
1

Majority Logic Coding and its Multinomial Representation
John B. Moore and Keng T. Tan

Abstract—

Multinomial representations are derived for majority logic op-

erations on bipolar binary data. The coefficients are given simply

in terms of the readily computed lower Cholesky factor of Pascal

Matrices of order n for codes of block length n.

Sufficient conditions on majority logic codes having no deter-

ministic errors introduced in the majority logic coding and ma-

jority logic decoding process are given in terms of the multino-

mial coefficients and codewords. These are used to guarantee

that certain majority logic codes based on Hadamard matrices,

Rademacher matrices and pseudo-random bipolar sequences have

no deterministic coding/decoding errors.

Building on this work, a novel majority logic coding scheme

is proposed which comprises a first stage of linear coding with

its own spreading factor, followed by a second stage of majority

logic coding with its own spreading factor, and a majority logic

based decoding to recover the data.

I. Introduction

Majority voting on binary data is the basis of certain non-
linear block coding schemes in communication systems. The
majority logic operation is used in both the coding and decod-
ing operations. Because of the nonlinearity of the operation,
there is difficulty in predicting system performance, or seeing
how to improve system performance. A crucial tool in this task
is a multinomial representation of the majority logic operation.

A multinomial expansion for majority logic has been partially
studied in [1], [2], and the results applied in various communica-
tion contexts. General formulas for the first and last coefficients
in the expansion are stated, and for bipolar binary vectors of
length n, it is claimed that the even numbered coefficients are
zero for n even, but we know of no sources which give other
coefficients.

Here, we first give a complete theory for the multinomial rep-
resentations of majority logic operations on bipolar binary data.
The majority logic operation can be a classic sign function of
the sum of the binary data, as studied in the earlier literature
known to us. Perhaps more usefully, we also give a theory for
what we term here sign± functions. These are sign operations
where an output of 0 is replaced by +1 or −1. The approach
extends to other nonlinear functions of the sum of binary data,
such as to sigmoidal functions used in artificial neural networks.
It also extends to arbitrary nonlinear functions of bipolar binary
data vectors that are invariant of the order of the data within
the vector.

The coefficients of the multinomial expansion are linear in
what we call a generalized Pascal matrix, which can be factored
in terms of the lower triangular Cholesky factor, denoted here
Pn, of a Pascal matrix of order n. The ‘new’ results are gen-
eralizations of the classical results. It would not be surprising
if at least some of the results were known by Pascal, but the
motivation for deriving them, or highlighting them, is coming
from applications of nonlinear coding for next generation wire-
less communications.

The explicit multinomial representations for majority logic
are applied first to majority logic based coding and decoding

The Department of Information Engineering, Research School of Information

Sciences and Engineering,The Australian National University, Canberra, ACT

0200, Australia, john.moore@anu.edu.au, and a.tan@ecu.edu.au. The work has

partial support from the Earmarked RGC grant CUHK 4227/00E and the Aus-

tralian Research Grants Committee Discovery grant A00105829

schemes. Such schemes have been proposed in the literature
[3], [4], [5], [6], [7], but theory guaranteeing that proposed code
classes lead to error free communication in the noise-free chan-
nel case has been limited. Here we develop sufficient conditions
based on a diagonal dominance condition of matrices derived
from a code matrix and the multinomial coefficients. The con-
dition is applied to codes based on Hadamard and Rademacher
matrices, and pseudo-random PN sequences, leading to new re-
sults in some cases.

A novel majority logic coding scheme is proposed which com-
prises a first stage of linear coding with its own spreading factor,
followed by a second stage of majority logic coding with an ad-
ditional spreading factor. This doubly coded data is recovered
by a majority logic based decoding. The first linear stage can
be simply an augmentation of parity bits.

In Section II, the new results on multinomial expansions of
majority logic functions are derived. In Section III, these results
are applied to majority logic based nonlinear block coding. In
Section IV, the estimation of partial products of data are pre-
sented, and new coding algorithms based on these are proposed
in Section V. A diagonal dominance codeword condition and its
application is presented in Section VI. In Section VII, numeri-
cal results of the schemes analyzed in this paper are presented.
Conclusions are drawn in Section VIII.

II. The Pascal matrix and a multinomial expansion

In this section, we review background material on classical
results in order to set up notation for the main results of the
following sections.

Our results concern nonlinear operations on a data n-vector
a = [a1, a2, . . . , an]′ with ai ∈ {+1,−1}. Now any nonlinear
function of a belongs to a finite discrete set of no more than
2n elements. Indeed, such functions are linear in an indicator
2n-vector Y ∈ {e1, e2, . . . , en}, where ei is a zero 2n-vector save
that the ith element is unity.

Our new results concern nonlinear operations that are invari-
ant of any ordering in the data, such as functions of

∑n

i=1 ai,∏n

i=1 ai,or of
∏n

i=1(1 + ai). In this case, the functions belong
to a discrete set of at most n + 1 elements.

Our focus is on (nonlinear) majority logic functions involving
sign operations on sums of partial products ai, which map one-
to-one to the data vector. The resulting representations are
termed multinomial representations.

A. Multinomial representation for majority logic

A.1 Nonlinear functions and majority logic

Consider the sign function definition.

sign(x) :=





1 if x > 0
0 if x = 0

−1 if x < 0
. (1)

Let us also introduce derivative definitions, denoted sign+ and
sign− as

sgn±(x) :=





1 if x > 0
±1 if x = 0
−1 if x < 0

. (2)

Consider now a set of n bipolar binary digits {a1, a2, . . . , an},
that is where ai ∈ {+1,−1}. The majority logic operation

2

on this n-block of data is simply sign∗(
∑n

1 ai), where we have
used sign∗ to denote either sign, sign+ or sign−. The latter
two options can be used if the output of the logic operation is
constrained to be also bipolar binary.

A.2 Multinomial representation

Early literature [1][2], presents a multinomial representation
for the majority logic sign operation, which we here also mildly
generalize as

sign∗(
n∑

i=1

ai) = ρ0 + ρ1

n∑

i=1

ai + ρ2

∑

all i>j

aiaj

+ρ3

∑

all i>j>k

aiajak + · · · + ρn

n∏

i=1

ai. (3)

for suitable selections of coefficients ρ := [ρ0, ρ1, . . . , ρn]′, which
will depend on which of the sign operations is used. The selec-
tion of the coefficients and their properties is the study of this
paper.

