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Quadratically Convergent Algorithms for Optimal
Dextrous Hand Grasping

Uwe Helmke Senior Member, IEEEKnut Hiper, and John B. Mooréellow, IEEE

Abstract—There is a robotic balancing task, namely real-time in the literature, and the optimal solutions calculated appear to
dextrous-hand grasping, for which linearly constrained, positive pe relatively more acceptable in engineering terms. There re-
definite programming gives a quite satisfactory solution from an - 5ing 5 challenge to achieve guaranteed quadratic convergence,
engineering point of view. We here propose refinements of this ap- and even faster algorithms if possible. In addition, in the event
proach to reduce the computational effort. The refinements include g s D -
elimination of structural constraints in the positive definite ma- Of changing external forces, or nonfeasible initial conditions,
trices, orthogonalization of the grasp maps, and giving a precise there is a challenge to achieve robust online convergence to the
Newton step size selection rule. optimal solution. The cost index from [1], [2] appears to be an

Index Terms—Dextrous hand, gradient flow, Newton algorithm, ~appropriate one, so there is no real need to refine this aspect in
optimal grasping, positive definite programming, Riemannian ge- advancing the methods.
ometry, robotic hand. The online optimization schemes in [1] and [2] are based
on the observation that the friction inequality constraints at the
finger contacts can be viewed as a positive definiteness con-
) . o ) straint of a matrix, denoted, which is linear in the contact
I N ROBOTICS, a key issue is the coordination of indepefgrces. The balancing of internal and external forces imposes ad-

dent actuators to achieve a common goal. Thus, for Myjitional linear constraints. The cost function is linear in b&th
tiple robots lifting an object, walking robots, or a robotic hangdn eitherP—!, or — log(det(P)). The penalty term involving
grasping and manipulating an object, there must be some bak-1 or 4et( P) ensures that, with an initial positive definifs a
ance and optimization of forces. The optimization, which is iBradient algorithm achieves an optinfalhich is positive def-
essence a mathematical task, must achieve useful grasp plangfgs. Slippage at the finger contacts occurglét(P) is zero,
implementation in real time. For online dextrous hand graspipg there is loss of contact## becomes indefinite. The linear
in robotics, a requirement s to develop real-time schemes whighst onp ensures that the totality of finger forces is minimal.
result in minimal and balanced contact forces satisfying friction |itial insights into the optimization, outlined in [1], arose
cone constraints. from the study of gradient flow methods for balancing prob-

The earlier context for this research starts with [7] and [§¢ms as in [4], and mild generalizations of these. Subsequently,
where linear programming techniques are used, but with ill-Cogscrete-time versions of these gradient flows with guaranteed
ditioning problems. Nonlinear programming techniques, as alobal convergence properties have been developed using a
plied in [9], lead to an essentially off-line approach, which is n@jkin step size familiar to linear and quadratic programming
practical for real-time implementation. [2]. The approaches in [1] and [2], however, did not lead

In[1] and [2], linearly constrained positive definite programy precise step-size selection with guaranteed convergence
ming methods are developed for an online grasping optimizatigfbperties, but were based on line-search arguments.
task. The algorithms appear at times to be quadratically converin more recent work [5], the cost index of [1] and [2] is opti-
gent, although this was not guaranteed by any theory, and figed using a generic linear matrix inequality (LMI) semi-def-
selection of the step size involved in the algorithms requires e programming approach [3], [6], [10], [12]. This is claimed
ad hocline search. Nevertheless, these algorithms are one;jQ[s5] to achieve convergence with less computational effort. Ac-
two orders of magnitude faster than earlier schemes propo%gg”y, key differences in the LMI approach to that of [1] and [2]

turn out to be the step-size selection in a Newton-based scheme,
. . ) __and the handling of the linear constraints. There is a factor of
Manuscript received Mar(;h 2_2, 2001; rews_ed Sept'ember 29,2001. Th|s_pa er . . . .
wa recommended for publication by Associate Editor J. Ponce and Edltorﬁp.ur or so iImprovement claimed for one example. This relative
Walker upon evaluation of the reviewers’ comments. This work was supportsticcess underlines the question as to whether or not there is

in part by the German-Israeli Foundation for Scientific Research and Deveom to surpass the LMI algorithm performance with a more
opment under Grant GIF-1-526-034.06/97 and by the Hong Kong Competitive

