
given in Goodwin and Sin (1979), where also
the least squares case is considered without
resort to “sufficiently rich” control signals.

One property of the controllers in Wellstead,
Prager and Zardcer(1979), Goodwin and Sin
(1979) is that the zeros of the plant are not
influenced by the controller. Also, it is
not clear what happens in the case of plant
noise, or how best to preprocess the input to
achieve a suitable compromise between track-
ing performance and control signal level.
These properties of the adaptive pole assigw
ment approach may well be viewed as disad–
vantages in some applications.

In the approach of this paper where adaptive
zero assignment is used, the zeros of the
augmented plant are moved to any desired
location, and the case of plant noise is
dealt with in the stochastic theory. Also,
the potential is there to apply the Riccati
theory to improve tracking performance. The
convergence analysis builds on the ideas in
Goodwin and Sin (1979), Kumar and Moore (to
appear), Goodwin, Ramadge and Caines (1979).

COMPENSATORS AND MINIMUM
VARIANCE CONTROL

Minimum variance control schemes for known
plants are simple to implement, and effective
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for minimum phase plants. For non–minimum
phase plants, the control signals become un-
bounded. In this section, we harness the
power of minimum variance control to control
a known non-minimum-phase plant, augmented
with compensators, so that the augmented
plant is minimum-phase. The scheme is of
interest in its own right, but is here pres–
ented as a stepping stone to the adaptive
versions of the next section.

Plant. Consider a linear, time invariant,
discrete–time finite dimensional and stoch-
astic signal generating system. To keep the
notation simple, we work with scalar input-
output models, also known as autoregressive,
moving average, exogenous variable (ARMAX)
models

k=- f .s(i).k_i+ f b(i)\_N_i
i=l i=()

p (i)
+~c

‘k-i + ‘k
(1)

i=1

where ‘k are the measurements, uk the
external known inputs (controls) with an N
unit delay associated, and Wk is zero mean
white bounded variance unknown noisel . The

parameter a
(i)

, b(i), c(i) are assumed
known in this section.

Alternative notation is with operators, A, B,

C being polynomials in the delay operator

q-l. Then

Azk=B\_N+Cwk or zk=Bq-NA-luk+C’A-lwk (2)

where A, B, C are respectively of order n,

mj p with coefficients given from the ele-

ments a
(i)b(i)c(i) ~f vectors a, ~ c and

,
a(o) (o)

without loss of generality = c = 1.

Also define = from a’= [1 ~’] and likewise
E. Now with the parameters and state estim-
ates

6 = [:’ b :’]

~= [-z
k-1 ““”-zk-nuk-n ““””k-N-mwk-l

...
‘k-p]

(3)

then the plant has the state space descriptim

Zk=e’\+wk (4)

1 More precisely, with Zk denoting the o-

algebra generated by WOWI ..w~, then
..

HWkl~k_l] ‘O, E[llwkl~l\_ll =o;s6 <~.

The bounds lim sup ~Zllwi112<~,
k-m

E[llWk1121~k_l]=U~SG<m are assumed for

some of the convergence theory.
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Compensators. With a view to achieving ass–
igned zeros in a plant augmented with com-
pensators, consider the above plant with a
moving average pre– or p st-compensator

-?having an operator F(q ) together with a
parallel feedforward moving average compen-

sator having an operator [E(q-l)q-l]. Thus
we introduce the definition

~({’) . e(o)+e(l)q_l+.. e(r-l)q_N1,

e’= [e
(0)e(l) e(r-l)~,... (5)

and likewise for
r=max[n, m+N-1]
selection of E
owing a study of
ions.

F(q-l) and f’. Here
is assumed finite. The

and F is considered foll-
the augmented plant equat-

Time varying (adaptive) compensators are fun-
damental to the algorithms of the next
sections. For these the notation

‘k’ ‘k ‘s
employed where now

‘k‘ ‘k
are time varying.

Augmented Plant. The augmented plant with
input iik and output Z has operator equ–
ations for time invariank compensators as

A;k=~~k+Gwk, fi=Eq-lA+FBq-N (6)

where for the post-compensator case G=FC and
for the pre–compensator case G=C. We ass–
ociate vectors ~ and ~ with ~ and G
using the earlier convention.