Of course, the nonlinear function
∏n

i=1(1 + ai) has a multi-
nomial expansion given by the right hand side of (3) with coef-
ficients ρ = [1 1 . . . 1]. The mapping from the set {ai} to the
set of the sums of products in (3) via the coefficients of the ρi,
is known to be one to one.

The earlier work has given specific formulas for the coef-
ficients ρ0, ρ1, ρn of (3) in terms of permutation operations
nCi = n!

i!(n−i)!
, at least for the case of the classic sign func-

tion. It is also noted in the early work that in this case ρi = 0
for n, i even, but other coefficients have not been studied to our
knowledge.

In our applications of such expansions, it is important to
have readily calculated coefficients for all the coefficients ρi,
and to see relationships between them in order to understand
experimentally observed relationships in majority logic cod-
ing/decoding for communication systems.

In order to proceed, we first review relevant results of the
Pascal matrix.

B. The lower Cholesky factor of the Pascal matrix

The well known (second) Pascal matrix, is a lower Cholesky
factor of the original (first) Pascal matrix. We will refer to this
(second) Pascal matrix simply as the Pascal matrix, and use
the notation Pn = (pi,j

n) for an n × n such matrix. Its ele-
ments, for i, j = 1, 2, . . . , n are defined in terms of the binomial
coefficients , so that the i, j element for i ≤ j is

pi,j
n = (−1)j−1.i−1Cj−1 :=

(−1)j−1(i − 1)!

(j − 1)!(i − j)!
, for i ≥ j. (4)

The key property which we exploit subsequently is that Pn is
involutary in that

Pn = P−1
n , PnPn = In. (5)

We see that Pn has the form,

Pn =




1 0 0 0 0 0 · ·
1 −1 0 0 0 0 · ·
1 −2 1 0 0 0 · ·
1 −3 3 −1 0 0 · ·
1 −4 6 −4 1 0 · ·
· · · · · · · ·

(n−1)C0
(n−1)C1

(n−1)C2 · · · · (n−1)Cn




.

(6)

Pascal′s equation allows an alternative construction for Pn

as,

p1,1
n := 1, p2,1

n := 1, p2,2
n := −1,

pi+1,j
n := pi,j

n + pi,j−1
n for i = 3, 4, . . . , n,

pi,j
n := 0, for i = j + 1, j + 2, . . . , n. (7)

Indeed, this recursion allows an induction argument to readily
confirm the involutary property of Pn.

III. Multinomial coefficients

To lead into the derivations of our main results for this sec-
tion, consider the polynomials (s − 1)i for i = 0, 1, 2, . . . , n for
some nonnegative integer n and scalar s. Now using the defini-
tion of the Pascal matrix, it is easily verified that




(s − 1)0sn

(s − 1)1sn−1

·
·

(s − 1)ns0




= Pn+1




sn

sn−1

·
·
s0




. (8)

A. A generalized Pascal matrix

Now consider the multinomial (3) for all possible polar binary
sequences {a1, a2, · · · , an}. Clearly, the expansion is invariant
of the ordering of the ai, so that there are only n+1 selections,
namely where there are k = 0, 1, 2, · · · , n values of ai = 1, with
correspondingly n − k = 0, 1, · · · , n values of ai = −1. Indeed
the terms involving sums of products of the ai in (3) are given,
for each k = 0, 1, 2, · · · , n, as the coefficients of the expansion
(s−1)k(s+1)n−k. A useful generalization of (8) is then readily
established as




(s − 1)0(s + 1)n

(s − 1)1(s + 1)n−1

·
·

(s − 1)n(s + 1)0




= Rn+1




sn

sn−1

·
·

s0




, (9)

for some readily calculated (n + 1) × (n + 1) matrix Rn+1 :=
(ri,j) consisting of elements ri,j , and termed here a generalized

Pascal matrix. In particular, the ith row of Rn+1 consists of the
sums of products of the ai in (3), for k values of ai = 1, with
correspondingly n−k values of ai = −1, and are the coefficients
of the polynomial (s − 1)k+1(s + 1)n−k+1.

For reference, the cases for n = 1, 2, 3, 4 are spelt out as,

R2 =

[
1 1
1 −1

]
(10)

R3 =




1 2 1
1 0 −1
1 −2 1


 (11)

R4 =




1 3 3 1
1 1 −1 −1
1 −1 −1 1
1 −3 3 −1


 (12)

R5 =




1 4 6 4 1
1 2 0 −2 −1
1 0 −2 0 1
1 −2 0 2 −1
1 −4 6 −4 1


 (13)

3

A recursive relationship between the elements of Rk+1, and
that of Rk, being a generalization of Pascal’s equations, are
given for k = 3, 4, · · · , n, initialized by (10),as

ri,1
k+1 := 1, for i = 1, 2, · · · , k + 1

ri,j
k+1 := ri,j

k + ri,j−1
k , for j = 2, 3, · · · , k + 1

rk+1,j
k+1 := rk,j

k − rk,j−1
k , for j = 2, 3, · · · , k + 1

(14)

This result is proved in a straightforward manner by induction,
and is not spelt out here.

B. Coefficients via the generalized Pascal matrix

As already noted, the multinomial (3), for each possible
a1, a2, · · · , an selection, is invariant of the ordering of the ai,
and there are then but n + 1 possible multinomials. These can
then be organized as,

s∗ :=




sign∗(n)
sign∗(n − 2)

·
·

sign∗(−n)


 = Rn+1




ρ0

ρ1

·
·

ρn


 = Rn+1ρ. (15)

This relationship means that the desired coefficients are the
solutions of a linear equation as emphasized in the lemma.

Lemma III.1: The multinomial representation of the sign∗

function of (3) has coefficients ρ satisfying the linear equations
(15), restated as,

Rn+1ρ = s∗, (16)

where Rn, the generalized Pascal matrix, is defined recursively
in (10), and(14).