Earmarked Research Grant. SpeCIc'J_l“ZGd algorithm. o
U. Helmke and K. Hiiper are with the Department of Mathematics, University We introduce a number of enhancements and generalizations

of Wurzburg, D-97074 Wurzburg, Germany (e-mail: helmke@mathematik.ugif the methods of [1] and [2], some of which also apply to

wuerzburg.de; hueper@mathematik.uni-wuerzburg.de). .
J. B. Moore is with The Department of Information Engineering, Th@nhance the Newton-type LMI approach of [5] In this work,

Chinese University of Hong Kong, Sha Tin, NT, Hong Kong, on leave frorglobal convergence is shown involving precise step size selec-
the Department of Systems Engineering, Research School of Informatiﬁan' with guaranteehbcal quadratic convergende the neigh-

Sciences, Australian National University, Canberra, ACT 0200, Australja . .
(e-mail: john.moore@syseng.anu.edu.au). orhood of the unique global optimum. Thus, convergence oc-

Publisher Item Identifier S 1042-296X(02)04300-8. curs to the accuracy of the computer, typically in less than 10

. INTRODUCTION

1042-296X/02$17.00 © 2002 IEEE



HELMKE et al: QUADRATICALLY CONVERGENT ALGORITHMS FOR OPTIMAL DEXTROUS HAND GRASPING 139

iterations for generic cases, so that online systems can be #n-Grasping Constraints: Background

plemgnted with confidence, rather than merely relying on thel) Constraint Equalities and InequalitiesConsiderNV fin-
experience that they usually work well. Our main convergengg, s \ith thepoint contactforces at thei-th finger denoted
result is reminiscent of similar results in convex pProgramming .« R the normal force component, angs, c;3 € IR,

[10]-[12]. In such a convex programming approach, the st@ tangential components. Coulomb’s law for a point contact
size is selected as unity in the vicinity of an optimum, and oth ~tion model (with no slippage) is that for each
erwise according to a line search. The criteria for determination

of which step-size selection to take depends on whether or not 0372 + 03,3 < Nz‘QCiQ,lv ci1>0 (1)
the estimate is inside a Dikin ellipsoid. There is inherent dis-
continuity in the algorithm. Our approach of deriving approxiwherey; > 0 denotes the Coulomb friction at the point contact
mate step sizes is different, in so far as quadratic convergencgfighe :th finger. Denoting: as the vector
achieved by a continuous step size selection scheme. The conti- . s 3N
nuity property enables us to develop a convergence theory using c=[q & - o ER
only relatively straightforward ideas from Calculus. We believe ci=lcip co cgl € R® 2)
that this technique is new in this application and may be of i
dependent interest.

There is additional computational effort reduction resultin
from a number of specific contributions: We= fuu € RS 3)

rtjﬁen the balance of external forces can be written as a linear
aquation

» Formulation of the finger force inequality constraints in Ex3N - )
terms of a 2« 2 positive definite matrix in the point con- The grasp map¥ € IR is necessarily full rank for
tact case, rather than in terms of & 3 matrix as in [1], So-called force closure [5]. It contains thé/ contact wrench

[2], and in terms of a % 2 positive definite complex Her- directions in its columns and maps forces from the contact
mitian matrix, for the soft contact case, rather than as off@mes to the coordinate frame of the grasped object center of
4 % 4 real symmetric matrix. This circumvents the neefass.

to maintain structural linear constraints, which are clearly For the case adoft finger contacforces, the inequality con-
artifacts, as well as achieving “dramatic” computationaitraints in an elliptic approximation are

effort reduction for the Newton-type algorithm.

A priori orthogonalization of the linear grasping force con-

straints, which simplifies the computations for the lineafqre .. — Wi, B = /W sr)s i > 0 model the

constraints forthe Eucl!dean Qrad_'e”t algorithms. . _relation between torsion and shearjlimits: and € IR is the

Calculation of a step size which is guaranteed to giVe @mponent of moment about the contact normal

reducled _cc_)s_,t,l_acmevmg IOCZI qua:jdra_tm ﬁonvergence. ;I_—h'SThere are alsgoint effort constraint inequalities, discussed

can alsoinitialize a proposed quadratically convergentlifgs) i these are omitted from consideration for simplicity of

search algorithm. Asymptotically, the step size is unity ff, e sentation. They present no particular difficulties to include

quadrat!c convergence. within the subsequent theory.