It proves convenient to work with the relat–
ionship between the operators as algebraic
equations obtained by equating powers of q–i
for each i giving

‘At]=”‘][1+ “a)
g=Fc (post comp), g=c (pre comp) (‘b)

where the matrices have the structures in
term of vectors a, b, c, f as

I1L1A=- o 0 ,
a

[1

o
a

[1
00a

B=

I i

[1
b

00,

[1

o
b
—.

0
[1
b

111
E= o N–1

o
B

(8)

and likewise for E, F, ~. The matrix di-
mensions can be inferred from the relation-
ships in which they hold and may vary. For
example in (7a), A is 2rxr, B is
(2r-N+l)Xr, E is .2r X(n+l) F = (2r-N+l)

x (m+l) and in (7b) F is (r+p)x(p+l).
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Zero Assignment. The augmentecilplantzeros
are given as the zeros of E(q ). Thus to
achieve specified zeros, then E(q-l) and
F(q-l) must be chosen to satisfy (2.6), or
equivalently the coefficients chosen to satis-
fy [A ~][e’ f’]’=fi [see (7)].

It is known (Theorem 7, 3.20 of Wolovich
(1974)) that a unique solution exists if and
only if A(q–l) and B(q-l) are relative
prime (no common zeros), or equivalently
[A 51 is nonsingular. In other words the
plant must be a minimal representation in
that there are no pole/zero cancellations. A
property of this approach to achieve specif-
ied zeros in an augmented plant, is that the
coefficients in E and F become large when
a plant pole is close to a plant zero.

For the application of the control ideas of
this paper, the compensators are chosen so
that the augmented plant is minimum phase and
wit~~ut loss of generality the zeros of
~(q ) can be taken at the origin. One pos-
sibility is ~’=[100 ...0] and the augment-
ed plant equations (6) simplify as

!’ (i)-
‘k+l=-i=l ‘k+l-l + i~og(i)wk+~-i‘tik

(9)

where ~=p for the precompensator case and
~ . p+r-1 for the post compensator case.

Noise Estimation. An estimate of the noise
Wk, denoted Wk, can be obtained by proces–

From (2) Wk = C-~[AZk-BUk_N] .
sing the plant in uts and outputs as follows.

Since initial
conditions for this equation are unknown, a
noise estimate is calculated via

,.

‘k
= c-l[Azk-B\_N] (lo)

A ,. .

initialized by WO =w_l= ... w_til=O. Clear-

ly with C-l an exponentially &ymptotically
stable operator, a standard assumption, thenA
w +W
k k

exponentially as k+co.

Minimum Variance Control. In minimum varian-
ce control of the augmented plant, the control
(:k) is chosen to minimize the variance of
the tracking error between the augmented
plant output ‘k and some desired trajectory
Z: for this.

-*
What then is a suitable value for when‘k .

only a specified desired plant output Zk is
given? This question is answered below using
an optimization procedure which gives a boun-

ded ~~
*

from a bounded ‘k’ Of course, for
~~e regulation problem ~~ere Z*=O,

k
then

‘k
is also chosen as z =0.

k

In minimum variance control, the optimal con-
trol tik turns out to be the control which
sets the one-step-ahead output prediction
A

-*

‘k+l Ik
as the desired trajectory

‘k+l” ‘bus
the control, now denoted ~k, is selected to

satisfy

-* : n (i)-
Zk+l = z = ‘=~la ‘k+~-ik+llk - .

~ (i)A -
+Ig ‘k+l-i+uk (11)
i.1

A key observation is that the above minimum
variance controller Q the augmented plant
with inputs {Zk}, {Zk}, {$k} and outputs
{~k} is exponentially asymptotically stable
and thus has a bounded input, bounded–output
~roperty. Moreover, as previously noted,
w +W
k k

exponentially as k+m .