C. Inverse and decomposition of the generalized Pascal matrix

The nature of the inverse of Rn+1 now assumes importance.
We next develop our second main result, namely that Rn has a
factorization in terms of the Pascal matrix Pn, and inherits the
involutary property to within a scaling. In particular, we claim,

Lemma III.2: The generalized Pascal matrix Rn, as defined
recursively in (10), and(14), has the scaled involutary property

R2
n = 2n−1In, R−1

n = 21−nRn. (17)

Proof: This result follows by induction arguments. We work
with matrices in lower triangular form. First define Fn as the
matrix Pn flipped both left to right and top to bottom. In
obvious notation, we write,

Fn := flip(Pn), or f i,j
n = pn−i,n−j

n . (18)

Also, define diagonal matrices, in obvious notation, as

Dn := diag{20, 21, 22, · · · , 2n−1}, Sn := diag(Pn). (19)

To proceed with the lemma proof, a decomposition lemma is
now stated and proved,

Lemma III.3: The generalized Pascal matrix Rn, as defined
recursively in (10) and(14), has the decomposition in terms of
triangular and diagonal matrices as

Rn = 2n−1SnFnD−1
n Pn = PnDnFnSn. (20)

Proof: This follows by induction, which is relatively straight-
forward because only upper or lower triangular matrices are in-
volved. Our approach is guided by keeping in mind the connec-
tion of the matrix elements with polynomial coefficients. Thus

an equivalent result to (20) is to post-multiply by the vector
[sn−1sn−2 . . . s0]′ and apply both (8) and (9) so that,




(s − 1)0(s + 1)n−1

(s − 1)1(s + 1)n−2

·
·

(s − 1)n−1(s + 1)0




= Pn




20(s + 1)n

21(s + 1)n−1

·
·

2n−1(s + 1)0




,

= Fn




(2s)n−1(s + 1)0

(2s)n−2(s + 1)1

·
·

(2s)0(s − 1)n−1




.

These equations are now in a form that they can be verified by
straightforward induction arguments. The pattern of the argu-
ment becomes clear in passing from n = 1 to n = 2, and n = 2
to n = 3, so that passing from n to n+1 is then straightforward.
It is necessary to exploit the Pascal equations which are inher-
ent in the Pascal matrix Pn construction, and suitably adjusted
for the ‘flipped’ version Fn. Further details are omitted.

�

The proof of (17) follows from (20) by substitution and noting
in turn that Sn, Pn, Fn are each readily verified as involutary.
Thus,

(Rn)(Rn) = (PnDnFnSn)(2n−1SnFnD−1
n Pn),

= 2n−1PnDnFnFnD−1
n Pn,

= 2n−1PnDnD−1
n Pn,

= 2n−1PnPn,

= 2n−1In.

�

D. Coefficients from columns of the generalized Pascal matrix

The above LemmasIII.1, III.2 together give our main section
result stated as a theorem.

Theorem III.1: The multinomial representation of the sign∗

function of (3) has coefficients ρ satisfying the linear equations
(15), restated as,

ρ = 2−nRn+1s∗. (21)

where Rn, the generalized Pascal matrix, is defined recursively
in (10), and (14), and satisfies (20) and (17).

This result means that matrix inverses are avoided in calcu-
lating coefficients. This becomes significant for large n.

This result for sign∗(sum) functions generalizes trivially to
any nonlinear function f(a1, a2, . . . , an) which is invariant of the
ordering of the ai. The s∗ vector is then replaced by a vector
with jth element f(−1,−1, . . . , 1, 1, 1, . . . , 1), where there are j
elements of the data set being −1, and n − j unity elements.

For completeness, we tabulate the coefficients for low n. Spe-
cific relationships between the coefficients are clear from the
tables and can be proved by induction arguments, as follows.

In Table I, for the sign operation,

ρ
(n)
i = 0, for i = 0, 1, 3, . . . and all n,

ρ
(n)
i = ρ

(n−1)
i , for all i and n = 3, 5, . . . ,

sign(ρ
(n)
i) = −1, for all n and i = 3, 7, 11, . . . ,

sign(ρ
(n)
i) = 1, for all n and i = 1, 5, 9 . . . , (22)

4

n=2 n=3 n=4 n=5 n=6 n=7 n=8
ρ0 0 0 0 0 0 0 0
ρ1

1
2

1
2

3
8

3
8

5
16

5
16

35
128

ρ2 0 0 0 0 0 0 0
ρ3 0 − 1

2
− 1

8
− 1

8
− 5

80
− 5

80
− 5

128

ρ4 0 0 0 0 0 0 0
ρ5 0 0 0 3

8
5
80

5
80

3
128

ρ6 0 0 0 0 0 0 0
ρ7 0 0 0 0 0 − 5

16
− 5

128

TABLE I

Table for sign function multinomial coefficients.

n=2 n=3 n=4 n=5 n=6 n=7 n=8
ρ0

1
2

0 3
8

0 5
16

0 35
128

ρ1
1
2

1
2

3
8

3
8

5
16

5
16

35
128

ρ2 − 1
2

0 − 1
8

0 − 5
80

0 − 5
128

ρ3 0 − 1
2

− 1
8

− 1
8

− 5
80

− 5
80

− 5
128

ρ4 0 0 3
8

0 5
80

0 3
128

ρ5 0 0 0 3
8

5
80

5
80

3
128

ρ6 0 0 0 0 − 5
16

0 − 5
128

ρ7 0 0 0 0 0 − 5
16

− 5
128

ρ8 0 0 0 0 0 0 35
128

TABLE II

Table for sign+ function multinomial coefficients.

and in Table II, for the sign+ operation,

ρ
(n)
i = 0, for i = 1, 3, . . . and n = 3, 5, . . . ,

ρ
(n)
i = ρ

(n−1)
i , for all i and n = 3, 5, . . . ,

ρ
(n)
i = ρ

(n)
i−1, for i = 1, 3, . . . and n = 3, 5, . . . ,

sign(ρ
(n)
i) = +1, for all n and i = 0, 1, 4, 5, 8, 9 . . . ,

sign(ρ
(n)
i) = 1, for all n and i = 2, 3, 6, 7, 10, 11, . . . ,

(23)

For the case of odd n, there is symmetry in the coefficients.
Indeed for this case the coefficients for sign and sign+ are iden-
tical (since then sign+ ≡ sign).

We see that Table II can be constructed using these various
properties and the entries in Table I. Moreover, all coefficients
can be constructed from the subset of Table I, namely the ρn

i

for i, n odd, i < n/2.
It is readily seen that for n > 2, and either coefficient selec-

tion, in obvious notation, then
∑n+1

i=1 Pn+1(n, i)ρ
(n)
i−1 = −1, and∑n+1

i=1 Pn+1(n − 1, i)ρ
(n)
i−1 = 0. There are other products of the

rows of Pn and ρ vectors which are also 0 or 1 not spelt out.
The generalized Pascal Matrix is the key to the coefficients.

