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TOLERANCE OF NON LINEARITIES
IN TIME-VARYING OPTIMAL SYSTEMS

Nominally linear optimal-control regulating systems are
examined with a view to assessing the amount of nonlinearity
which can be tolerated in the input transducer. Using a suit-
able. Lyapunov function, it is found that a large degree of
nonlinearity will not disturb the stabdlty of the system.

In this letter, it is shown that, in a nominally linear, optimal,
time-varying control system, a large amount of nonlinearity
may be tolerated at the input transducer. The result thus
parallels a corresponding result for time-invariant systems. *

Consider a linear system (x the state vector, u the input
vector)

x= Fx+Gu . . . . . . . . . (1)

with F and G in general time varying, together with a per-
formance index

J~ (XO, t~, U) = ~U’U + x’Qx)dt . . . . . (2)
fo

Here Q = Q’ is nonnegative definite. It is moreover assumed
that the pair [F, G] is uniformly completely controllable
(Reference 1), and that the pair [F, H], where His any matrix
such that HH, is uniformly completely observable (Reference
1). (These conditions are placed on the problem to ensure
existence of a control law for the infinite time minimisation
problem, together with the stability of that law.) As shown in
Reference 1, there is a control law

u=—K’x . . . . . . . . . . (3)

which minimises eqn. 2. The matrix K is defined by

K= PG . . . . . . . . . . . (4)

where P in turn is defined as the solution of

–P=PF+F’p–pGGrP+Q . . . (5a)

with the initial condition

lim P(T)=O. . . . . . . . . (5b)
T+cc

The matrix P is, of course, time varying; it is also symmetric
and satisfies

%z>P(t)>%I>o . . . . . . . (6)

for all t and some positive al, a2, provided Q(. ) is bounded.

* hroow, 1.B., and ANDERSON, B. D. 0.:
Popov criterion, unpublished

‘Application of the multidimensional

One can conceive of the system input u being generated by
some transducer, which in practical situations may be the
part of the system most likely to be nonlinear. In any case,
suppose that u, instead of being given by eqn. 3, is given by

u= —+K’x —+.... . . ...(7)

where ~ is a nonlinear vector function of K’x, satisfying

u’~(~) >0 with u = K’x U7$ 0.... (8)

This is a natural generalisation of a typical Popov sector
condition, and may well be a result of relations restricting the
ith components, cri and I/Ii, of the vectors o and ~:

+,(U) = +i(”i) foralli . . . (9a)

OiIJi(CJ)>0 when Ui # O, for all i . . . (9b)

With u as in eqn. 7, stability of the closed-loop system can be
demonstrated by taking as a Lyapunov function

V(x, t) = x’(t)P(t)x(l) . . . . . . . (lo)

Relations 6 guarantee that V fulfills the necessary require-
ments to establish stability (Reference 2). Also,

~ = (x’F’ – ~x’KG’ – #’G)Px + X’~X

+ x’P(Fx

Substituting for P using eqn. 5a, and
leads to

~ = – X’QX – 2#’(K’x) . .

– +GK’x – G+) (11)

making use of eqn. 4

. . . . . (12)

Eqn. 8 guarantees that ~ is nonpositive, and thus stability of
the closed-loop system follows. More refined arguments can
presumably be used to establish conditions for asymptotic
stability, which of course can normally be expected to prevaii
in view of the demonstration of stability, except in certain
limiting situations.
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