Control Scheme Properties: From (9) and (11)

-* p (i)
‘zk+l+ .1 g (wk+~_i-;i+~_i)+g

(o)
‘k+l ‘k+l==1

(12)

With the boundedness assumptions

then since
the sequence?m ‘xpRnenEially as ‘~~~ceis llkewlse bounded.
the augmented plant is minimum phase, a boun–
ded output {~k} implies a bounded input
{iik}. As a consequence of the bound on {Gk},
the original plant input {uk}, is also
bounded. Moreover, for the pre-compensator

case z = ‘1 E;k and consequently {zk}
is bour$ed.zk~;r the post-compensator case
with

k = ‘k’

;k= zk+q-lE~=(Fq ‘NBA-l+q ‘lE) \

from which

1~k=~A- u
k

+ FCA-lwk

+Fdwk=zqld (Zk-m-lwk)

+ FCA–lW
k

and

‘k
= ~-lq–NB(;k - FCA–lwk) +CA-lwk

= jj-l[q-NB;
k-q

-%cwk ] (14)

With {~k} and {wkl bounded in the sense
above, then from (14), {zk} is likewise
bounded.

The relationship corresponding to (14) for
the pre–compensator case is readily estab–
lished as

‘k
= jj-l[q-NBF~k-q-+m’kl (15)

The above results are summarized as a theora

Theorem 1: Consider the original plant
(1) augmented with compensators to achieve
an augmented plant (6) with zeros at the
origin. Then minimum variance control

U 79



R. Kumar and J.B. Moore

applied to the augmented plant with the
control law given from the implicit solut-
ion of (11), achieves a bounded-input,
bounded-output controller. Also with the
desired trajectory ~~ and noise Wk
bounded as in (13), the plant signals

{u~, Zk} and augmented plant signals
{Ek, Zk} are bounded likewise. The aug-
~~nted plant output ~k approaches

‘k+gOwk exponentiall~*fast for the sto-
chastic case and ‘k=zk ‘n r ‘teps ‘n
the noise free case. Moreover, Zk track
zk as in (14) (15).

Remark 1. If the noise and tracking error
bounds are strengthened to an upper norm
bound, then the boundedness results for- -
Uk, Zk,uk, Zk can be likewise strengthened.

–* *
Remark 2. Setting ~~~kg~esthat ~J;ack-

~l-NBz*
ing or q BFzk when ~=q .
Improved tr~cking can be achieved as below.

Preprocessing the Specified Trajectory. The
relationships (14), (15) suggest the following
recursive calculation of ;* from z*k, for the
case Z = ~-1 k

Bi* = Z*
k k+N-1

post-compensator case

BF;* = z~+N_l pre-compensator
k

case (16)

Note that if z* =
f

O as in the regulator,

‘k = O is a so ution. With the original
plant minimum phase there is also no diffic-
ulty in solving for ;*, but the case of
interest here is when&e plant is nonminimm
phase and thus B-l and (BF)-1 are unstable

operators with the solution ~~ becoming
unbounded.

One scheme for avoiding an unbounded ;* is
to res~~ the states of (2.16) associate$ with
past zk periodically, or during times when
the i~troduction of transient error in
(z -z ) does not matter so much. A refi~e-
me~t k

to avoid large transients in (zk-zk)
is to switch in a stabilizing feedback gain
until the appropriate states are sufficiently
small. The stabilizing gain can be selected
from Kalman Regulator theory (Anderson and
Moore (1969)) as one possibility.

A further refinement is to apply tracking
theory (Anderson and Moore (1969)), in an