It is worth pointing out that although this matrix is not or-
thogonal, yet induction arguments show that all odd rows are
orthogonal to all even rows, so that RnR′

n has zero i, j entries
where i is even and j is odd.

IV. Majority logic coding and decoding

In this section, we first recall known majority logic coding and
decoding algorithms, for which we now have complete multino-
mial representations. Building on these results, new majority
logic coding algorithms and useful code properties are presented
in the following two sections.

A. Majority logic coding

In communication systems based on majority logic coding and
decoding, the multinomial expansion (3) represents the base-
band transmitted signal. The ai of (3) are the product of polar
binary message data di, and associated known time functions
Xi(t)|t ∈ [0, T) defined over a time interval [0, T) and derived
from `-vector binary codewords, denoted Xi.

Consider a data row vector d := [d1 d2 . . . dn] and codewords
as row vectors of length `, as Xi. Denote a code matrix X as an
n× ` matrix with rows Xi. The time functions representing the
encoded data for baseband transmission, are constant within
(equal) time slots called chips. They are defined over a time
interval T of ` ≥ n chips. In this case the coded transmitted
signals are, in continuous time s∗(·), or in discrete time s∗ :=
[s1 s2 . . . s`],

s∗(t) : = sign∗

(
n∑

i=1

diXi(t)

)
,

s∗ : = sign∗(dX). (24)

Notice that for n even, then application of the sign function
leads to ternary transmitted signals, but for n odd they are
polar binary, as for the sign± for all n. The simplicity of the
majority logic encoding operation is a key virtue, which also
carries over to the decoding operation.

Consider the multinomial expansion for s and for s± in the
discrete time case, namely (3) with the ai replaced by dXi. The
coefficients are the same for n odd, see also the Tables I and II.
In the case n even, and with X orthogonal in that XX ′ = In,
the coefficient squared of each component represents the energy
contribution from each component. For the sign case, si can be
zero and still carry information, and there is no transmission of
the product d1d2 · · · dn.

B. Majority logic decoding

At the receiver, the received signal r(t) is the transmitted
signal plus added noise w(t), as r(t) = s∗(t) + w(t). For de-
coding to estimate di, one can work with an optimal maximum

likelihood decoder, but the complexity grows as 2n, since there
must be a decorrelation for each of the 2n possible data sets
d1, d2, . . . , dn.

There is incentive then to consider a much simpler decoding
process termed a majority logic decoding, as

d̂i := sign+

(∫ T

0

(r(t) − ρ0)

nρ1
Xi(t)dt

)
. (25)

Here, we use sign+, rather than sign∗ to ensure that the esti-
mate is bipolar binary.

Experimentally, despite the danger of losing information in
the majority logic operations of the coding and decoding pro-
cess there are codes, termed majority logic codes, which achieve
error-free decoding in the noise free case, in that d̂i = di when
r(t) = s∗(t). Moreover, in the added noise case, for suffi-
ciently small noise, the sign∗ operation preserves error free cod-
ing/decoding in that d̂i = di. How can such codes work? How
can such codes be constructed and optimized? How can the
decoding of such nonlinear codes be simplified?

C. Error-free decoding in the noise-free case

Different majority logic codes achieve differing robustness to
noise, but in order to be considered at all, it is a usual require-
ment that they have no deterministic errors. That is, denoting
a matrix D of all 2n possible bipolar data Di in its rows, then

D = sign±

(
sign∗(DX)X ′) . (26)

5

This equations (26) can be used to search for suitable codes,
in that random or other selections of X can be tested for suit-
ability.

A simply proved, but very useful result is the following,
Lemma IV.1: Consider a code matrix X which achieves error

free majority logic coding and decoding in the noise-free case,
in that (26) holds. Then any signed row or column permuta-
tion of this matrix preserves this property of no deterministic
coding errors. That is, denoting signed permutation matrices
of dimension n as Πn,

D = sign±

(
sign∗(D[ΠnXΠ`])[ΠnXΠ`]

′) . (27)

Moreover, any one n × ` code matrix X can be a basis for
generating up to 2(`+n)`!n! code matrices with this property.

Proof: Any signed re-ordering of the rows of X is equivalent
to a signed re-ordering of the data, for which no deterministic
errors are introduced, by assumption. That is, since [DΠ′

n] is a
valid data set, and Π′

nΠn = In, then from (26),

[DΠ′
n] = sign±

(
sign∗([DΠ′

n][ΠnX])[ΠnX]′
)
. (28)

Also, signed re-orderings on the columns of X for the coding
process are matched in the decoding process, so there is no
total effect. That is,

D = sign∗

(
sign±(D[XΠ`])[XΠ`]

′) . (29)

�

D. Multinomial representation of decoding

To further understand majority logic decoding, here we build
on the work of [1]. We consider first the noise-free case when
r(·) = s∗(·).

In d̂i of (25), let us substitute the multinomial representation
(3) for the sign∗ function s∗(t) of (24). We consider one term
of the multinomial at a time, and indeed break each term down
further and consider one summation component at a time. That
is, we consider each possible integral of partial products one at
a time for i = 1, 2, . . . n as,

d̂i = sign∗[d1

∫ T

0
X1(t)

Xi(t)
n

dt + d2

∫ T

0
X2(t)

Xi(t)
n

dt + . . .

+ ρ2

ρ1
d1d2

∫ T

0
(X1(t)X2(t))

Xi(t)
n

dt + . . .

+ . . .

+ ρn

ρ1
d1d2 . . . dn

∫ T

0
(X1(t)X2(t) . . . Xn) Xi(t)

n
dt]. (30)

Let us denote a data vector d augmented with partial prod-
ucts as dpp, a corresponding coefficient vector as ρpp and a code-
word function vector X(·) augmented with corresponding ele-
ment by element partial products as Xpp(·), and define these
from,

dpp := [d1 d2 . . . dn, (d1d2) . . .

(dn−1dn), . . . , (d1d2 . . . , dn)]′,

ρpp := [
ρ1

ρ1

ρ1

ρ1
. . .

ρ1

ρ1
,

ρ2

ρ1

ρ2

ρ1
. . .

