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Improved Demodulation of Sampled FM Signals in High Noise

PETER K. S. TAM AND JOHN B. MOORE

Absrract–Simrslation results are presented which are very convinc-

ing in favor of FM demodulators driven by in-phase and quadrature-
phase signals. Application of the extended Kalman filtering algorithms

to the appropriate signal model directly yields demodulators in which

the error covariance equations are uncoupled from the state estimate

equations. These demodulators perform a little better than others de-

rived using different nonlinear filtering techniques and the necessary

approximations to achieve “decoupling.” More significantly, these de-

modulators using in-phase and quadrature-phase sampled signafs are

readily augmented to achieve demodulation with delay by the applica-

tion of fixed-lag smoothing algorithms. Simulations highlight the attrac-

tive trade-offs between demodulation complexity and performance re-

sults for this class of demodulator.

INTRODUCTION

With recent advances in digital system technology, it

appears attractive to employ digital FM demodulators in
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some applications. In particular, in-phase and quadrature

phase signal ideas explored in [ 1-3] can now be handled con-
veniently using present day digital technology. More signif-

icantly fixed-lag smoothing ideas [4-6 ] to achieve demodula-
tion with delay are most conveniently realized in discrete

time.
In [1, 2], Mallinckrodt, et al. and Bucy, et al. have noted

the equivalence between phase-locked loops and continuous-
time extended Kalman filters for phase demodulation. Their
phase demodulation procedure involves first the removal of

the known carrier by heterodyning down to base band, pro-
ducing both in-phase and quadrature components. Applica-

tion of the extended Kalman filter (EKF) algorithm to such a
base band model then results in the continuous-time state

estimate equation being decoupled from the continuous-time
error covariance equation. Our own discrete-time simulation

of these demodulators suggests that they give performance
characteristics superior to earlier schemes in [3, 5, 7]. There
is a difficulty, however, for the continuous-time demodula-
tors to further improve performance using fixed-lag smooth-
ing ideas.

In [3], the advantages of in-phase and quadrature-phase
sampled signals are explored. The demodulators are derived

using discrete invariant embedding to a two point boundary
value problem. However, the resulting matrix equation

needed for the evaluation of the processor gain is still

coupled to the processor equation and low noise assumptions
are required to achieve a decoupling of these.

Fixed-lag smoothing ideas are applied to achieve FM
demodulators with delay in [ 5-7]. The performance of
demodulators with delay is always an improvement on
demodulators without delay, although in high noise (near
threshold) the performance improvement may be negligible.

It should also be noted that demodulators with delay are
difficult to design in continuous-time since suboptimal tech-

niques must be employed and certain approximations are not
at all straightforward to optimize. It is preferable to work
with discrete-time signals for the ready design and imple-
mentation of fixed-lag smoothers,

In this work, we derive discrete-time demodulators from
quadrature and in-phase sampling of the received analog sig-
nal (at IF frequencies) as studied in [3] It turns out that
various versions of the discrete-time extended Kalman filter,
when applied to the appropriate discrete-time model, directly
yield demodulators in “uncoupled” form. The discrete-time

filter equations are very like those used for simulation studies
in [ 1, 2] and it is not surprising that the performance of our
discrete-time demodulators is comparable to that of the con-

tinuous-time versions of [1, 2] The demodulators of this
note incorporate ideas from [ 1-3] to achieve properties not

achieved in [ 1-3] In particular, the performance of the dis-
crete-time demodulators derived in this note can be readily
improved by additional computation in discrete-time to
achieve fixed-lag smoothed estimates using the ideas of
[4-6] Moreover, the resulting FM demodulators with delay

achieve worthwhile performance improvement even at thres-
hold noise levels.

SIGNAL MODEL

For simplicity, we shall restrict attention to the first-order
Butterworth message spectrum and assume oscillator insta-
bility to be negligible. In [3, 5, 7] , the system equations for
such a model are in the following form:
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The measurement

pling as follows.

Mf) =fi sin [Cdct+ O(t)].

equation depends on the type

Scalar Sampling [S, 7]

Z(tk) = h(tk) + u(tk), k =0,1,2,”..