* The op]Jctlmur’In step_s:ze IS observe]:j to be the smallelst reab) Constraints as Linearly Constrained ConeRecall that
zero of a polynomial constructed from quadratic polyngy ey ghservation of [1] is that the inequalities (1) for the point

mials associated with each finger, and a maximum Steg 4t case are equivalent to the positive definiteness condition
size for remaining within the cone is given in terms of

the solution of quadratic equations associated with each P = P’ = Blockdiag(Py,...,Py) >0 (5)
finger.
In Section Il, the robotic dextrous hand grasping constraints %}(Eere ther; are given in terms of 3 3 matrices, linear i ;.

reformulated to simplify positive definite programming. In Sec- eretart()e quo itru::turgl tchortlsétramtlsﬁ ntha:t the d|agon_er1:]el—
tion 111, the cost function to optimize grasp forces is given an ments be identical and that two elements are zero. 1here are

its relevant properties. In Section 1V, relatively simple-to-caf— US3V such constraints, augmenting the constraint (3), of the

culate Newton-type algorithms, based on Riemannian gradiemgm

are studied. quel, e>§plicit step size sglections f_or our aIgQ— tr(A;P)=b;, forj=1,....m=3N+6 (6)
rithms appear in Section V, together with the main quadratic

convergence results. Conclusions are drawn in Section VI. whereA; have the same block diagonal structurefas

of (03,2 + 03,3) +/37‘,20§,4 < C?,h cip >0 4)

Aj = Blockdiag(Ajjl, ey Aj,N)- (7)

Il. GRASPING CONSTRAINTS The 4;; are 3x 3 real matrices.
For the soft finger contact case, the contact forces are charac-
Consider the simplest of all grasping problems, namely thirized by (5) where now thg; are 4x 4. Again F; is linear in
of a statically balanced grasp using point or soft finger contactie contact forces; ; and hasiN linear structural constraints,
See [1] for a more complete context of robotic grasping ann that its diagonal terms are identical and some off-diagonal
formulation of optimization tasks. terms are zero.
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3) Simplification of Cone Constraints: Point Contactwhere

Case: A first observation, important for computational effort 1 1
reduction, is that the inequalities (1) are equivalent to the 1 0 0 —
. .. f . . Hi 2Ni 2ui
positive definiteness of (5), but now with ti#¢ > 0 given in Ji=|l0 o 1|, Jgtl=]|1 1 (13)
terms of 2x 2 matrices, rather than:33 matrices, as w —1 0 ‘ 3 3
0 1 0
piL pi Lici1 + ¢ . The constraintV ¢ = f. can then be rewritten in terms pf
P = { il 1’2} = { oL T2 i3 > 0. and and & x 3N matrix © with orthonormal rows as
Di2 Pi,3 Ci,3 HiCi 1 — Ci 2
(8) Op=1b (14)

This constraint is equivalent to (1), since the trace and deterjjhere@©’ = I, and

nant of P; are both positive. The number of linear constraints

is reduced b tom = 6. Similarly, the matricest; are now b= Sfue, S=(WJ HWJY)Y)"7, ©=SWJ

block diagonal with 2< 2 symmetric subblocksl; ;. (15)
4) Cone Constraints  Simplification:  Soft  Finger

Case: Computational savings can be made as well fQiow denote the elements 6f as®, ; and thejth row of (14)

this case, and robustness achieved, by working with the COB%O;p = b;. Then, by working with one row at a time, (14) can
plex Hermitian block diagonal matrix be written as (6) where

tI‘(AjP)ij fij=1,2,...,6,

P = P" = Blockdiag(P, ..., Py), 9) A; = Blockdiag(4; 1,. .., A; n),
| citaicias ez — JfBicia 951 95 1954 BO5;
Pi= aiciz+j3Bicia Ci1— qcio2 > 0. (10) Aj = [ 0 ©,s]’ Ajz = 0 ©6] "