ρ2

ρ1
, . . . ,

ρn

ρ1
]′,

Xpp(·) := [X1(·)
′ X2(·)

′ . . . Xn(·)′, (X1(·).X2(·))
′ . . .

(Xn−1(·).Xn(·))′, . . . , (X1(·).X2(·). . . . Xn(·))′]′.

(31)

The number of distinct partial products of j data bits, or code
words is nCj , so that the numbers of identical elements in ρpp,
separated by commas in (31), are then given from the binomial
coefficients as nC1,

n C2, . . . ,
n C3, the sum of which is 2n − 1.

Thus dpp, ρpp are 2n − 1 row vectors.

Let us denote the rows of Xpp(·) as Xpp
i (·). When the code-

words are represented as an n × ` matrix X, then denote an
augmentation of this as a 2n × ` matrix Xpp, with rows Xpp

i .
Of course, X = [1′

n 0 0 . . . 0]Xpp, where 1 is a vector of n unity
elements.

Now the multinomial expansion (30) can be written for i =
1, 2, . . . n as,

d̂i = sign∗[

∫ T

0

Xpp
i (t)Xpp(t)′

n
dt diag{ρpp}dpp]. (32)

This is essentially the same as the discrete time case when

d̂i = sign∗(
Xpp

i (Xpp)′

n
diag{ρpp}dpp). (33)

We for a vector x and matrix X,we denote diag{x}, diag{X} as
a diagonal matrices with ith diagonal elements xi, Xii ,respec-
tively.

V. Partial product estimation for enhanced decoding

In this section, we first recall known concepts to reduce major-
ity logic decoding errors in the presence of transmission channel
noise, using partial product estimation. Building on this work
we give new results for noise error reduction based on explicit
multinomial expansions, and then propose new majority logic
coding algorithms to assist this process.

A. Estimation of data partial products

Partial products di, didj , didjdk, . . . , can be estimated via a
generalization of (25), for i = 1, 2, . . . 2n − 1 as,

d̂pp
i := sign∗

(∫ T

0

(r(t) − ρ0)

nρ1
(ρpp

i)†Xpp
i (t)dt

)
. (34)

Here α† denotes α−1 when the inverse exists and zero otherwise.
Clearly, the partial products with zero coefficients ρpp

i in the
multinomial expansion can not be estimated: Our equations set
these products and their estimates to zero.

The partial products of di, are in fact parity bits, so that the
vector dpp can be viewed as message bits together with parity
bits. The multinomial expansion of dpp in the noise free case,
in obvious notation, is

Y (X) :=

∫ T

0

diag{(ρpp)†}Xpp(t)Xpp(t)′diag{ρpp}dt,

∼ diag{(ρpp)†}Xpp(Xpp)′diag{ρpp},

d̂pp = sign∗ (Y (X)dpp) . (35)

It is clear that the partial product estimates may not be free of
errors, even in the noise free case, unless Y is suitably diagonally
dominant; more on this in a later section. It is also clear that
for the sign operation, the multinomial does not contain partial
products of an even number of data, so that these can not be
estimated with conventional coding. We propose a novel coding
to facilitate the estimation of partial products as follows.

B. Majority logic coding of data and partial products

Here we propose a majority logic coding scheme which com-
prises a first stage of linear coding with its own spreading factor,
followed by a second compatible stage of majority logic coding
with its own spreading factor, and a single stage majority logic
decoding to recover the data. That is, we consider the major-
ity logic coding (24) and decoding (25), but with the data di

preprocessed in a linear coding stage.

6

In particular, here the linear preprocessing stage is simply the
augmentation of the data with partial products. The result is
denoted dp

i , which can spread to the full complement of partial
products dpp

i . Also, codewords Xi are replaced by codewords
augmented with corresponding partial products Xp

i , up to the
full complement Xpp

i as,

s∗(t) : = sign∗

(
n∑

i=1

dp
i Xp

i (t)

)
,

s∗ : = sign∗(d
ppXp), (36)

d̂p
i := sign+

(∫ T

0

(r(t) − ρ0)

nρ1
Xp

i (t)dt

)
. (37)

These will give error free decoding in a noise free environment
if, denoting the matrix of all possible data vectors D augmented
with the partial products as Dp,

Dp = sign±

(
sign∗(D

pXp)(Xp)′
)
. (38)

We stress that the nonlinear stage only codes for 2n code-
words, even though its input is n data bits plus parity bits.

In the noisy channel case, of course a maximum likelihood
decoding of the data can be simply implemented, but this tends
to be prohibitive as the data size and spreading factors increase
to practical values. Consequently, a two stage decoding can be
applied as follows:

First Stage: Apply the standard decoding to recover esti-
mates of the data augmented with partial products as d̂p. These
can be hard decision estimates using the usual linear operation
followed by the sign+ operation, or preferably soft decision es-
timates from just the linear operation without taking the sign+

operation.
Second Stage: Use standard decoding to recover the data

estimates from d̂p. For example, first estimate each data bit
di from each of the entries in the augmented vector d̂p which
are dependent on di, using whatever knowledge is available on
the other relevant bits. Then add these estimates and take the
sign+ operation which is a majority logic operation. Thus, if
there is a parity bit d1d2, then estimating d1 from this one can

use in obvious notion d̂1d2d̂2, where d̂2 is the currently available,
preferably soft, estimate of d2.

We note an illustrative example of where this extended major-
ity logic approach is immediately useful. In the case of majority
logic coding for five data spreading to eight chips, there is no
code which gives error free decoding in the noise free case. How-
ever, by augmenting with one or two parity bits, error free de-
coding of the data and parity bits can be achieved. In contrast,
for the case of three data bits spreading to eight chips , our sim-
ulation studies indicate no advantage in augmenting with parity
bits in a preprocessing linear coding stage. However, including
the linear preprocessing allows a “more satisfactory” analysis of
the nonlinear coding, since the nonlinear coding applies to less
spreading.

C. Correcting data estimation errors using the product parity

bit estimate

An approach proposed in [1] to avoid maximum likelihood

decoding in continuous time, when estimates of the data and the

product parity bit is available , is now recalled. It aims to correct
one bit estimation error in a data vector estimate, assuming that
there is only one such error.

