
JOURNAL OF INDUSTRIAL AND Website: http://AIMsciences.org
MANAGEMENT OPTIMIZATION
Volume 1, Number 4, November 2005 pp. 565–587

GAUSS-NEWTON-ON-MANIFOLD FOR POSE ESTIMATION

Pei Yean Lee † and John B Moore †‡

National ICT Australia Ltd., Australia
Australian National University, Australia

(Communicated by Kok Lay Teo)

Abstract. We consider the task of estimating the relative pose (position and
orientation) between a 3D object and its projection on a 2D image plane from
a set of point correspondences. Our approach is to formulate the task as an
unconstrained optimization problem on the intersection of the special orthog-
onal group and a cone, and exploit as much as possible the geometry of the
underlying parameter space. The optimization does not require Riemannian
geometry. It involves successive parameterization of the constraint manifold
and is based on Newton-type iterations in local parameter space. A direct
proof of local quadratical convergence to the optimum is provided. A key
feature of the proposed approach, not used in earlier studies, is an analytic
geodesic search, alternating between gradient, Gauss, Newton and random di-
rections, which ensures the escape from local minima and convergence to a
global minimum without the need to reinitialize the algorithm. Indeed, for a
prescribed number of iterations, the proposed algorithm achieves significantly
lower pose estimation errors than earlier methods and it converges to a global
minimum in typically 5–10 iterations.

1. Introduction. In machine vision, robotics and computer graphics, a fundamen-
tal problem is to estimate the relative pose (position and orientation) between a 3D
object and its 2D image from a set of feature correspondences. The pose estimation
can be viewed as either determining the camera pose with respect to a known object
or as estimating the object pose with respect to a known camera.

There are two approaches for solving this problem presented in the literature.
The first approach adopts linear methods that yield closed-form solutions [2, 15, 1]
which are simple enough to implement in online computation. They are very sen-
sitive to noise because the orthonormality constraint of the rotation matrix is not
taken into account. The second approach is to formulate the task as a constrained
nonlinear optimization problem [3, 9, 10, 11] and solve using iterative techniques.
These provide numerical solutions that are more accurate and robust to measure-
ment noise. Also, when Newton-based recursions are used, fast (quadratic) local
convergence rate can be achieved. However, the methods rely on a good initial pose
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Figure 1. The special orthogonal group SO3, the cone constraint
K, and the resulting constraint manifold SO3 ∩ K, which is the
intersection between SO3 and K.

estimate. Also, without random reinitializations and selection of the lowest cost
function outcome, such methods might converge to a local minimum which is not
the global minimum, or converge to an infeasible solution, for which the object is
estimated to be behind the camera. Among the existing recursive algorithms, only
the technique proposed by Lu, Hager and Mjolsness [11] exploits the geometry of
the underlying constraint manifold.

This paper, building on our earlier conference presentations [8, 5], addresses the
2D-3D pose recovery task as minimizing a smooth function over the intersection of
a rotation group and a cone, as depicted in Fig. 1. A new geometrical optimiza-
tion framework based on successive parameterizations of the constraint manifold is
proposed for the task, see also [12] for related optimization techniques. In contrast
to the ‘fast’ linearly convergent geometric algorithm of [11], the Newton-like recur-
sions devised using the proposed geometrical framework are locally quadratically
convergent, as demonstrated by simulation results and rigorous mathematical proof.

The main novelty of our approach is the use of a closed-form global geodesic
search step, which requires only the solution of a quartic equation. It assists in
escaping any local minimum, not the global minimum, and avoids the infeasible
domain. That is, it converges to a global minimum, at least eventually, without the
need for multiple reinitializations of the algorithm to seek a domain of attraction
of the global minimum.

The Newton decrement or its estimate is used as an empirical indicator for se-
lecting between gradient, Gauss, or Newton directions for a geodesic search, and
for algorithm termination. We also put forward a new method for algorithm ini-
tialization, which leads to an exact solution in the noise free case, and a good
initial estimate in the presence of noise. Simulation results suggests the proposed
algorithms achieve significantly lower parameter estimation errors than techniques
presented by [11] and convergence to a global minimum occurs in typically 5–10
iterations.
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Figure 2. The 2D-3D pose estimation problem: given the model
{m1, · · · , m4} expressed in object frame, and its corresponding im-
age {u1, · · · , u4} expressed in camera frame, find the relative pose
(R, t) between the object frame and the camera frame.

2. Problem Formulation.

2.1. Definitions.

Model: The model of a known 3D object is a set of points described in an object
centered frame that lie within the field of view of a camera, as

{mi}i=1,··· ,n, mi := [xi yi zi]
⊤ ∈ R

3.

Transformed model: To represent each model point in the camera centered

frame m′
i := [x′

i y′
i z′i]

⊤
, a rigid body transformation is performed as follows,

m′
i = Rmi + t,

where R ∈ SO3, i.e. R⊤R = I, det(R) = 1, representing the rotation, and
t ∈ R

3 is the translation vector.

Image: Each transformed model point m′
i is observed by a camera. The origin

of the camera frame coincides with the center of projection, and the optical
axis is along the positive z′-axis, as illustrated in Fig. 2. The point m′

i on
the image plane is described in pixel coordinates, denoted pi. Such an image
point is then normalized by the camera calibration matrix F , assumed known,
to obtain the corresponding normalized image point ui, as

ui = F−1pi.

The camera calibration matrix F is an upper triangular matrix consisting of
intrinsic camera parameters, details can be found in [4]. Under full perspec-
tive projection, each point in the model mi is related to its corresponding
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normalized image point by the following equation,

ui =
Rmi + t

z′i
, z′i = e⊤3 (Rmi + t), e3 := [0 0 1]⊤. (1)

Here, {z′i}i=1,··· ,n are depth parameters which must satisfy the cone constraint
K, that is {z′i > 0}i=1,··· ,n to ensure that the estimated pose always locates
the object in front of the camera.

object frame

z

y

y'

z'

x'

camera frame 

Object space error

Image space error 

x

image plane 

Figure 3. The image space error and the object space error.