appropri~~e discrete–~ime formkto keep the
ter~s I[zkllz and IIzk+N_~-Bzk 112or

~~~gy~~+:e~~~l~hes~~~~ ro~~n~;;;t te~ is
“ and the

second as the “tracking error cost” in apply-
ing the tracking theory. Of course, there *
are two possibilities. In the first, if
the desired trajectory, can be modelled as‘k’

the output of a linear system with zero inpu~
then the tracker is simply a regulator for an
augmented system.
-*

Otherwise, knowledge of
zk in the future is required for difference
equations solved backwards in time at least
for two or three times the relevant time con–
stant. This level of refinement is in fact

not justified here since similar tracking
algorithms could be better employed on the
original plant. However, for the adaptive
schemes of the next section, this approach
could well be justified. This is not dis–
cussed further.

ADAPTIVE TRACKING

In this section, the tracking scheme of the
previous section for known stochastic linear
systems is made adaptive by performing para–
meter estimation and using these estimates in
lieu of the unknown true parameters for com-
pensation and control. Two variations are
considered.

Parameter Estimation. One possibility is to

apPIY a weighted least squares parameter UP-

date scheme, as in Anderson and Moore (1969),
to estimate e as

‘k
from the plant inputs

{uk} and outputs {zk} and model (4) as

(16a)
A

Pk.; -G
k-1 k-l;*”k-l(~;l + %fk-l~)-l ‘16b)

A posteriori estimates of the noise and
states are taken as

A

‘k = ‘k-%%
(17a)

A
<= [-z

k-l””” ‘Zk-nuk-n ““”‘k-N-mwk-l ““”GkT 1

(17b)

For the noise free case in whi$h ~=&
then a suitable SeleCtiOn of yk yk=l
and the algorithm is an “unweighed least
squares” scheme. If Pk is set as Pk=I
and yk is set as yk=al(a2+x~xk)-1 ‘or
some 0<ul<2 and 0<u2, then the algor-
ithm is a simple “gradient projection’’scheme.

For the stoc~astic case, the weighting co-
efficients yk are.cho~~~ ac~ording to a
stability measure

‘k=xkpk-l% ‘hich ‘s
available in the calculation. One selection
scheme termed a ~weighred least squares”
scheme selects

‘k
as follows

,-.
?k=min{yk, yk_l} (18a)

1 -1
[max(k, ~ fii)] otherwise (18b)

i=l

for some l>>c>O and al, ct2>0 selected
to keep

‘k
from decreasing excessively.

Stochastic approximation versions take Pk+I
and Yk as the third selection in (18b) for
all k. Other variations also can be con–
strutted.

Compensator Update. Should the plant be in

M1-80
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fact minimum phase, then the compensator sel–
ection F=l,E=O are known to be suitable
since adaptive minimum variance control of
minimum phase plants is globally convergent
(Kumar and Moore to appear) and has attract-
ive properties. Should the plant be non-
minimum-phase, then the control signals will
become excessive with F=l,E=O. In the case
of unknown plants, it makes sense then to
initialize the algorithm with F=l andE= O
and if IUkl is below some threshold keep
F=l,E=O. Otherwise switch to the schemes
now described without returning more than a
finite number of times to the case F=l,E=O.

.,.,,
With estimates ~k=[~~b~~~]>, a first trial

,.
reasonable selection for i is simply

A ‘k; k.
[~~~~]’=[~ ~K]-l~ where ~, ~k are given

from (8) with a,b replaced by ~k, ~k. For
the convergence theory and indeed for pract–
ical considerations we introduce the con-
straint.

(19)

for (3 sufficiently large. Also, there is
the problem of what to do if

A ,,

[~ =kl
-1

does not exist.

One possibility is to introduce a random
A . A

perturbation A8~=[A=~ Ab~ O]’ such that

for some. ~11 (3 sufficiently large, and
select ek, fk asz

Observe that with this selection, not only is
(:9) ~atisfied, but the prediction.
(8k+A8k)”;k+~ is independent of A8k. Observe
also that we are now constrained to the fol-
lowing sequences ~f calcul~tions

~+gk+:k+uk+Af3k+Sk, fk.

Should l~k ~k I be zero or small for a num-
ber of iterations, one possibility is that
IA ~ I is zero, or small, and the signal
model order estimate is excessive. A reduct-
ion of this value may be appropriate.

Simulations suggest to us that a suitable sel–

ectiOn of 61 above is i31=0 and thus
Aek=(), save in the case when the model
order is overspecified. The term A6k is in-

A A

z A variation which allows ek fk tO be
recursively or only periodically updated so
that asymptotically [&k ?k]