There is a corresponding block diagonal structure for complex (18)
Hermitian A;, with 2 x 2 submatricesl; ;. Note that the diag- The orthogonality of® ensures the orthogonality of thé;.
onal elements of” are real, and that when 4+ = 0, the point That s, (11) holds. Notice that, in order to derive orthogonality,
contact case is recovered. These soft finger cone constraints (#8)have chosen not to work with symmetrg. However, re-
are identical to (4), since the trace and determinai @fre both placing A; by the symmetric matrixA; + A’)/2, and noting
positive. Again there is a reduction of the dimensionsipaind  thattr(A; P) = tr( A, P), we can assume without loss of gen-
the number of constraints is reduced by N tom = 6. erality thatA; is symmetric. Therefore, we assume this subse-

5) Computational ~Effort and Robustness Implicaguently.
tions: There is a factor of two reduction in effort for The corresponding soft finger results follow likewise.
block multiplication. The main computational effort in the 7) Computational Effort Reduction From Orthogonaliza-
Riemannian gradien? update equations in [2] [see also (31)tion: One implication of orthogonalization is that working
(32), and (38)] is in calculating an x m matrix and its inverse. with the six constraints (17), there is a computational reduction
Thus reducingn, for example from3~N + 6 to 6, amounts in calculating the Euclidean gradient (25) and (27). There is not
to considerable computational savings. Also, any potentighy reduction for the Riemannian metric gradient calculation
numerical difficulties staying on the constraint submanifolg31), (32), and (38). The Riemannian metric gradient turns out,
associated with the structural constraints are removed. as we show below, to be a Newton direction.

6) Orthogonalizing the Grasp MapsiVe assume |t is known that Newton algorithms, although quadratically
throughout the paper that the grasp map is full rank, thaénvergent in the neighborhood of the optimum, are usually not
is A1, ..., Ag are linearly independent. An observation whickaster than the linearly convergent gradient algorithms outside
leads to computational effort reduction for calculating Euthis neighborhood. The computational savings from orthogonal-
clidean gradients, but not for the Riemannian metric gradienigation of the grasp map, by a factor of 3 to 5 on typical grasping
is to organize the constraints (6) so that the, ..., As are examples, are an incentive to use a Euclidean gradient scheme

orthogonal, i.e., initially, for say three or four iterations at the cost of one Newton
iteration. Then, itis best to switch to the more expensive Newton
tr(A;A}) = 6y (11) algorithm for the last few iterations.
whered;; is 0 if < # j and unity otherwise. [1l. GRASPING COST FUNCTION AND PROPERTIES

For the point contact case, define For simplicity, we focus on the point contact case. The anal-

ysis for the soft finger case follows along similar lines. Let

., o , Pg(n) denote the set of block diagonal, real or complex Hermi-
p=[pr p2 - PN, pi=I[pin pi2 Ppi3] tian positive definiten x n matricesP? = P# > 0, consisting
p=Jc, J=Blockdiag(J1,...,J n) (12) of N 2x 2 blocksP;. Of course;n = 2N. Denote the affine
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constraints ag(n) := {P|tr(A;P) = b;, j = 1,2,...,6}, on P, follows, since the restriction of a Hessian to a linear
and the constraints oR asPp, := Pp(n) N L(n). subspace is the Hessian of the restriction to the subspace.
Consider the costindek : Pg.(n) — R The last claim follows from a simple application of the Im-

plicit Function Theorem. To this end, let
O(P) = tr(P) — log(det(P)). a7)
v g e y A b) = ((A1,b1), ..., (Ag, bg)) € (Sp(n) x R™)®
ore general indices with positive definite weighting matrices P o (A D) [0l A A — 601
on P in each of the terms of (17) can be considered as well {(A D) [t Ady) = b}

along the lines of the following theory. However, we will not dcblearly Sp(n) = Tp ® T whereT# = span{A,, ..., Ag}.

so here. . _Consider the smooth functiol : Pg(n) x I' — Tp & T
We now consider, in turn, some features of the cost functl%ﬁned as

which lead to an optimization with guaranteed convergence.