2.2. Cost function. Instead of recovering the pose {R, t} using a least squares cost
function penalizing the classical image space collinearity error via (1), we adopt the
object space collinearity error introduced in [11], as depicted in Fig. 3. Let Ui be
the projection operator,

Ui = U⊤
i :=

uiu
⊤
i

u⊤
i ui

, U2
i = Ui. (2)

For object space collinearity, the orthogonal projection of m′
i = Rmi + t onto the

line-of-sight of the corresponding image point ui should be equal to m′
i itself, as

described by the following equation,

Rmi + t = Ui(Rmi + t), i = 1, · · · , n. (3)

In the presence of pixel noise, the cost function penalizing the object space collinear-
ity error is given as,

φ : SO3 × R
3 → R,

φ(R, t) =
1

2

n∑

i=1

‖(I − Ui)(Rmi + t)‖2. (4)
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Observe that the cost function is quadratic in terms of errors, which are linear
in the unknown pose parameters R, t. It is zero if and only if (3) is satisfied.
The optimization is made nontrivial by the constraints that R is an element of the
manifold SO3 and the presence of a cone constraint K resulting from the requirement
that the object must be in front of the camera. Actually optimizing quadratic cost
functions on SO3 is well studied, as is optimization on cones. What is interesting
here from an optimization point of view is to tackle the much harder problem of
optimizing a cost function on the intersection of SO3 and a cone.

We have also used more conventional image space cost functions, but using the
object space cost function (4) gives better estimate of R, denoted R̂, why? Perhaps

the object space index penalizes more directly the term ‖R − R̂‖2 or equivalently

maximizes the term tr(RR̂⊤).

2.3. Optimal translation. We first eliminate the translation vector t from the
cost function (4) via least squares optimization to reduce the number of parameters
for optimization. Note that there is no noise-free assumption for this. It might
appear that we formulate the problem as two-stage optimization, first optimize
R then optimize t. However, by eliminating t via least squares, this two stage
optimization actually gives optimal solutions equivalent to optimizing over R, t in
one stage. Exploiting the fact that (I − Ui)

⊤(I − Ui) = (I − Ui), cost function (4)
can be re-expressed as,

φ =
1

2

n∑

i=1

m⊤
i R⊤(I−Ui)Rmi+t⊤

n∑

i=1

(I−Ui)(m
⊤
i ⊗I)vec(R)+

1

2
t⊤

n∑

i=1

(I−Ui)t. (5)

Denoting

Ũ :=

n∑

i=1

(I − Ui), U = Ũ−1
n∑

i=1

(I − Ui)(m
⊤
i ⊗ I), (6)

with R fixed, an optimal t that minimizes (5) is given by

t = −Uvec(R), (7)

Substituting (7) into (1), the depth parameters z′i can be reformulated as,

z′i = Bi vec(R), Bi := e⊤3 ((m⊤
i ⊗ I) − U). (8)

The cone constraint K can now be expressed in terms of R ∈ SO3 as

K := {R | {Bivec(R) > 0}i=1,2,··· ,n}. (9)

2.4. Cost function independent of translation. Substituting (7) into (4), the
cost function can be reformulated as,

f : SO3 → R, f(R) =
1

2
‖Dvec(R)‖2, (10)

where

D =
[

D⊤
1 D⊤

2 · · · D⊤
n

]⊤
, Di = (I − Ui)

(
(m⊤

i ⊗ I) − U
)
. (11)

Remark 2.1. The function

g : R
3×3 → R, g(X) =

1

2
‖Dvec(X)‖2, (12)

is quadratic in the Euclidean space R
3×3. However, the cost function f = g|SO3 ,

which is the restriction of g to manifold SO3 is no longer a quadratic function. Also,
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we do not linearize this cost by using earlier estimates of R and t in the optimization
process as in [11].

2.5. Shifted centroid. It turns out to be useful to refer all measurements to the
centroids. Thus, denoting m̄ := 1

n

∑n
i=1 mi, (3) can be rewritten as follows,

(I − Ui)(R(mi − m̄) + (t + Rm̄)) = 0, i = 1, · · · , n.

The shifted model {mi − m̄} has created a new object frame at its centroid and a
new translation vector (t+Rm̄). Once the translation vector (t+Rm̄) is estimated
from the algorithm, it needs to be transformed back into the original object frame.
Without loss of generality, we assume subsequently that m̄ = 0, and the desired
translation parameter is t.

3. Geometry of the Special Orthogonal Group SO3. Rotational motion in
R

3 can be represented by the special orthogonal group SO3, which consists of 3× 3
orthogonal matrices with determinant +1. It is a Lie group and its associated Lie
algebra so3 is the set of 3 × 3 skew symmetric matrices of the form,

Ω =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 . (13)

There is a well known isomorphism from the Lie algebra (R3,×) to the Lie algebra
(so3, [., .]), where × denotes the cross product and [., .] denotes the matrix commu-
tator. This allows one to identify so3 with R

3 using the mapping in (13), which

maps a vector ω =
[
ωx ωy ωz

]⊤ ∈ R
3 to a matrix Ω ∈ so3. Notice that Ω can

be written as,
Ω = Qxωx + Qyωy + Qzωz, (14)

where

Qx :=



0 0 0
0 0 −1
0 1 0


 , Qy :=




0 0 1
0 0 0
−1 0 0


 , Qz :=



0 −1 0
1 0 0
0 0 0


 . (15)

3.1. Tangent space of SO3. Consider the tangent space of SO3 at R,

TR SO3 = {RΩ | Ω ∈ so3}. (16)

Shifting the origin of this space by R results in the affine tangent space of SO3 at
the point R given as,

Taff
R SO3 := {R + RΩ | Ω ∈ so3}. (17)

This is illustrated in Fig. 5.

3.2. Local parameterization of SO3. Recall that a manifold is as a collection of
local coordinate charts. Computations on a manifold are often conveniently carried
out in these local parameter spaces. Let R be a point in SO3, then there exist a
smooth exponential map

µR : R
3 → SO3, ω 7→ ReΩ(ω), (18)

which is a local diffeomorphism around the origin in R
3.
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Figure 4. The mapping µR is a local parameterization of SO3

around the point R such that R = µR(0), f is the smooth function
defined on SO3 and f ◦ µR is the function f expressed in local
parameter space R

3.

