
Reprinted from Electronics Letters, Vol. 3, No, 11, November 1967

TRANSIENT RESPONSE OF A CLASS OF
NONLINEAR SYSTEMS

An algorithm is given to be used in conjunction with the
parameter-plane method and the describing-function method
for rapid calculation of transient oscillations in the design of
a class of nonlinear systems.

This letter gives a straightforward algorithm for plotting the
zero-input response of a class of nonlinear systems with
arbitrary initial conditions.

The classes of nonlinear systems considered are those for
which the stability of self-excited oscillations are determined
by the nonlinear differential equation

C(s).x+B(S)F(X)- o . . . . . (1)

where s =-=d/dt, C(s) and B(s) are polynomials in s with the
degree of C(s) being higher than the degree of B(s), and the
function F(x) represents the nonlinearity. It will be assumed
that the relative stability of nonlinear control systems
described by eqn. 1 may be studied in the parameter plane
using the approach of Krylov and Bogoliubov and the
describing-function method. 1-3On the basis of this approach,
the nonlinear function F(x) is ‘linearised’ as

F(x)= N1(/4)x . . . . . . (2)

where

[3)

The linearised differential equation corresponding to eqn. 1
is thus

{C(s) -j- B(S)IV1(A)}X = O . . . . . (4)

The advantage of using the parameter-plane approach in
conjunction with the describing-function method is that
insight is given as to the effects of the various parameters on
transient behaviour in the preliminary stages of design.3 Also,
any system adjustable parameters may be selected, when
possible, so that the system equation (eqn, 4) may be approxi-
mated to by an equivalent second-order nonlinear system

[s’ – 2qt)s } {ii(f))’ -+ {ti(r)y]x o . . (5)

which has the desired transient characteristic. The values of
G(t) and ti~t) are determined from A(t) and the functions 6(A)
and ti(A). The functions 6(.4) and ti(A) arc determined using
the nonlinearity characteristics N](A), together with the
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parameter-plane constant u and o contours or the constant
~ and concontours, where u == w,,~ and u = CO,,ti(l - L2).’

It is the purpose of this letter to develop a straightforward
algorithm for calculating A(f), and thus the solution x(t) of
eqn. 5, for any specified initial conditions given 6(A) and
fi(,4). The solution x(r) may then be used as an approxi-
mation to the solution of the corresponding equation (eqn. 4).
The developments are extensions of the methods of Grensted.4

Solutions of eqn. 5 are assumed to have the form

.x(r) =- A(t) sin ~(i) . . . . . . (6)

where

dA d+

dt
-=crl Aand-=wl . . . . . .

dt
(7)

i.e. solutions of eqn. 5 are given by

Substituting eqn. 8 into eqn. 5 results in two equations valid
for all A, i.e.

al + u, ‘ — 2C7U1—U;+62+C 7=0 (9a)

2u, clJ1+ h, – 260J, = o . . (9b)

If the assumption is made that ~ = ~ = O, eqns. 9a and b
yield crl == 6, U1 = &J,as in the Krylov-Bogoliubov analysis.
By not neglecting the ; and i terms of eqns. 9a and b,
improved results are obtained. The equations may be re-
written neglecting second-order terms, giving crl and co, in
terms of 6, ti, ~ and &, i.e.

In order to calculate the constants A, and ~. of eqn. 8,
consider its time derivative; i.e.
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Fig. 1 Parameter-plane diagram
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Fig. 2 System response

Assuming that the boundary conditions of eqn. 5 are given
as X(to) = X. and ~(to) = O, eqns. 8 and 11 give #Jo and
A. as

r#o=tan-l%Ao =*. . . . (12)

Thus lo and A. may be calculated from eqns. 12 and 10 using
estimations for i and ~ (perhaps just taken as zero), and the
transient oscillations may be determined from eqn. 8 using
the following algorithm:

(b)
(c)

(a) Read in 6(A), CZ(A) curves and initial values of OJl and
u,, and the values of XOand a suitable At.
Calculate #Joand A. using eqn 12. Let t = At, n = O.
Calculate An+l=A. exp{al(A.)} At; 4.+l=L+coI(AM
and Xn+l = A.+l sin (#Jn+l). Plot x.+1, A.+1, t. ~t

t = t + At and let n = n + 1. Calculate UI(AJ, OJIL%)
from the input data, An and eqn. 10, where i = {a(A.)
– @An_l)}/At and 8 = {6(4J – 6(4- J}/At.

(d) Repeat step (c) until a sufficient portion of the transient
oscillations are calculated.

Example: For the system equation

[s4 + 36s3 + 335s2 + {300 + 15KN1(A)}s + 300K] X = O

. . . . (13)

the a~parameter-plane diagram is in Fig. 1, where a == K and
~== KN1(A). The design problem is to select K and N1(.4)
so that the transient oscillations have less than 15~0overshoot
for initial values of x from x = O to x == 10, and the ‘fall’
time and settling time are to be as short as possible. This
quasioptimisation problem has been solved in the parameter
plane using a value of 525 for K and choosing N1(’zOcorre-
sponding to a saturating element (see the M locus of Fig. 1).
The solution x(t) of eqn. 13 may be calculated approximately
using the parameter-plane diagram information and the
algorithm above. This has been done for three sets of initial
conditions and the results are plotted in Fig. 2. Various
responses of a second-order linear system are also given in
Fig. 2 for comparison. The exact response of eqn. 13 for the
case of Fig. 1 is given, to within a few percent, by the approxi-
mate responses of Fig. 2. Other cases have been calculated
with a similar accuracy, including one in which two non-
linearities were involved. Extensions to the case when the M
locus enters the part of the parameter plane for which the
dominant roots are real are readily mad;.

We comment that, for the second-order nonlinear system
(eqn. 5), it is possible to determine the response from the
location of the roots and the time derivative of the location
of the roots to a high degree of approximation, if the cal-
culations of r#o and A. (eqn. 12) are sufficiently good. This
result, together with the parameter-plane method, forms the
basis of useful approximate design procedures for higher-
order systems.

J. B. MOORE 10th October 1967
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