Adaptive Estimation via Sequential Processing

R.M. HAWKES AND J.B. MOORE

Abstract—The computational advantages of processing vector measurement data one component at a time (termed sequential processing) in adaptive estimation schemes involving banks of Kalman filters is investigated.

I. INTRODUCTION

The linear filtering of vector measurement data one component at a time (termed sequential processing) via Kalman filtering techniques has certain advantages over the more standard Kalman filter algorithms in which the components of a vector measurement are processed in one batch (termed simultaneous processing) [1]-[4]. For the case when the additive measurement noises in the components of the data vector are uncorrelated there is a computational saving in sequential processing which could be as much as 50 percent [1].

In view of the results of [1]-[4], it is not surprising that there are advantages to the sequential processing of data in adaptive estimation schemes involving banks of Kalman filters [6], [7]. What is surprising, however, is the extent of these advantages. Not only is there a possible computational advantage associated with the Kalman filtering as such, but there is inherently a significant computational advantage in processing the innovations of these filters to achieve the a posteriori densities. This latter aspect is now explored.

II. ADAPTIVE ESTIMATION

Consider the linear discrete-time state-space signal model for the m-vector measurements z_k,

$$x_{k+1} = F_kx_k + G_kw_k, \quad z_k = H_kx_k + \epsilon_k$$

(1)

where ϵ_k and w_k are independent zero-mean white-noise processes with covariance matrices $R_k = R_k^T > 0$ and $Q_k = Q_k^T > 0$, respectively.

In the signal model (1), F_k, H_k, G_k, Q_k, and R_k are known functions of a parameter vector θ, where $\theta \in \Theta_k \times \ldots \times \Theta_1$ with a priori probabilities $p(\theta)$, $s = 1, \ldots, N$. The adaptive estimator [6] consists of a bank of N Kalman filters where each filter is matched to each possible member of $\Theta_k \times \ldots \times \Theta_1$ with outputs $\hat{x}_{k|k|} \theta_k$, $s = 1, \ldots, N$, where $Z_k = (z_{k1}, z_{k2}, \ldots, z_{km})$ as

$$\hat{x}_{k|k|} = \sum_{s=1}^{N} \hat{x}_{k|k|, s} p(\theta|Z_k)$$

(2)

The results of [1]-[4] can be readily applied to obtain $\hat{x}_{k|k|, s}$ by sequential processing. If R_k is not block diagonal then it is necessary to introduce the LDU factorization [4], [5] as

$$R_k = J_k \bar{R}_k J_k^T, \quad \bar{R}_k = \text{diag} \{ R_1 \bar{R}_2 \ldots \bar{R}_s \}$$

(3)

where J_k is in lower block triangular form. Also let us introduce the
definitions of H_k from

$$H_k = J_{k-1}^{-1} H_k; \quad H_k = [H_k^1 H_k^2 \cdots H_k^p].$$

(Of course, J_{k-1}^{-1} exists since R_k is positive definite.)

Now consider a signal model for $Z_k = J_{k-1}^{-1} z_k$ where we partition the measurement vector $z_k = J_{k-1}^{-1} z_k$ and its additive white-noise term $\epsilon_k = J_{k-1}^{-1} \epsilon_k$ into components z_k^j and ϵ_k^i such that

$$z_k^j = (H_j^i) z_k + \epsilon_k^i.$$

Here $E[\epsilon_k^i \epsilon_k^j'] = \delta_k^i \delta_k^j$. Let us also denote the measurements z_{k-1}, \cdots, z_1 as Z_{k-1}. We now show how $p(\theta|Z_k) = p(\theta|Z_{k-1})$ can be calculated from the innovation process of the Kalman filter matched to θ.

The a posteriori probabilities $p(\theta|Z_k)$ are given from the relationship

$$p(\theta|Z_k) = \frac{p(\theta|Z_{k-1}) p(\theta|Z_k)}{\sum_{j=1}^N p(\theta|Z_{k-1}) p(\theta|Z_k)},$$

The conditional probabilities $p(z_k|Z_{k-1}, \theta)$ are in turn expanded using Bayes rule as

$$p(z_k|Z_{k-1}, \theta) = \prod_{j=1}^N p(z_k|Z_{k-1}, z_j^2, \cdots, z_j^1, \theta).$$

These probabilities can be calculated from the pseudoinnovations process of the bank of N Kalman filters via the formula [7]

$$p(z_k|Z_{k-1}, \theta) = \prod_{j=1}^N [\Omega_j(\theta)]^{-\frac{1}{2}} \exp \left[-\frac{1}{2} [s_j(\theta)] [\Omega_j(\theta)]^{-1} [s_j(\theta)]' \right]$$

$$\Omega_j(\theta) = [H_j(\theta)] \sum_j [H_j(\theta)][H_j(\theta)]' + \delta_j(\theta)$$

$$s_j(\theta) = z_j - \sum_j [H_j(\theta)] \delta_j(\theta).$$

The above algorithm is, of course, a sequential estimation algorithm and should be compared to the standard simultaneous algorithm [6, 7]

$$p(z_k|Z_{k-1}, \theta) = [\Omega_k(\theta)]^{-\frac{1}{2}} \exp \left[-\frac{1}{2} [s_k(\theta)] [\Omega_k(\theta)]^{-1} [s_k(\theta)]' \right]$$

$$\Omega_k(\theta) = H_k(\theta) \sum_k [H_k(\theta)][H_k(\theta)]' + R_k(\theta)$$

$$s_k(\theta) = z_k - H_k(\theta) \delta_k(\theta).$$

The significant point for us here is that the sequential processing algorithm (8) is clearly simpler to work with than the algorithm (11)—at least given the appropriate filter bank in each case. It is certainly less effort to calculate $[\Omega_j(\theta)]^{-1}$ than $[\Omega_k(\theta)]^{-1}$ and again it is certainly less effort to calculate $\sum_j [s_j(\theta)] [\Omega_j(\theta)]^{-1} [s_j(\theta)]' + [\Omega_k(\theta)]^{-1}$ than $[\Omega_k(\theta)]^{-1}$ terms. For the case when the $s_j(\theta)$ are scalar and $r = m$ the memory saving is m versus m^2 and the computation saving is $2m$ versus $m(m + 1)$.

III. DISCUSSION

We conclude that sequential processing for adaptive estimation is more efficient than the corresponding simultaneous processing algorithms—at least when the sequential filtering algorithms are no less efficient than the simultaneous filtering algorithms. Of course when the sequential filtering algorithms are less efficient, there is a tradeoff involved, the details of which will be omitted here.

REFERENCES