4. Optimization on the Manifold SO3.

4.1. Cost function on the manifold SO3. Recall the smooth function from (10),

f : SO3 → R, f(R) =
1

2
‖Dvec(R)‖2.

In the noise free case, the value of this function is zero if and only if there is a rotation
matrix which aligns all object points with the line-of-sight of the corresponding
image points exactly. In the presence of noise, the value of the cost function is no
longer zero. Thus, we seek the minima of this cost function.

4.2. Local Cost Function. Consider the mappings as in Fig. 4. The cost function
f at R ∈ SO3 expressed in local parameter space using the smooth local parame-
terization µR is given by,

f ◦ µR : R
3 → R, f ◦ µR(ω) =

1

2
‖Dvec(ReΩ(ω))‖2. (19)

The second order Taylor approximation of f ◦ µR about 0 ∈ R
3 in direction ω is

j
(2)
0 (f ◦ µR) : R

3 → R,

ω 7→
(

(f ◦ µR)(tω) +
d

d t
(f ◦ µR)(tω) +

1

2

d2

d t2
(f ◦ µR)(tω)

)∣∣∣∣
t=0

.

This expansion contains three terms:

(i) A constant

(f ◦ µR)(tω)|t=0 =
1

2
‖Dvec(R)‖2,

(ii) A term linear in ω

d

d t
(f ◦ µR)(tω)

∣∣∣∣
t=0

= vec⊤(RΩ(ω))D⊤Dvec(R) = ω⊤∇f◦µR
(0),
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recall Ω from (13), and let vec(Ω) := Qω, then we have the Euclidean gradient
of the f ◦ µR evaluated at zero,

∇f◦µR
(0) = Q⊤(I ⊗ R⊤)D⊤Dvec(R), (20)

where Q := [vec(Qx) vec(Qy) vec(Qz)].
(iii) A quadratic term consists of a sum of two terms. The first term is given as,

vec⊤(RΩ(ω))D⊤Dvec(RΩ(ω)) = ω⊤
Ĥf◦µR

(0)ω. (21)

Let vec(C) := D⊤Dvec(R), the second term is,

vec⊤(R)D⊤Dvec(RΩ2(ω)) = vec⊤(R)D⊤D(Ω⊤(ω) ⊗ R)vec(Ω(ω)),

= vec⊤(R⊤CΩ⊤(ω))vec(Ω(ω)),

= ω⊤
H̃f◦µR

(0)ω.

Thus, the Hessian matrix of f ◦ µR evaluated at 0 ∈ R
3 is,

Hf◦µR
(0) = Ĥf◦µR

(0) + H̃f◦µR
(0), (22)

where

Ĥf◦µR
(0) = Q⊤(I ⊗ R⊤)D⊤D(I ⊗ R)Q > 0,

H̃f◦µR
(0) = −Q⊤(I ⊗ R⊤C), (23)

and since H̃f◦µR
(0) is always symmetric, we have

H̃f◦µR
(0) = −1

2
Q⊤ (

(I ⊗ R⊤C) + (I ⊗ C⊤R)
)
Q. (24)

4.3. Critical points. Recall f from (10), the element R = µ(0) is a critical point
of f if and only if the following holds,

∇f◦µR
(0) = Q⊤(I ⊗ R⊤)D⊤Dvec(R) = 0.

A positive definite Hessian matrix Hf◦µR
(0) > 0 indicates that R is a local minimum.

In the noise free case, H̃f◦µR
(0) = 0 and hence Hf◦µR

(0) = Ĥf◦µR
(0) > 0. For

generic objects we expect that the number of critical points is finite, and that each
is isolated.

4.4. Newton decrement. The Newton decrement δ is defined in terms of the
gradient ∇f◦µR

(0) and the Hessian Hf◦µR
(0), as

δ :=
√

[∇f◦µR
(0)]⊤[Hf◦µR

(0)]−1∇f◦µR
(0). (25)

This decrement δ approaches zero as the algorithm converges to a local or global
minimum. It features in the work of Nesterov [14] for optimizing convex self-
concordant functions in Euclidean space. Recall that self concordant functions are
those where the second derivative terms to the power 3

2 dominate third derivatives.
A key result is that there is a domain of attraction for the Newton step using a

unity step size if δ < 3−
√

5
2 , a global constant.

Although the theory of [14] does not apply immediately for optimization on a
manifold, yet since manifolds are locally Euclidean, it can be used as a guideline. In
[7], the notion of convex self-concordant functions is explored in a manifold setting.
Here after some manipulations, it can be shown that on SO3, in the neighbourhood
of a minimum, the cost function f is locally convex and self-concordant. Thus, we

conservatively estimate a domain of attraction as δ ≪ 3−
√

5
2 . Also, as curvature

of the manifold increases, it makes sense to use more conservative values. We use
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Figure 5. Each iteration of the proposed algorithm consists of
three mappings, namely π1 maps a point R ∈ (SO3 ∩ K) to an

element of the affine tangent space Taff
R SO3, followed by π2 which

projects that vector back to the manifold and π3 which carries out
geodesic search on SO3 in the direction of the projected vector.

Newton decrement as an indicator on selecting the appropriate direction of geodesic
search as,

Gradient direction : δ > ǫ1 (eg. 10−1),

Gauss direction : ǫ1 > δ > ǫ2 (eg. 10−2),

Newton direction : δ 6 ǫ2. (26)

It is also used to assist in the decision for using a Newton step size instead of
carrying out geodesic search and for algorithm termination, as

Newton step size=‖ωNewton‖ : δ < ǫ3 (eg. 10−3),

Terminate : δ < ǫ4 (eg. 10−6). (27)

4.5. Algorithm Description. The proposed algorithm is iterative in nature. Each
iteration consists of three mappings as,

s = π3 ◦ π2 ◦ π1 : (SO3 ∩K) → (SO3 ∩ K). (28)

At each iteration, a local parameterization µR of the manifold around R ∈ (SO3∩K)
is constructed. The point R is pulled back to the Euclidean space via µR. The op-
timal vector that minimizes the quadratic model of the local cost function f ◦ µR,
achieved by the operation π1, is then pushed forward to the manifold via the map-
ping π2. Finally, in operation π3, a one dimensional search along the geodesic on
SO3 in the direction of this projected vector is carried out to ensure cone con-
straint is satisfied. By appropriately identifying the local parameter space R

3 with
the affine tangent space Taff

R SO3, the first two steps of the algorithm can also be
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interpreted geometrically as carrying out an optimization procedures defined on
Taff

R SO3, followed by a nonlinear projection back to the manifold to give a geodesic
search direction, as illustrated in Fig. 5.