A. Convexity of the Cost Function (P, (A D) := | VO(P), Z((tr(AjP) -0)A) | (21)
Itis known from [1] and [2] that such cost functions as in (17) J

have compact sublevel sets B, ensuring the existence of

global minima. Moreover, the cost function @ is strictly

convex. This implies that there are no critical points other th

a unique global minimum, denotdd’. A proof of this result is

where the Euclidean gradieRt®(P) is defined subsequently
dn (25). ThusW(P, (A,b)) = 0ifand only if P = P*(A,b) €
Pe. The claim follows from the Implicit Function Theorem,
included for completeness and to set up some notation. once it is verified that the partial derivative & with respect

i i ) ; 1
The tangent space &g is the(3N — 6)-dimensional space EI(')P mduhc_es a Ilgear isomorphism frofi (1) &nto];p STp.
Tp = Tp(Ppe). That s, o0 see this we decompose any tangent veftor Sp(n) as

Q = Q +Q, whereQ, € Tp andQ2,, € T7. Obviously,
Tp = {Q € Sp(n) | 1(A;Q) =0forallj =1,2,...,6} tr(A4,Q,) = 0 for all j, and the restriction
(18) Ty —Tp, Qe > tr(A;02,)4 (22)
whereSg(n) denotes the set of block diagonal, real or complex J
Hermitiann x n matrices(?, consisting ofV 2 x 2 blocks{?;.

: ) s i is a linear isomorphism. In facf,, = > . i, A; for uniquey;
ForanyA € T, consider the cost functiof(«) and its deriva- P W = 2 #1345 auer,

and
tives ¢'(«v), ¢” (<) with respect tax
¢ (@) = tr(A) — tr((P 4+ aA)7LA) i i i
¢ (o) = tr(((P + ad)"LA)?). (19) (23)
Clearly,¢” (0) > 0, implying strict convexity ofo(P) atanyP. IS & linear isomorphism. . o _
We show next that the optimization task is well posed. Finally, the linearization o’ ®( ) in the directiort2, is seen

Theorem 1I1.1: The function® : P, — IR is strictly from (25) asthe linear map(Ve(P)) : Tp — Tp, defined by
convex with compact sublevel sets and

6
_ p-1 -1 /A
lim  B(P) = . D(VO(P)Q = PP =Y A4, (24)
P—3Pr. =1
The Hessian of at any point” € Pp is wherey] = tr(A;, P, P), i = 1,...,6. Suppose?, is in the
kernel of D(V®(P)) : Tp — Tp. Then
Ho(P)(Q, Q) = tr(P 1 P 1Qy) (20)
6
and is positive definite. In particular, there is a unique local and Q= Z%PAZP
global minimum i=1
P*(A;,b;) € Pe and thus forj = 1,...,6
6
?f_q)l. Mor(jeover, P* depends smoothly ond; and b;, 0 = tr(A4;Q) = Z'V; tr(A;PA; P).
=1,...,6. —

Proof: By the above argumend is a sum of the convex
functiontr(P) and the strictly convex function log(det(P)) By positive definiteness of the %6 matrix with (¢5)th entry
and is therefore strictly convex. equal totr(A;PA,P), this impliesy, = --- = v = 0, and
The Hessian ofb in Py coincides with that of-logdet P thereforef2, = 0. This shows that the linearization is injective,
and is thus given as in the theorem. The formula for the Hessiamd hence is invertible at ay. The result follows. [ |
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B. Euclidean Gradient Algorithm with respect to this metric [11], being in the tangent space of
The Euclidean gradient is Ppeis
6
6 . _ _p-l_ A
i=1 B

(25) Where the3; come from the solution of

2
Here we have assumed that theare orthogonalized as in (17). P (AL (P = P))
Both gradients are in the tangent spdge of (18). To verify C =Gt : . (32)
this, first observe thatr(A;V®(P)) = 0 for all j. Moreover, B tr(Ag(P2 — P))

V&(P) € Tp(Pp.). Also, the directional derivativ®®(F) -

(¢) satisfies Here the matrixG with (ij)th entry equal tar(A; PA;P) is

necessarily full rank fof” > 0 and theA; are linearly indepen-
D®(P)- (&) = tx(VO(P)¢) forall¢ € Pge,.  (26) dentforallj. Note that

The standard Euclidean gradient algorithm for con¢®) tr(A;grad (P)) =0,  foralli. (33)
IS Note also that there is no computational simplification due
Prs1 = Py — axVO(Py) =: F(P). (27) to thea priori orthogonalization of the grasp map, as for the

