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SOLUTION OF A TIME-VARYING WIENER
FILTERING PROBLEM

The problem is considered of optimally estimating a signal
s(r) when measurements :(r) = s(t) + n(f) are avadable, n(f)
denoting white noise. The covariances of .\(I) and n(r) are
known, thus distinguishing the problem formulation from
that of Kalman and Bucy, where knowledge IS assumed of a
dynamical sy;tem gcneratmg ~(t) when driven by white noise.

It is often assumed that the filtering theory of Kalman and
Bucyl is nothing more than the Wiener theoryz extended to
cover time-varying systems, nonstationary stochastic pro-
cesses and initial times that are not necessarily minus infinity.
Although the general truth of such an assumption will usually
be acknowledged, it is important to realise that there are
situations where the parallels are not complete. One such
situation is considered here.

We assume given measurements z(t) of a signal s(r) cor-
rupted by independent white noise n(f); thus

Z(t)= $(l)+ n(r) . . . . . . . , . (1)

In eqn. 1, z(.), s(. ) and n(. ) are all mvectors. The noise has
zero mean and covariance

E{n(t)n’(7)} = R(f)8(f -- -r) . . . Q)

where it is assumed that R(l) is positive-definite for all t.
Both the theories referred to above examine the problem of
optimally estimating s(t) given measurements z(7), f.< -r< t,
and in both cases information about s(t) is known.

The Wiener theory generally specifies a power spectral
density for s(t), whereas the Kalman-Bucy theory generally
specifies a linear finite-dimensional dynamic systetn which,
when driven by white noise, has output s(r). Knowledge of
this system allows calculation of the covariance of s(t), but
knowledge of the covariance of s(t) above does not readily
lead to a knowledge of the dynamical system. Yet knowledge
of this dynamical system is necessary to apply the Kalman–
Bucy theory.

The conclusion is that the natural generalisation of the
Wiener problem, namely the estimation of s(t) given z(t),
E{s(I)s’(T)} and E{n(r)n’(T)} is only solvable by the standard
Kalman–Bucy procedures if one can solve the time-varying
spectral-factorisation problem; i.e. if one can pass from a
covariance to a system generating that covariaoce when
driven by white noise.

The difficulty of the time-varying spectral-factorisation
problem has been known for a long time (see, for example,
Reference 3 for a survey of earlier attempts). Among more
recent results in the area, Reference 4 can be consulted; this
Reference reduces the spectral-factorisation problem under
certain circumstances to solving a matrix Riccati equation,
evidently indicating that the problem is of similar difficulty
to the optimal-filtering problem.

In this letter, we shall show how the spectral-factorisation
procedure and the standard Kalman-Bucy filtering theory
can be bypassed with the aid of the whitening-filter concepts
Complete solution of the optimal-filtering problem as hitherto
discussed requires the solving of two separate problems:
spectral factorisation and design of a Kalman–Bucy filter. Use
of the whitening filter allows design of an optimal filter with
no more difficulty than is required in solving either the
spectral-factorisation problem or the Kalman–Bucy filter
problem.

We assume that the covariance of S(. ) is given as

E{s(t)s’(T)} = A ‘(t) B(T)@ – T) + B’(I)A(T)I(T – t) . (3)

where A(. ) and B(. ) are n x m matrix functions of time.
The separability of the functions multiplying l(t - T) and
1(7 – 1) corresponds to an assumption that S(. ) is generated
by driving some unspecified linear, finite-dimensional,
dynamical system with white noise.

Because the noise n(”) is independent of S( ~),

E{z(t)z’(T)} = i?([)8(f – T) + A ‘(t) B(T)l(t – T)

+ ~’(t)~(T)~(T – t) . . . . . (4)

Let us now distinguish between various filtering problems
in terms of the time intervals over which filtering is required;

we shall consider three possible time intervals: [to, T], [to,m)
and ( -- m, m), where to and T are fixed values of time. For
the infinite-interval problem, it proves useful to rewrite
eqn. 4 as

E{z(t)z’(T)} = R(f)8(t – T) + If ’( f)@(t, T)K(T)l(f -- T)

+ ~’(f)@’(T, t) ff(T) . . . . (5)

where @(. , .) is the transition matrix of x = Fx and F is
either completely arbitrary or satisfies certain properties
(e.g. boundedness), but is otherwise arbitrary. Procedures for
rewriting eqn. 4 in the form of eqn. 5 are well known; we
shall, however, have occasion to refer subsequently to the
methods of Silverman. b, * Note that eqn. 4 is itself a special

case of eqn. 5, corresponding to @(t, T) = I and F -.: 0.
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Fig. 1 Whitening filter

The whitening filter for z() is a filter whose input is z()
and whose output is white noise. Such a filter is shown in
Fig. 1. The matrices I and H are as in eqn. 5; the matrix G
is given by (Reference 5)

G==(K-IIM)R-l . . . . . (6)

with ~ given by

Ii .. 11(F’ . HR ‘1~’) .;. (F.. K~-1~’)11

+ lIHR--lH’l I + KR-lK’ . (7cz)

H(r(J=o . . . . . . . . . (7b)

The initial state x,,,(tO) of the whitening filter is zero.
With F, G and H bounded on [ro, T], existence of a solution

to eqn. 7a is guaranteed (Reference 5). If F, G, H, R and R -1
are bounded on [Zo, m) [or ( – m, co)], F is asymptotically
stable and [F, H’] is uniformly completely observable, the
solution of eqn. 7a exists and is bounded for all time, and the
whitening filter is asymptotically stables

Note that, with the procedures of Silverman,G, * passage
from eqn. 4 to eqn. 5 with F bounded, asymptotically stable
etc. is possible, provided that A(. ) and B(. ) satisfy certain
conditions presented explicitly elsewhere. *

In Reference 7 the following very important fact is estab-
lished: The state xH,(t) of the whitening filter is the optimal
estimate of the state x(t) of the dynamical system

X= FX+GU . . . . . . . . . (8a)

y = H’x . . . . . . . . . . . (8b)

with ~{ U(t) U’(T)} = z8(t -- T); moreover J??{y(t)y‘(r)}
== ~{S(t)S’(T)}.

As a consequence, the signal Iabelled ~(t)in the Figure is a
best estimate of s(t), and the filtering problem is thereby
solved.

In summary, the estimation of a noisy signal has been
considered where the covariances of the noise and uncon-
taminated signal have been individually specified. Problem
specialisations require the noise to be white and the signal
to be derived from the output of a finite-dimensional system
excited by white noise. On employing the concept of a
whitening filter, it is found that the optimal estimate of the
signal is present within the whitening filter, the derivation of
which requires the solution of a matrix Riccati equation.

Finally, note that the direct feedthrough block’ I and
multiplier R– 1/2 of the Figure are unrequited for the deter-
mination of s(t).

Application of the ideas presented above is made in

* SILVERMAN, I M : ‘Synthesis of Impulse wsponse matrices by internally stable
and pawve rtxkatiom’, submitted for publication



Reference 8, where the problem is considered of optimally
estimating the differential coefficient of a signal; the measure-
ment of the signal includes corrupting noise.
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