4.5.1. Optimization in local parameter space. Consider the optimization step,

π1 : (SO3 ∩ K) →
(
SO3 ∩ K, Taff SO3

)
(29)

R 7→ (R, R + RΩ(ωopt(R))) ,

where ωopt as a function of R = µR(0) is a suitable descent direction of f expressed
in local parameter space. Actually, three possibilities for the ωopt calculation are of
interest to our algorithm.

1. Newton direction. First, we have the Newton direction, which minimizes the
quadratic model of the local cost function,

ωNewton
opt (R) = arg min

y∈R3
j
(2)
0 (f ◦ µR)(y) (30)

= −[Hf◦µR
(0)]−1∇f◦µR

(0).

2. Gauss direction. Consider the restriction of the cost function g (12) to the
affine tangent space T affSO3,

h : Taff SO3 → R, h(ξ) = g|Taff SO3
=

1

2
‖Dvec(ξ)‖2,

and the function h expressed in the local parameter space,

νR : R
3 → Taff SO3, y 7→ R + RΩ(y),

h ◦ νR : R
3 → R, h ◦ νR(y) =

1

2
‖Dvec(R + RΩ(y)‖2.

The Gauss direction is the minimizer of the function h ◦ νR,

ωGauss
opt (R) = arg min

y∈R3
(h ◦ νR)(y), (31)

= −[Hh◦νR
(0)]−1∇h◦νR

(0),

= −[Ĥf◦µR
(0)]−1∇f◦µR

(0).

3. Gradient direction. The third descent direction of interest to us is in the
negative gradient direction,

ω
gradient
opt (R) = −∇f◦µR

(0). (32)

Remark 4.1. When Hf◦µR
(0) or Ĥf◦µR

(0) is singular, pseudo inverse replaces
inverse in the above equations.

4.5.2. Projecting Back via Parameterization. The mapping π2 projects the optimal
affine tangent vector back to the manifold by means of the parameterization µR,

π2 :
(
(SO3 ∩ K), Taff SO3

)
→ SO3 (33)

(R, R + RΩ(ωopt(R))) 7→ ReΩ(ωopt(R)).
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4.5.3. Analytic Geodesic Search on SO3. The mapping π3 involves a one dimen-
sional search along the geodesic curve, ReθΩ(ωopt(R)),

π3 : SO3 → SO3 ∩ K, (34)

ReΩ(ωopt(R)) 7→ ReθoptΩ(ωopt(R)),

where θopt is the optimum step size which minimizes cost function along the geo-
desic, as well as satisfying the cone constraint.

Certain Newton-type algorithms use a heuristic line search in a particular direc-
tion to ensure that the cost function decreases at every step. When the optimization
is on a manifold, the line search translates to a geodesic search, and in the case of
manifold SO3, a finite range search. In ill-conditioned problems, as arise in high
noise, the number of trial step sizes can be very large for many iterations until the
optimization path steers clear of the boundary or saddle point or other sources of
ill-conditioning. This is one motivation for us to use an analytic geodesic search,
since this is possible for the manifold SO3. The other motivations are to avoid vio-
lating the cone constraint K and to assist in achieving the global minimum, rather
than some other local minimum. The proposed analytic geodesic search is described
on an arbitrary geodesic on SO3. It involves the solution of a quartic equation. An
important result for us, which does not generalize to matrices higher order than
3 × 3, is as follows.

Lemma 4.1. Given a vector ω ∈ R
3, a 3 × 3 skew symmetric matrix Ω ∈ so3, and

a step size θ ∈ [0, 2π), with ω̄ := ω
‖ω‖ , ‖ω‖ :=

√
(ω⊤ω), then

vec(eθΩ(ω̄)) = G




cos(θ)
sin(θ)

1


 , G :=

[
−vec(Ω(ω̄)2) vec(Ω(ω̄) vec(I3 + Ω(ω̄)2)

]
.

(35)
Moreover, the function (35) is 2π periodic in θ, so that for any integer k,

e2πkΩ(ω̄) = I.

Proof. The proof follows from Rodrigues rotation formula [13].

To apply the results of Lemma 4.1, consider the cost function f restricted to the
geodesic ReθΩ(ω̄opt(R)) given as,

ϕ(θ) = f |
ReθΩ(ω̄opt(R)) =

1

2
‖D vec(ReθΩ(ω̄opt(R)))‖2, (36)

=
1

2
‖D(I ⊗ R)G

[
cos(θ) sin(θ) 1

]⊤ ‖2.

Now, the task is to ‘walk’ along the geodesic on the manifold SO3 and search for a
step size θ that minimizes the cost function ϕ(θ) and satisfies the cone constraint.
To achieve this, we find all critical step sizes {θ∗} by setting the first derivative of
the cost function (36) to zero. Denoting G⊤(I ⊗ R⊤)D⊤D(I ⊗ R)G as (aij),

d

d θ
ϕ(θ) =

[
cos(θ) sin(θ) 1

]
(aij)




sin(θ)
cos(θ)

0



 = 0,
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by eliminating sin(θ) from the above equation using trigonometric formula cos2(θ) =
1 − sin2(θ), we obtain a quartic equation,

4∑

j=0

bj(cos(θ))j = 0, (37)

b0 := a12
2 − a13

2, b1 := −2 (a12a23 + a13(a11 − a22)) ,

b2 := a23
2 + a13

2 − (a11 − a22)
2 − 4a12

2,

b3 := 2 (2a12a23 + a13(a11 − a22)) , b4 := 4a12
2 + (a11 − a22)

2.