Euclidean gradient. We would need to “orthogonalize” at every
This clearly goes in a “downhill” direction, ity > 0. ForP, # step the productE,i/QAjP,i/Q, in the same way as we “orthog-
P* andag, > 0 sufficiently small, this step achieves a reducednalized” 4, in order to achieve the simplificatiod = /. For
cost. The step size is chosen small enough to preserve positive Euclidean gradient, the correspondifigis simply G =
definiteness of’. More precisely, and referring to [2, Theoremgtr(A4; 4;));; = 1.
4—6], it is chosen so that the mappig: P — Ppcis a
continuous map with the property IV. NEWTONALGORITHM VIA RIEMANNIAN GRADIENT

O(Poy1) < ®(P,), forall B, # P, (28) A TheHessian
o ) ] ] For®(P) onPgp(n), the Hessian is the quadratic form, given
In [1] and [2], an explicit choice of a step sizg guaranteeing fom (20), a5 (P)(€, Q) = tr(P~1QP~1Q). The restriction
convergence is not given, and the line search arguments hgyée Hessian oit(n) satisfies, noting (33)
been implicit, rather than explicit. We will not consider this al-

gorithm any further, as our step size selections do not lead to a  Ha(P)(grad ®(P), ) =tr(P~'grad ®(P)P~'Q)
quadratically convergent algorithm. =tr((I — P71)Q)

C. Newton Algorithm =tr(Ve(P)S) (34)

Quadratic convergence rates for optimizing the stricter all tangent vector§: € T (Pg(n) N £L(n)).
convex function®(P) can be achieved by working with the As a consequence of (34), we obtain
Hessian matrid{s(P) and a Newton algorithm, as VO(P) = Ho(P) grad o(P)

Prti = Po — aiHo(P) "IV O(P). (29) grad ®(P) = He(P) tVO(P) (35)

For suitable step-size selection, we prove global and local whereHq(P) * : Tpp — Tp isthe linear isomorphism between
quadratic convergence to the optimal solutigh tangent spaces, defined by

_ In applying the N_evvton a_lgonthm the_ computz_mon of the Wi Ho(P) " u = u” (36)
inverse of the Hessian requires arithmetic operations of order
(3N)? for the point contact case, adV)? for the soft finger with
case. To see this, rewrite the algorithm in terms of vectors rather
than matrices, and note the vector dimensions3a¥eor 4V, Ha(P)(u*, Q) = tr(uf), for all ©. (37)
respectively. We revisit this algorithm below, showing that the
Newton step can be effectively calculated as a Riemannian g
dient step using only ordeé® multiplications.

te that the linear maf.s (P) is a well-defined linear isomor-
phism, as the Hessial+(FP)(-, -) is nondegenerate.

D. Riemannian Metric and Gradients B. Newton Algorithm Revisited

Now a Newton algorithm, seeking to minimize(P) on
P, is simply, via (35), a gradient algorithm with respect to
g(P;&,n) = tr(P~HeP™1y) (30) the Riemannian metric (30)

Let us endowP g, with the Riemannian metric

where¢, iy are block diagonal matrices with the same structure Piy1 = P — axHa(Pe) TV O(Py)
asP andA;, with 2 x 2 sub blocks;, ;. The explicit gradient = P, — oy grad ©(F). (38)
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The computations for the Riemannian metric gradient versionFor A = —grad ®(FP), P == P, o > 0, andL :=
of the Newton algorithm are considerable simpler than for tHeé—1/2AP~1/2, consider
standard Euclidean version, being of or@&marithmetic opera- o )
tions compared t¢3.V)? for the point contact case. ¢la) = (P + al) — logdet(P + ai)
= ¢(0) + atr A — logdet(I + «L).

V. EXPLICIT STEP-SIZE SELECTION FOR The first and the second derivative pfare

QUADRATIC CONVERGENCE

In order t cally implement the Newton algorithm, the  © () = 4 ~ (I +al)THL)

n order to numerically implement the Newton algorithm, the = © i 12
step-size facto, has to be appropriately chosen. To this end, (@) = te((I +aL)""L)" = [[(I + «L) L] 2 0.
we consider at each time instant the “downhill” gradient direcFhe Newton Decrement\q( ), is given as
tion A = —grad ®(P) in the tangent spacEp.