Quadrature and In-Phase Sampling [3]

DIGITAL DEMODULATION SCHEMES

o1o’

(1)

of sam-

(2)

(3)

In [5, 7] , the extended Kalman filter algorithm and
higher order versions of this are applied to the signal model
with scalar sampling, Itis found that the error covariance
equation for any of such filters is coupled to the processor
equation and thus cannot be calculated off-line as in linear
filtering, By expanding terms involving coupling in a Fourier
series and neglecting terms with higher order harmonic con-
tent, as noted in [7] , the error covariance equation can be
decoupled from the processor equation. However, simulation

results in [7] indicate that the performance of such
uncoupled estimators is not as good as that of the coupled

estimators.
We propose to apply the extended Kalman filter algo-

rithms together with the fixed-lag smoothing equations of
[5, 6] to the signal model with quadrature and in-phase

sampling. Because the system dynamics is linear, there is
obviously no coupling between the state and error covariance
equations for one step ahead predicton. Fortuitously, the
measurement updating equations for the extended Kalman
filter algorithm are also uncoupled. Since these are readily

derived as in [1, 2] they are not repeated here. The smooth-
ing equations are however presented to indicate their com-

plexity.

Smoothing Equations

~i(t~ I t,) ‘fi(tk I fk–1) + f’i(tk I tk–l)rl(~k / tk–1)

“ [i(?k I tk) ‘i(r, / tk–~)] (4)

~i(tk [ fk) ‘P~(?k I f,–~) – pi(?k I ?,–~)

“ [1- P_l(tk I tk-~)p(tk [ t,)] (5)

pii(f, I tk) = pii(t, I fk–~) ‘pi(t, I tk–~)~l(tk I tk–~)

s [~ - P(tk I fk)~l(tk I t,–~)]Pi(t, I ‘k) (6)

where xi(tk) ❑ x(tk–i), Pi(t I tk) ❑ E{[xi(t) – ~i(f I f,)] “

[X(t) - ~(t / tk)l ‘} and Piz(t I tk) ~ ~{[Xi(t) – ~i(f I fk)] .

[xi(t) - ;i(t [ tk)] ‘}.

SIMULATION RESULTS FOR ZERO-LAG

DEMODULATORS

Simulations are performed with the model (1), (3) with

X(to)a Gaussian random variable of zero mean and unity vari-
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ante, and O(to) uniformly distributed in [–n, ~). We set ‘Y= 1
q = 2~ S,Othat limt+m ~{az(f)} = 1, the root-mean-square,

bandwidth of the FM baseband spectrum = 1 radian, and the

bandwidth expansion ratio ~ = 1/cY. We select tk = k T. 7-:-

2rT/16 seconds to permit adequately fast sampling of the FM

baseband spectrum.

Simulations show that the performance of the extended
Kalman filter is almost the same as that of the more comph-

cated modified second order filters.
Our demodulation for quadrature and in-phase sampling

provides about 2 dB threshold extension when compared with
uncoupled demodulation of [ 7] using scalar sampling, as
indicated in Figure 1 where $L—l is the inverse of the evalu-

ated mean square message error and CNR = 2/(w T) ]s the
carrier to noise ratio in the message bandwidth,

As an illustration of the variation of performance with
sampling rate, Figure 2 shows plots of ~k–* versus f’ the norm-

alized sampling rate for a = ,04 and CNR = 27 dB, ,f’is evalu

ated as TO/TU when TU is the variable sampling time intervti]

and To = 27r/1 6 (the sampling time interval used in the other
simulation results is presented in Figure 1, 3).

SIMULATION RESULTS FOR FINITE-LAG
DEMODULATORS

Figure 4 presents digital computer simulation results for

fixed-lag demodulators around the threshold region, It can be

seen that the fixed-lag demodulators always perform bettel-
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Fig. 4. Performance of fixed-lag FM demodulators.

than the demodulator with zero lag, The improvement of

inverse mean-square message error ranges from a fraction of a

dB in the high noise region to several dB in the low noise
region.

CONCLUDING REMARKS

Our simulations have demonstrated the power of using in-
phase and quadrature phase signals, and of using fixed-lag
smoothing for FM demodulation. The discrete-time versions
driven by in-phase and quadrature phase sampled signals and

derived by application of extended Kalman filter theory to the

appropriate signal model are clearly very attractive demodu-
lators from the complexity versus performance point of view.

The fact that the error covar-iance equations are automatically
uncoupled from this filtering equations gives these schemes a

slight advantage over other schemes where all else is equal. To

achieve even further improvement in performance appears tc
require banks of such demodulators as in [8, 9].
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