Next, the critical step size that gives minimum cost and fulfills the cone constraint
K, denoted the optimum step size θopt is given as,

θopt = argmin
θ

ϕ(θ), where θ ∈ {θ∗ | Reθ∗Ω(ω̄opt(R)) ∈ (SO3 ∩ K)}. (38)

(a) No infeasible region, but if Newton step is
taken, one will be trapped in local minimum.

(b) Both minimum cost and Newton step lie in
infeasible region.

(c) All minima lie in infeasible region.

Figure 6. Analytic geodesic search: plots of cost function f re-
stricted to the geodesic on SO3 for various step size in the range
[−π, π], the black dot indicates Newton step, darkened portion of
the curves represents the infeasible region, i.e., object behind cam-
era.

Figure 6 shows the plots of cost function ϕ(θ) vs. step size θ in the range [−π, π].
It illustrates the idea of an analytic geodesic search. The black dot in each plot
indicates a Newton step, θ = ‖ωopt‖ in the search direction. The darkened portion
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of the curves represents the infeasible region where the cone constraint fails. In
Fig. 6(a), there is no infeasible region. If a Newton step is taken, one will be
trapped in the local minimum. However, the analytic geodesic search will select
the θ corresponding to the minimum cost in the search direction and hence escapes
from the local minimum and heads towards the global minimum. In Fig. 6(b), the
minimum cost lies in the infeasible region, so the geodesic search will select the
θ corresponding to the second minimum cost value that is in the feasible region.
Also, the search directions might not yield any feasible local minimum, as depicted
in Fig. 6(c). In this case, no parameter update is made. Nevertheless, by carrying
out a search in a random direction periodically, the probability of achieving a feasible
local minimum, or indeed a global minimum, is increased.

5. Algorithm Initialization.

5.1. Noise free solution. In the noise-free case, the optimal value of the cost
function (10) is zero. That is there exists an R 6= 0 such that

D⊤Dvec(R) = 0. (39)

This clearly indicates that D⊤D > 0 cannot be full rank. Subsequently, the rank of
D is of interest. For the generic case,

rank(D) 6 min{(2n− 3), 9}. (40)

Derivation of this inequality can be found in Appendix A.
Let Y be the set of right singular vectors that span the null space of D, with

Y ⊤Y = Iq with q > 1, we express vec(R) linearly in Y as follows,

vec(R) = Y α, R =
[
Y1α Y2α Y3α

]
, (41)

where Y is a 9 × q matrix,

Y :=
[
Y ⊤

1 Y ⊤
2 Y ⊤

3

]⊤
, α :=

[
α1 α2 . . . αq

]⊤
.

Here Yi is a 3 × q matrix. Based on R from (41) and the fact that R⊤R = I, then

α⊤Y ⊤
k Yl α =

{
1, if k = l,

0, otherwise.
(42)

Hence, we can solve for α from (42). A lower bound for q, the dimension of α, is
calculated using (40) as

q := (9 − rank(D) > max(1, 9 − (2n − 3)), (43)

with equality holding in the generic model case. This is consistent with the known
result that a unique solution (39) in the generic noise-free case for n = 6, since then
q = 1.

In the generic case for n > 6 then q = 1. There are six possible α solutions from
(42) as follows,

α = ± 1√Y11

= ± 1√Y22

= ± 1√Y33

. (44)

Each solution is tested to achieve a feasible parameter estimate which yields a zero
cost. For n = 5 in generic case, q = 2. In this case, we can obtain the two elements
of α by solving a pair of quadratic equations. Based on (42), there are 9 pairs of
quadratic equations to be solved. To illustrate, consider the following pair,

α⊤Y33α = 1, (45)

α⊤Y12α = 0. (46)
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We proceed as follows,

Step 1:: Let α = Sα[α1 1]⊤, Sα is a scaling factor, solve for α1 from (46).
Step 2:: Solve for Sα by substituting α1 into α⊤Y33α = 1 and finally solve for

α.

Here we can obtain up to 4 possible solutions for α. Among all possible solutions,
half of them are numerically equivalent but associated with opposite signs.

For n = 4 and n = 3, the details of solutions for R and t (not unique for n = 3)
can be found in [15] and [2] respectively. The cases n = 1 and n = 2 yield an infinite
set of solutions. Once α is known, we can solve for R(α), z′i, t from (41), (8) and (7)
respectively. There may be multiple solutions, including possibly complex solutions
for α. Only the real α that results in z′i > 0 and R(α) associated with minimum
cost will be accepted.

5.2. Low noise initialization. We solve for α as in the noise-free case. However,
now Y is chosen from the set of right singular vectors associated with the q smallest
singular values, which may not be zero. The singular vectors might not result in a
special orthogonal matrix R based on (41). Hence, a reasonable approach is to look
for an optimum Ropt(α) as

Ropt(α) = arg min
R∈SO3

‖vec(R) − Y α‖,

= arg min
R∈SO3

‖R − [Y1α Y2α Y3α]‖,

= arg max
R∈SO3

tr(R⊤G(α)), (47)

where G(α) := [Y1α Y2α Y3α]. By applying an SVD on G(α), we obtain

G(α) = URSRV ⊤
R ,

Ropt(α) := UR

[
I2 0
0 det(URV ⊤

R )

]
V ⊤

R . (48)

Observe that det(Ropt(α)) = 1. Subsequently, t can be obtained from (7). Only
Ropt(α) associated with minimum cost and fulfilling the cone constraint K will be
accepted. If there is no estimates Ropt(α) such that the cone constraint is satisfied
or there is no real solution for α at all, then we refer to this situation as a high noise
case, the following high noise initialization is adopted. Such an optimization as in
(47) is the basis of the Orthogonal Iteration (OI) proposed in [11], and indeed the
SVD based solutions of (48) which ensures that det(Ropt) = +1, could be used to
strengthen the robustness of the OI algorithm.

5.3. High noise initialization. Select any random R ∈ SO3 which also satisfies
the cone constraint K of (9). Alternatively, one can start with an arbitrary initial-
ization on SO3, perhaps not feasible in that the cone constraint is not satisfied, and
achieve feasibility using the geodesic search.