Prior to taking the sign∗ operation to achieve dp estimates,
select the particular value which has least magnitude, but only
in the case that this is a data bit estimate. Assume the sign+

of this value is a bit error, but that all other bit estimates and
partial product estimates are correct. Then re-estimate this bit
from the remaining d̂p

j , and the partial product estimate. This
approach works well in low noise. As the noise level increases,
this approach introduces additional errors into the system.

VI. A diagonal dominance property for majority

logic codes

In this section, we seek to characterize codes for majority
logic coding, which are free of deterministic errors. Of course,
random or systematic search or numerical test procedures can
be used, to ensure that (26), or (38) is satisfied. This requires
of order 2n` calculations for n×` code matrices X. Also, we de-
velop theory based on diagonal dominance properties of Y (X)
of (35): This matrix arises from the multinomial representa-
tion of the majority decoding process, and is a simple function
of the code matrix X, and multinomial coefficients ρ. First,
stronger properties than diagonal dominance, namely orthogo-
nality properties are considered.

A. Codeword orthogonality properties

Many of the insights used in the design of majority logic cod-
ing schemes come from thinking in terms of codeword orthog-
onality. Such conditions can only apply for the case of n even,
but they can apply approximately for n odd. We consider first
codeword orthogonality, then extended codeword orthogonality
and later ‘relaxed orthogonality’.

Zero mean property: This is essentially an orthogonality of
the codeword matrix X to a constant as,

X1` = 0. (39)

where 1` denotes an ` column vector of unity elements. Con-
sider the case when sign± is used with n even, when ρ0 6= 0.
Now if the zero-mean condition (39) holds, then the multino-

mial expansion for d̂i is invariant of ρ0, so we can take ρ0 = 0
as in the case n odd.

This zero-mean property on X excludes generating any code
word from the first row of the Hadamard matrix which is all
+1.

Relaxed codeword orthogonality property: Of course, if the
codewords are orthogonal to each other, then XX ′ = nIn, or if
the codewords are extended by parity bits of partial products,
then the relevant orthogonality condition is that Xpp(Xpp)′ =
(2n − 1)I(2n−1). For our purposes we relax this strict definition
as the matrix Y (X) := (Yi,j(X)) being diagonal, that is

Yi,j(X) = 0, when i 6= j. (40)

A further relaxation of the orthogonality of Y (X), can be
expressed in terms of an indicator matrix I, which is unity in
selected diagonal elements and zero otherwise, as

(I(2n−1)Y (X))i,j = 0, when i 6= j. (41)

Of course, an important special case is when I(2n−1) =
diag{1′

n 0 0 . . . 0}, which leads to the condition that the code
matrix X is orthogonal. If I = I, then (40) is recovered.

B. ‘Ideal’ code from Hadamard matrices

An ‘ideal’ code having n codewords can be envisaged,
which would have the set of all 2n − 1 possible products
Xi, XiXj , XiXjXk, . . . distinct and orthogonal, that is (40)
holds. There are at least ` = 2n − 1 chips for such a code.
The Hadamard matrix is an orthogonal matrix, known to have

7

rows which are Walsh functions with the property that par-
tial products of rows are also Walsh functions. Thus for any
2n × 2n Hadamard matrix any subset of less than or equal to n
rows form a tentative codeword matrix and whether or not this
is extended with its partial products it can be readily verified
that the desired orthogonality property holds.

As an example, consider n = 3, 2n − 1 = 7, and now focus on
the 8 × 8 Hadamard matrix, denoted H(8). Take n = 3 code
words of length ` = 8, as the rows 2, 5, 8 of this matrix, to form
the code matrix

X =




1 −1 1 −1 1 −1 1 −1
1 1 1 1 −1 −1 −1 −1
1 −1 −1 1 −1 1 1 −1


 . (42)

Then the partial products of pairs of these codewords constitute
the rows 4, 6, 7 of H(8), and the triple product is row 3. Clearly,
altogether the rows constitute all but the first row of H(8), and
so are orthogonal with Xpp(Xpp)′ = 8I7.

Taking another matrix row as an additional codeword, this
row and its attendant partial products, then these are not all
distinct from the earlier chosen code words and their partial
products. Thus, such sets of four, or more, codewords extracted
from the 8 × 8 Hadamard matrix, can not constitute an ‘ideal’
code .

In the case of an ‘ideal’ code, with (40) holding, then all the

summands in the multinomial expansion for d̂i involving any
dj |j 6=i would be zero, and there is then guaranteed recovery of
di in the noise free case. (Such recovery is not excluded with
more codewords than in the ‘ideal’ case.)

Further, for an ‘ideal’ code, all the partial products
di, didj , didjdk, . . . can be estimated via (34). The orthogo-
nality condition (40) is satisfied, Y (X) is a diagonal matrix and
trivially the following diagonal dominance property holds

diag{abs(Y (X))1`} < 2diag{Y (X)}.

Here abs(Y (X)) denotes a matrix Y (X) with elements replaced
by absolute values. Consequently, in the noise-free case, there
are no deterministic errors in the decoding of all partial prod-
ucts. (Such full partial product recovery appears excluded in
the case of more codewords than in the ‘ideal’ case, although
recovery of the data and perhaps one partial product can be
achieved in some cases.)

In the case when the received signal has additive noise, the
parity bit estimates allow an improved estimation of the message
bits, and can be exploited to enhance estimation.

Our numerical studies lead us to confidently conjecture a new
result for which we do not have a theoretical proof.

Lemma VI.1: With the majority logic coding and decoding of
data with partial products as in (36),(37), based on Hadamard
codeword matrices satisfying (40), then there are no determin-
istic errors.

Can the orthogonality condition be relaxed?

C. Diagonal dominance property

A useful approximation to the orthogonality property (41) for
our purposes is a specific ‘diagonal dominance’ of Y (X) of (35)
as,

I(2n−1)diag{abs(Y (X))1`} < 2I(2n−1)diag{Y (X)}. (43)

where the inequality is assumed to include the case 0 < 0. Thus,
the following lemma is readily established.

Lemma VI.2: Consider a code matrix X and Y (X) given
from (35). Then the diagonal dominance condition (43), for

some indicator matrix I(2n−1), ensures that there are no de-
terministic errors in estimating dp := dppI(2n−1) via (35), in
that (38) holds. Moreover, the diagonal dominance condition is
implied by the stronger orthogonality condition (41).