of (21 ) has implementation
vantages but is not studied

approaches that
simplicity ad-
in this paper.

for Non-Minimum-Phase Plants

eluded to rigorously establish global con–
vergence of the algorithms.

The augmented plant equations are now expre–
ssed in terms of Z~=[zkzk_l ... ],

‘ik=[\uk-l
... ] of appropriate dimension as

- {

,,
f;zk+l+s;tik

‘k+l =
‘k+l + ‘%tik

post compensator
case (22a)

pre compensator
case (22b)

1-‘k
post compensator case (22C)

u .
k ~.

k-lfikpre compensator case (22d)

Stable Controller Adaptive Tracking Scheme (I)
One possible controller in the adaptive case
is to replace a, g in (16) by estimates
(6k+A~), &k and thus select ~k to satisfy

-* A A

‘k+l
=-(~+A~k)~k+~kwk ‘~+zk+l (23a)

(
F “A k%

post compensator case
gk . (23b)

;
k

pre compensator case

A .

where ii<= [~ wk_l ... ] of appropriate di-
mension. These implicit equations give a
controller with input ~k, ~k and output ~k
which is inherently bounded-input, bounded-
output stable as long as ~k, A~k, ~k are
bounded. The controller is, however, only
asymptotically a minimum variance controller.

Minimum Variance Adaptive Tracking System (II)
Here, the one-step-ahead prediction estimates

of the augmented plant 4‘k+l k are forced by
a control signal ~k select on to be the
desired trajectory Zfi+l. The prediction
estimates

1
~k+l k can be calculated in terms

of the plant pr diction estimates

. ,% .
i
k+llk=o~~+l’ ~=[-zk-l ““-zk-nuk-N

““ \-N-mik-l ““‘k-p]
(24)

The control signal ‘k to achieve minimum
variance control is chosen to satisfy

1
;(0)2 Q. . ,-

k k+l Ik ‘fkzk+ekuk

-k :
I post compensator case

‘k+l
1

‘Zk+llk= .
‘k+l ]k + ‘i”k

( P’re compensator case (25)

The above implicit equations for ‘k can be
re-organized as explicit equations giving a

unique solution of ‘k
~(o) *O.

if ek Notice
that

k
‘k+l k is not a function of ;k when

the delay satisfies N> 1 . However when
,. A(o)
‘k+l k ‘ncludes an additive term bk ‘k> in

which case. for uniqueness require

The minimum variance tracking scheme control-
lers appear more complicated than those for
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the previous stable controller~sch~me (I),
however, the terms involving ek, fk are cal-
culated aa part of the plant augmentation for
both schemes (I) and (II). Thus in fact, the
minimum variance schemes are marginally simp–

ler to implement.

The following relationships between the orig-
inal plant one–step–ahead prediction error and
the augmented plant tracking error, or equiv-
alently the augmented plant one-step–ahead
prediction error, are immediately from (25).
Thus

-k z

(

:(0);
k+l Ik

(post compensator

‘k+l ‘Zk+llk= ~k
case)

k+l Ik
(pre compensator case)

(26)

For both controllers

.“. A ,s

.2k+llk=akzk+l- b[uk+l.n-ckwk (27)

CONVERGENCE RESULTS

Space limitations preclude us from giving full
details but a comprehensive convergence theo~
is available for these algorithms. In the
noise free case, we can establish global con–
vergence using the following “pure least
squares” parameter estimation algorithm:

Convergence results are also available in the
stochastic case. This theory builds in the
work of Kumar and Moore (to appear) on global
convergence of adaptive minimum variance con–
trol schemes via weighting coefficient sel-
ection.

Simulations. Simulations studies have been
carried out to give confidence in the robust–
ness of the algorithms. For the regulator
case and deterministic plants, the simulations
compare favorably with those reported in
Goodwin and Sin (1981). For the stochastic
cases, the tracking errors have added noise
as expected. The added noise term depends on
Ek which can be reduced by an appro riate
“trial and error” selection of ?P(q- ).

CONCLUSIONS

The paper has shown that the simple and pow–
erful adaptive minimum variance control sch-
emes which are globally convergent for mini-
mum variance plants can be applied by means
of adaptive compensators to control nonmini-
mum phase plants.

Given that the minimum variance control
scheme is applied to a plant augmented with
compensators, the global tracking convergence
results demonstrated are as strong as can be
expected from such an arrangement.

case, and for the case when parameter var-
iations are Markov.
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