6. Implementation of the Algorithm. Start with R = R0 using initialization
procedures described in Section 5.

Step 1: Carry out the optimization step,
• Compute the gradient ∇f◦µR

(0) and the Hessian, Hf◦µR
(0) via (20) and

(22) respectively.
• Calculate the Newton decrement δ from (25). If δ < ǫ4, go to Step 5,



GAUSS-NEWTON-ON-MANIFOLD FOR POSE ESTIMATION 579

• Compute the optimal direction in the local parameter space,

ωopt(R) =





ω
gradient
opt = −∇f◦µR

(0), if δ > ǫ1

ωGauss
opt = −[Ĥf◦µR

(0)]†∇f◦µR
(0), if ǫ2 < δ < ǫ1

ωNewton
opt = −[H(f◦µR

(0)]†∇f◦µR
(0), if δ < ǫ2

ωrand
opt , periodically, or if any of the above direction

ends up in an infeasible region

Here, ωrand
opt ∈ R

3 is a random vector with elements, in the range [0, 1],

• Form the normalized direction ω̄opt(R) =
ωopt(R)

‖ωopt(R)‖ .

Step 2: Projecting back to the manifold SO3 via local parameterization µR, as
described in (33),

Step 3: Carry out a one dimensional search along the geodesic ReθΩ(ω̄opt(R)),
• Solve the quartic equation in (37) to obtain all critical step sizes {θ∗},
• For each θ ∈ {θ∗}, calculate the corresponding rotation ReθΩ(ω̄opt(R)), its

cost via (36) and the depth parameter estimates via (8).
• Obtain the critical rotation angle θopt that gives minimum cost and fulfills

the cone constraint K via (38).

• Compute R̂ = ReθoptΩ(ω̄opt(R)),

Step 4: Set R = R̂, go back to Step 1,
Step 5: : The pose estimates are R and t = −Uvec(R) respectively.

7. Convergence Analysis of Algorithm.

7.1. Global convergence. The algorithm is such that the non-negatively valued
cost function f decreases monotonically at each iteration, and thus converges. Con-
sequently, point iterate Rk converges to {R ∈ SO3 | f(R) = c} for non-negative
scalar c. However, since f is smooth on SO3, the algorithm step given by the gra-
dient or Gauss or Newton direction is downhill on f and zero when the gradient is
zero. Thus Rk converges to a critical point of f , when its gradient is zero.

Of course, critical points of f where the gradient is zero are fixed points of the
algorithm. However, critical points other than local minima are unstable fixed
points. That is, small random perturbations of the algorithm from these points will
result in further iterations which give cost reductions.

The algorithm is designed to escape local minima that are not the global minima
by virtue of the geodesic searches including periodic geodesic searches in a random
direction. Even so for practical purposes, since the algorithm is only implemented
for say 5–10 iterations, there may well be a low probability that there is ‘conver-
gence’ to a local minima which is not a global minimum. Given this background,
we provide only a rigorous quadratic convergence analysis in the vicinity of a global
minimum, and for simplicity assume that the global minimum is unique and iso-
lated, as we expect in the case of generic objects located in front of the camera.

7.2. Local quadratic convergence at global minimum.

Theorem 7.1. Let R∗ ∈ SO3 be the unique and nondegenerate global minimum of
the smooth function f : SO3 → R defined in (10). Let Rk be a point in an open
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neighbourhood of R∗. Consider the proposed iteration on SO3,

Rk+1 = s(Rk), s = π3 ◦ π2 ◦ π1, (49)

where π1 is given by the Newton direction defined in (30), π2 involves projection back
to SO3 via the smooth exponential map of (33), and π3 is an analytic geodesic search
described in (34). Then the point sequence generated by s converges quadratically
to R∗.

Proof. See Appendix B.

8. Simulations. A set of 3D points that are generated uniformly within a cube of
size [-5,5] are chosen as the model. The model is rotated and translated randomly
within the field of view of the camera and then projected onto an image plane.
Gaussian noise of mean zero and varying standard deviations σ is added to both
image plane coordinates independently. The different standard deviations in the
Gaussian noise corresponds to various noise levels. All simulations are repeated for
1000 times. A CCD camera with focal length of 600, aspect ratio of 1.0 and principal
point of (256,256) is used. All simulations are carried out in MATLAB. Throughout
the simulation, we define the relative pose error as the normalized distance between

the actual pose and its estimate. That is, EA := 2 ‖A−Â‖
‖A‖+‖Â‖ , A ∈ {R, t}. The

performance of the Gauss-Newton-on-manifold algorithm is compared against the
Orthogonal Iteration (OI) algorithm of [11].

8.1. Relative pose error vs. noise level. Points and poses are generated as
described earlier. With the number of matched points fixed at 12, we vary the noise
level between 0.5 to 5.0 pixels. It is clear from Fig. 7 that the Gauss-Newton-on-
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Figure 7. Relative pose error vs. noise level.

manifold approach (without reinitialization) performs significantly better than the
OI algorithm in terms of relative pose error, even after the OI algorithm has been
reinitialized 5 times. This is particularly the case for noise level greater than 1.5
pixel.
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Figure 8. Relative pose error vs. number of point correspondences.

8.2. Relative pose error vs. number of points. Here, we vary the number
of point correspondences from 5 to 50 and add 1.0 x 1.0 pixel Gaussian noise to
the images. Figure 8 indicates that the performance of both algorithms improve as
the number of point matches increase. However, the proposed recursions (without
reinitialization) gives better pose estimates than the OI algorithm, even after 5
reinitialization, for point correspondences less than 15.

8.3. Number of iterations. Figure 9 shows the number of iterations (without
reinitialization) required by each method to achieve the performance shown in Fig. 7
and Fig. 8. It is clear that the Gauss-Newton-on-manifold approach always con-
verges in 5–10 iterations as opposed to the OI algorithm that requires at least 10
iterations.
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8.4. Rate of local convergence. Figure 10 shows that the proposed Gauss-
Newton-on-manifold algorithm converges to a fixed point R∗ at a quadratic rate
as opposed to the OI algorithm which converges at a fast linear rate.