The sufficiency of the data-independent diagonal dominance
condition (43) is clear. This condition is by no means necessary,
since the data and partial products are not independent. How-
ever, it is not straight forward to achieve a data independent
necessary condition. Checking for deterministic errors for all
possible data is perhaps the only option, but this grows expo-
nentially with the data length. The usefulness or otherwise of
the sufficiency condition (43) is illustrated for codes related to
the Hadamard codes as follows.

D. ‘Near ideal’ codewords from Rademacher matrices

A Rademacher matrix is simply the Hadamard matrix with
the first row and column deleted, and can be used to generate n
majority logic codewords of length ` = 2n−1. Consider the code
matrix X of (42), but with the first column deleted, denoted X,
and augmented with partial products as X

pp
.

Now X
pp

(X
pp

)′ is not orthogonal, but its construction en-
sures the property X

pp
(X

pp
)′ = (n)I(n−1)−1(n−1)1

′
(n−1). How-

ever, our numerical studies for Rademacher matrices up to n ≤ 8
show that Y (X) is diagonally dominant as defined in (43), for n
odd. For n even, a relaxed dominance condition can be satisfied
in that (43) holds but with equality for some i.

Our numerical studies for n ≤ 8 show that certainly for some
Rademacher matrices, although the diagonal dominance con-
dition fails, there are invariably no deterministic errors in the
noise free case, in that (38) holds. This illustrates the fact that
the diagonal dominance condition is only a sufficient condition,
not a necessary one. Clearly, this example also illustrates that
the gap between necessity and sufficiency will reduce if the even
numbered coefficients ρi are zero, as when n is odd.

Our numerical studies lead us to confidently conjecture a new
result,but so far without theoretical justification save for the
case of codeword matrices satisfying (43),

Lemma VI.3: With the majority logic coding and decoding of
data with partial products as in (36),(37), based on Rademacher
codeword matrices, then there are no deterministic errors.

E. ‘Near ideal’ codewords from PN sequences

Pseudo-random noise (PN) sequences of bipolar binary bits of
length 2n −1 and satisfying the so-called correlation properties,
see [8], can generate codewords.

Consider a sequence of length 2n − 1. Now form a matrix,
where each row is a cyclically shifted version of the previous
row. These have identical diagonal dominance properties as
those generated from the Rademacher matrices. Once the ma-
trices are generated, n codewords can be selected from the rows,
which form a basis, in that the remaining rows can be formed
by partial products of the codewords to form a matrix Xpp such
that the diagonal elements of Xpp(Xpp)′ are 2N − 1, but the
off diagonal elements are either +1 or −1, which is different
from the Rademacher case. Then the row sums of the Y (X)
matrix are the same as for the Rademacher codes. Our nu-
merical studies confirm that the diagonal dominance condition
is not necessary for error free deterministic decoding in cases
for n ≤ 8, although we are not aware of any theoretical proof.
Thus,we confidently conjecture a new result, but so far without
theoretical justification save for the case of codeword matrices
satisfying (43),

Lemma VI.4: With the majority logic coding and decoding
of data with partial products as in (36),(37), based on pseudo-

8

random codeword matrices, then there are no deterministic er-
rors.

F. ‘Near ideal’ codewords from the Wing code

We observe here that particular Wing code sets (matrices) of
[9] can be generated from a Rademacher matrix of dimension
2n − 1 with any one column inverted. Consider, for example,
such a selection of three codewords. Take for example rows
3, 5, 6, of a Rademacher 7×7 matrix, with the last two columns
interchanged. This achieves a Wing code, but taken together
with its extension of partial products it does not constitute a
Wing matrix, but rather generates a Rademacher matrix with a
column interchange. This being the case, a diagonal dominance
condition is satisfied for this set of three codewords, so that
these will not generate deterministic errors in a majority logic
coding.

G. Low processing gain code words

The spreading factor of any ‘ideal’ or ‘near ideal’ code, such
as those based on the Hadamard matrix, Rademacher and PN
sequences as above, would be 2n

n
,or 2n−1

n
. This is considered

too high unless n is a ‘small’ integer, such as 2, 3, 4.
With `

n
<< 2n, instead of all code words and their sums of

partial products being orthogonal to one another, some pairs of
this set will not be orthogonal.

It appears preferable for robust decoding to have the diagonal
dominance condition (43) holding, and indeed to maximize in
some sense diagonally dominance or the inequalities in (43).

One approach is to seek to maximize the number of pairs of
partial codeword products that are orthogonal, or equivalently,
to achieve maximum sparcity in Y (X) of (35).

A second approach is to minimize the maximum relevant row
sum of abs(Y (X)).

Special cases are of interest and for some of these we note
additional properties of the coefficients ρ.

H. Coefficients ρpp

Using the formula (15), it is verified that

sign(
ρn

ρ1
) =

{
0 for n even,

−(1)
n
2 , for n odd.

(44)

Also, Srem :=
∑n−1

j=2

|ρj |

|ρ1|
< 1 is a monotonically decreasing

value as n increases, for either n even or odd, at least for n > 4.
An induction argument can be developed for these properties.
For reference, we list some Srem values,

Srem sign sign+

n=2 0 0
n=4 0.3333 0.6667
n=6 0.4000 0.8000
n=8 0.3714 0.7429
n=10 0.3175 0.6439
n=12 0.2641 0.5281
n=14 0.2191 0.4382
n=16 0.1835 0.3671
n=18 0.1560 0.3120

Srem sign sign+

n=3 0 0
n=5 0.3333 0.3333
n=7 0.4000 0.4000
n=9 0.3714 0.3714
n=11 0.3175 0.3175
n=13 0.2641 0.2641
n=15 0.2191 0.2191
n=17 0.1835 0.1835
n=19 0.1560 0.1560

I. Orthogonal codeword augmented with codeword products

Let us consider the case when at least the codeword matrix
augmented with the product of all codewords is orthogonal.
Then the first n summands in the multinomial expansion (30)
simplify as di, and the last term is zero. What influence do the
remaining terms have?

Now consider in addition, that all but one of nCj entries in a
row Xi with identical coefficient ρj is zero. The explicit formula
for the coefficients (15), allows us to verify, at least numerically,

that in the multinomial expansion for d̂i the summation of terms
involving the ρj coefficients for j 6= 1, n, denoted Srem earlier,
are in magnitude less than 1, so there is diagonal dominance
with (43) holding, and d̂i = di. That is, under our orthogonality
assumptions, the sum of the magnitudes of remaining terms

satisfies is Srem :=
∑n

j 6=1,n

|ρj |

|ρ1|
< 1.