Figure 10. Rate of local convergence.

Remark 8.1. The extra cost per iteration is small since implementing the Newton
step with 3 × 3 Hessian matrices in not onerous, nor is the solution of a quartic
equation for the optimal step size selection. We observe the computational cost per
iteration of OI algorithm is much less than ours when implemented using Matlab.
But we expect that when implemented in C/C++, the relative computational cost of
our algorithm will improve significantly.

9. Algorithm Robust to Outliers. Recall that the proposed algorithm mini-
mizes the sum of squared residuals,

1

2

n∑

i=1

r2
i , ri = ‖Divec(R)‖,

and gives accurate fitting of data when the underlying noise in the data is Gaussian
but is very vulnerable to outliers.

To avoid this, a robust version of the algorithm which adapt the M-estimator
technique proposed by Huber [6] is presented. The M-estimator technique is based
on the idea of reducing the effect of outliers by replacing the squared residuals, r2

i ,
with another function of the residuals, yielding the cost function

1

2

n∑

i=1

ρ(ri), (50)

where ρ is a symmetric, positive function with a unique minimum at zero and is
chosen to be growing slower than the squared function. The solution to this problem
can be found by setting its derivative with respect to the unknown parameter vector
θ to zero,

n∑

i=1

dρ

dri

∂ri

∂θj

= 0 (51)

Defining a weight function

wi = ri

dρ

dri

,
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then (51) becomes
n∑

i=1

wiri

∂ri

∂θj

= 0.

Observe that this is the solution to the following problem

min

n∑

i=1

wir
2
i .

In practice, instead of solving (50), it is more efficient to solve a sequence of
reweighted least squares problem. Thus, to increase the robustness of the proposed
algorithm against outlier, we proceed to minimize the following weighted cost func-
tion

fw : SO3 → R,

fw(R) =
1

2

n∑

i=1

wi‖Divec(R)‖2 =
1

2
‖Dvec(R)‖2

W ,

where W = diag(w1, · · · , wn) ⊗ I3.
Among the weighting function proposed in the statistics literature, Huber’s

weight function is given as

wi =

{
1 if |ri| 6 cs
cs
|ri| otherwise

, (c = 1.345),

and Tukey’s biweight function is

wi =

{ (
1 −

(
ri

cs

)2
)2

if |ri| 6 cs

0 otherwise
, (c = 4.6851).

Here the scale

s =
mediani|ri|

0.6745
is introduced to give a scale invariant version of an M-estimator and the value 0.6745
is one half of the interquartile range of the Gaussian normal distribution N(0, 1).

To evaluate the robustness against outliers, the algorithm which minimizes a least
squares cost function (LS) is compared against the algorithm which minimizes the
reweighted least squares cost function (RLS) using Huber and Tukey weights. Data
are generated as in earlier simulation, but now the number of point correspondences
is fixed at 20. The outliers are generated by shifting certain image points at least
50 pixels from their actual location. In addition, Gaussian noise of mean zero and
σ pixel standard deviation is added to the rest of the point correspondences. 1000
trials were carried out.

Figure 11(a) shows the plot of mean relative rotation error vs. percentage of
outliers with σ = 1 pixel. In the absence of outliers, both LS and RLS give similar
performance. In the presence of less than 20% of outliers, RLS gives significantly
better performance than LS but when the percentage of outliers greater than 25%,
we observe no advantage of using RLS against LS. Figure 11(b) shows the plot of
mean relative rotation error vs. noise level with 5% outliers. This plot indicates
that even in the presence of a small relative number of outliers, RLS outperforms
LS significantly regardless of the noise level. Also among RLS methods, Tukey’s
biweight functions seems to give better performance than Huber’s weight function.
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(b) Mean relative rotation error vs. noise level
with 5% outliers.

10. Conclusion. In this paper, the task of estimating position and orientation
of a 3D object from single 2D image has been formulated as an unconstrained
optimization problem cast on the intersection of a rotation group and a cone con-
straint. Newton-type algorithms based on the proposed geometrical framework have
been developed. The techniques take into account the underlying geometry of the
constraint manifold to achieve ‘best possible’ speed of convergence, indeed local
quadratic convergence. Unlike most existing numerical procedures, the proposed
algorithms evolve on the constraint manifold and thus preserve constraints at every
iteration. The key differentiating features, each adding measurable value to the
algorithm, concern

• A new approach of obtaining noise-free solutions for n > 5, which can be used
for low noise initializations,

• The use of 3 × 3 Hessian inversion, as opposed to the conventional Newton
approach that works with a 6 × 6 Hessian matrix [9],

• The analytic geodesic search for step size selection, requiring a solution of a
quartic, and facilitating escape from a local minimum but not from the global
minimum,

• Achieving local quadratic convergence by means of simulations and mathe-
matical proof,

• No need to reinitialize the algorithm to achieve global minimum within the
feasible region,

• Introduction of the Newton decrement as an indicator for selection of gradient,
Gauss, or Newton directions and for algorithm termination,

• For a prescribed number of iterations, the proposed algorithm achieves signif-
icantly lower pose estimation errors than earlier methods and it converges to
a global minimum in typically 5–10 iterations.

• To increase robustness against outliers, the proposed algorithm adapting the
M-estimator technique is also presented. It is not easy to derive analytical
results on this robustness, but simulations appear convincing.

These features suggest that as digital signal processing hardware becomes more
powerful, the algorithm can be conveniently applied to on-line pose recovery tasks,
and can be a basic tool for more sophisticated tasks involving adaptive object recog-
nition and pose tracking.
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11. Appendix A: Rank of D. Consider D as defined in (11). In order to evaluate
rank(D), observe that D can be reformulated as

D = Û(M⊤ ⊗ I),

where M :=
[

m1 m2 · · · mn

]
, and denoting 1n as n× 1 vector consists of 1,

Û := diag(Ũ1, · · · , Ũn)(I − (1n ⊗ Ā)), Ũi := I − Ui,

Ā := (A⊤A)−1A⊤ [
Ũ1 · · · Ũn

]
.

Then,

rank(D) 6 min{rank(Û), rank(M⊤ ⊗ I)}
To analyze the minimum rank of Û , observe that

ÛX = 0, (52)

where

X :=




I Ũ1 I · · · I
... I Ũ2

...
. . .

I · · · Ũn




.

Elementary row and column operations on X gives that rank(X) = (n + 3) in the

generic case when {ui}{i=1,...,n} are linearly independent. Since Û has full rank of

3n and it can loose at most (n+3) rank, then rank(Û) = 3n−(n+3). The necessary
conditions for such existence is that 3n − (n + 3) > 0 or n > 2. For generic models
when rank(M) = 3, then

rank(D) 6 min{(3n − (n + 3)), (3 × rank(M))}
6 min{(2n − 3), 9}.

12. Appendix B: Proof of Theorem 7.1.

12.1. Fixed Point of the Algorithm. Let R∗ ∈ SO3 be a fixed point of s =
π3 ◦ π2 ◦ π1, we have

s(R∗) = R∗ ⇔ π3◦π2◦π1(R∗) = R∗ ⇔ R∗e
Ω(θoptωopt) = R∗ ⇔ eΩ(θoptωopt) = I.

If the exponential map in the projection step π2 is within its injectivity radius, then
only ωopt = 0 satisfies the above equation (since θopt is a positive scalar). Thus,
the only fixed points of the algorithm are critical points. However, as noted in the
text only local minima are stable fixed points. Indeed with our geodesic search
feature, only global minimum is a stable fixed point. Notice that ωopt = 0 is the

(unique) minimum of j
(2)
0 (f ◦µR∗

)(ω) if and only if µR∗
(0) = R∗ is a non-degenerate

minimum of f : SO3 → R.

12.2. Smoothness Properties of the Algorithm. Under the assumption that
the cost function f is smooth and Hessian of f ◦ µR is invertible everywhere, the
optimization step π1 is smooth. The projection step π2 which involves only the
exponential mappings is also smooth. Although the operation π3 is designed to be
discontinuous to escape local minima not a global minimum, yet in a sufficiently
small neighbourhood of R∗, the operation π3 is continuous since all critical points
other than R∗ have a higher cost than the current cost. It is then more than twice
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differentiable since it concerns the isolated minimal cost solution of a polynomial
equation.

12.3. Local Quadratic Convergence of the Algorithm. Let R∗ denote a stable
fixed point of s = π3 ◦ π2 ◦ π1, being also the unique and non-degenerate global
minimum of the function f , as already established under our assumptions. We will
compute the first derivative of s at this fixed point. Applying the chain rule to the
algorithmic mapping s = π3 ◦ π2 ◦ π1, and using the fact that π1(R∗) = π2(R∗) =
π3(R∗) = R∗, for all elements ξ ∈ TR∗

SO3, the first derivative of s at fixed point
R∗ is,

D s(R∗) · ξ = Dπ3(R∗) · Dπ2(R∗) · Dπ1(R∗) · ξ. (53)

Considering s in the local parameter space, we have the self map

µ−1
R∗

◦ s ◦ µR∗
: R

3 → R
3. (54)

Thus, rewriting (53) in terms of local parameterization defined by

µR∗
: R

3 → SO3, ω 7→ R∗e
Ω(ω), (55)

with Ω as in (13), we have

Dµ−1
R∗

◦ s ◦ µR∗
(0) · h

= Dµ−1
R∗

(R∗) · D s(R∗) · DµR∗
(0) · h,

= Dµ−1
R∗

(R∗) · Dπ3(R∗) · Dπ2 ◦ π1 ◦ µR∗
(0) · h. (56)

Consider the composite function

π2 ◦ π1 ◦ µR∗
: R

3 → SO3, ω 7→ µR∗
(ω)eΩ(ωNewton

opt (µR∗
(ω))). (57)

where

ωNewton
opt ◦ µR∗

(ω) = ωNewton
opt (µR∗

(ω)) = −[Hf◦µR∗

(ω)]−1∇f◦µR∗

(ω). (58)

Exploiting linearity of the mapping Ω, using the well known formula for differenti-
ating the matrix exponential and the fact that

µR∗
(0) = R∗, ωNewton

opt (R∗) = 0,

we have
DµR∗

(0) · h = R∗Ω(h), (59)

and

DωNewton
opt ◦ µR∗

(0) · h (60)

= −[Hf◦µR∗

(0)]−1 D∇f◦µR∗

(0) · h − D[(Hf◦µR∗

(0)]−1 · h∇f◦µR∗

(0),

= −[Hf◦µR∗

(0)]−1
Hf◦µR∗

(0)h, since ∇f◦µR∗

(0) = 0

= −h.

Now, we compute the first derivative of the composite function (57) in the limit as
ω approaches zero as,

Dπ2 ◦ π1 ◦ µR∗
(0) · h = R∗Ω(h) + R∗Ω(DωNewton ◦ µR∗

(0) · h) (61)

= 0.

Substituting (61) into (56) shows that for all h ∈ R
3

D µ−1
R∗

◦ s ◦ µR∗
(0) · h = 0. (62)

Since the iterate Rk is in an open neighbourhood of R∗, then by inverse mapping,
ωk = µ−1

R∗

(Rk) stays in a sufficiently small open neighborhood of the origin in R
3.
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Vanishing of the first derivative then implies local quadratic convergence by the
Taylor-type argument, for some positive κ

∥∥µ−1
R∗

◦ s ◦ µR∗
(ωk)

∥∥ 6 sup
y∈N (0)

κ
∥∥D2 µ−1

R∗

◦ s ◦ µR∗
(y)

∥∥ · ‖ωk‖2
(63)

with N (0) the topological closure of a sufficiently small open neighbourhood of
origin in R

3.

Remark 12.1. The result holds for π3 being an identity operation as for a Newton
step, or is given by a smooth geodesic search. Notice that if the geodesic search is
switched off in the neighbourhood of R∗, so that π3 is an identity operator, then the
assumption of uniqueness of R∗ can be relaxed for this proof to still hold.

One might ask: what happens in the nongeneric case when the Hessian matrix is
singular at a local minima? In this case, the local minima are not isolated, and one
expects quadratic convergence to this connected set by similar but more technical
arguments.
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