Consider a useful example of an 8×8 Hadamard matrix with
the first row deleted. Now for n codewords defined as certain
n = {4, 6, 7} row selections of this matrix, the orthogonality
property (43) holds, so that there are no deterministic errors
for the data estimates in these cases. Moreover, there are no
deterministic errors in estimating the product of all codewords
using the sign± function, or the sign function for n = 7. For the
case of n = 5 codewords, the orthogonality condition fails, and
there is always one data bit that can not be estimated without
deterministic errors, and the product of codewords can not be
estimated. (The cases of n = {1, 2, 3} code words would come
under the heading ‘ideal’ codewords, as earlier.)

Another useful example are 3 codewords constructed from
the rows of a 4×4 Hadamard matrix with the first row deleted.
Again, the dominance condition is satisfied and there are no
errors in estimating the data or product of the data in the noise-
free case.

J. Other examples of error-free majority logic coding

Of course, the conditions for error-free majority logic decod-
ing explored above can be relaxed, but the orthogonality as-
sumptions are then more detailed. Also, it becomes more diffi-
cult to find codes which satisfy such conditions.

VII. Comparative Performance in White Noise

In this section we graph the bit error rate performance for
example majority logic coding schemes presented in this pa-
per in the presence of additive white Gaussian noise (AWGN),
see Figure 1. We consider majority logic coding schemes with
n = 3 and ` = 8. The legend ‘ML Type A’ represents the plot
for a conventional majority logic coding scheme of Section IV.
Legend ‘ML Type B’ represents the BER performance plot for
the majority logic scheme proposed in Sub-section V.B, using
an additional 3 linear parity bits. The legend ‘ML Type C’
represents the performance of the majority logic coding scheme
introduced in [1], where a parity bit is estimated using the multi-
nomial representation. The legend ‘Max Likelihood’ represents
the computationally intensive optimal decoding.

From Figure 1, when the proposed majority logic coding
scheme with partial parity is used, we observe an almost iden-
tical coding performance to the conventional scheme. Clearly,
in this case, the gain achieved by the additional linear partial
parities are offset by the loss in nonlinear code strength.

We can observe that the low noise assumption made by the
‘ML Type C’ scheme of [1] is not helpful in that the performance
is not even as good as that of the conventional majority logic
scheme. The loss in performance is due to the fact that under
conditions of high noise, the probability of error in the parity
bit is quite high thus, when used together in the information de-
tection process will result in a higher error rate. On the other
hand, under extremely low noise conditions, the additional par-
ity bit will only add to the strength of the detection process,
hence giving a better overall bit error rate performance.

These studies illustrate that there is still the need to test any
proposed codes before deciding if they will help.

9

Fig. 1. BER performance of majority logic coding schemes over the

AWGN channel.

VIII. Conclusions

Majority logic coding for communication systems has attrac-
tive advantages in terms of the simplicity of the decoding. This
is achieved at the expense of optimality. The majority logic
operations involved are highly nonlinear, so there has been a
paucity of theory for developing codes and guaranteeing prop-
erties.

A key step in this direction taken in this paper has been the
generation of an explicit, formula for the multinomial repre-
sentation of the various sign∗ operations involved in majority
logic. The formula is readily calculated in terms of binomial
coefficients, appearing in a proposed generalized Pascal matrix.
A factorization of this matrix in terms of a lower Cholesky fac-
tor of the original Pascal matrix turns out to simplify the proof
and derivation of the coefficients. The results are more com-
plete than hitherto given for the case of sign, and are new for
the sign± case.

The next step has been the proposal of a diagonal dominance
condition on functions of any codeword and the multinomial
expansion coefficients. This diagonal dominance is proved to
be a sufficient condition for guaranteeing error-free coding and
decoding in a noise-free environment. Its usefulness has been
demonstrated in guaranteeing deterministic error-free coding
and decoding for known classes of majority logic codes: In par-
ticular codes base on Hadamard matrices, Rademacher matri-
ces, and pseudo-random sequences. Previously, only numeri-
cally verified versions of such results via exhaustive search have
been available for low dimensional cases.

Finally, new majority logic coding algorithms have been pro-
posed which are essentially two stages of codings, the first being
a linear stage and the second a compatible majority logic stage.
The majority logic stage is based on code matrices extended
with partial products to be applied to data extended with par-
tial products. The two stage codes and corresponding majority
logic decoding, appear to work as well as or better than single
stage codes, and at least the linear stage is more amenable to
analysis.

References

[1] V.P. Ipatov, Y.A. Kolomensky, and R.N. Shabalin Reception of Majority-

Multiplexed Signals. Radio Engineering and Electronic Physics, vol. 20, no.

4, pp.121-124, 1975.

[2] R.C. Titsworth Application of the Boolean for the Design of a Multi-

Channel Telemetric System (in Russian). Zarubezhnaya Radioelektronika,

8, 1964.

[3] R.C. Tistsworth A Boolean-Function-Multiplexed Telemetry System IEEE

Transactions on Space Electronics and Telemetry, vol. SET-9, pp42-45, June,

1963.

[4] J.A. Gordon and R. Barrett Correlation-recovered adaptive majority mul-

tiplexing Proceedings of IEE, vol. 118, no. 3/4, pp.417-422, 1971.

[5] A.K. Mukherjee and D. Mukhopadhyay A method for increasing the num-

ber of majority multiplexed channels Proceedings of IEEE, vol. 66, no. 9,

pp.1096-1097, September, 1978.

[6] T. Maseng Performance Analysis of a Majority Logic Multiplex System

IEEE Transactions on Communications, vol. COM-28, no. 9, September

1980.

[7] K.T. Tan, R. Liyanapathirana and K. N. Ngan Error probabibities for

sequency majority multiplexing in frequency-nonselective, slowly fading

channel - Part 1 & 2 Proceedings of IEEE 5th ISSSTA, pp.411-419, Septem-

ber, 1998.

[8] Golomb, Solomon W. Shift Register Sequences. Holden-Day, Inc. San Fran-

cisco, 1967.

[9] P.A. Wing Code Division Multiplexing. Monitor-Proc.IREE, 1, pp.25-28,

1976.