Consider the cost functiof(«) and its derivatives with re- Mo(P) = Vir(VO(P)He(P) =1 V(D))
spect tow, as in (20). NowA inherits the same block structure = /tr(VO(P) grad &(P)). (42)
of P, so that SinceA = —grad ®(P), and recalling (35), we obtain
N N
“tr 1y op
p(a) = > 6P+ alky) — log <det [Ie + am)> —¢'(0) = ta(( - %) grad &(P))
i=1 i=1 = tr(VO(P) grad &(P))
al ’ / = \o(P)?.
# =3 (a0 - 2 —aa) - 2 @) o)
P pi(a) pla) Moreover, sinceP~lgrad ®(P)P~* = V&(P) + 3, ¢;A;,

for suitablec;, then recalling (33), we have
wherep;(«) = det(P; +«aA;). Convexity of®( P) ensures that < 9(33)

the line search is a convex minimization task, at least for step —¢'(0) = tr(P 'grad @(P)P ! grad ®(P))
sizew € [0, amax ), Wherea,,,, indicates the step size leading =¢"(0) = ||L||*.
to the cone boundary.

The critical points ofp(c) on« € IR are given as the real 1nerefore, the Newton decrementig(P) = ||L|]. _
roots of the polynomial equation Let A := ||L||2 denote the 2-norm, that is the largest singular

value of L. Fort > 0, thenl +tL > (1 — t||L||2){ implies
) N (I+tL)y='L2(1 +tL)~! < (1 —¢\)72L2. Therefore
p(@) (D) —=p'(a) =0, p(a):=[[pi(a).  (40)
=1

[IL]1”
d)//(t) S o=
(1 =2l L][2)?
A. Optimum Step Sizg* and thus by monotonicity
A preliminary observation is that, singé(c)|a—o < 0 and sup (1) < | L|?
¢(c) is convex for all P + aA) € Pp,, then the desired line Ogé)a = (1—a||L]]2)*

search minimum foty € [0, amax) OCCUrs at the smallest pos- P
itive real roota™ of the polynomial equation (40), with = By the Mean Value Theorem, this implies )
—grad ®(P). This characterization does not yield an explicit o« v /(gy( < ey Y g < ML
formula fora*, with guaranteed regularity properties at the opﬁﬂ) () =¢(O)] = (;lgpad) ® )]s (1 —«||L||2)? ~ —'(0)
timal solution. We therefore must search for a useful approxi- (43)
mation ofa* that is simple to calculate.

Another preliminary observation is that the maximum Ste\fghere the desired last inequality holds onlyifs chosen such

Size anyax, Which keeps the step withiBz(n), is the smallest that
positive real root of al|L|? + (1 — a||L]|2)%¢(0) < 0. (44)
det(P + al) = Hdet(B +ad;) = 0. (41) The smallest positive root of this quadratic polynomial is
i=1 o = [¢/(0)] 142X — /1441 (45)
This root is found analytically by searching for the smallest real 0T ¢"(0) 2(A**)?

(
root of the second-order polynomial quatidns(B_JraAi) = whereX** = A(P)-(|¢/(0)])/(¢"(0)) > 0. Observe that, in this
0fori = 1,2,..., N. With any step size selection such thagase, since-¢/'(0) = ||L||*> = ¢"(0), we have the simplified
P, — P*, ask — oo, it follows thatA; — 0 andamax — . formula

This may be compared to the Dikin step-size selection used in
14 2A(P) — /1 +4A(P
[1]. ot (p) = LEMP) = 1 44NP) (46)
0 2\(P)2
B. Explicit Step-Size Selection and Convergence Result Lemma V.1: The functionf : [0,¢) — IR
We now derive an explicit step-size selection that leads to 1422 —1+4z

quadratic convergence of the Newton algorithm. f(=x) 572 (47)
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is strictly monotonically decreasing with We now state and prove the main convergence result of the
_ paper.
fO)=1, lim f(z)=0. Theorem V.1:For anyP € Pg., let \o(P) denote the

Newton Decrement and let

“(P) = 14 2X0(P) - «/1+4)\0(P)' 48)

Proof: Consider the Taylor series expansion

VIt Az =1+ 20 — 202 +42° + O(zb). @ 220 (P)2
Therefore, we obtairf(z) = 1 — 2z + O(z?2), which proves Forany initial condition € P, the algorithm
f(0) =1andf’(0) = —2. Simple manipulations show that the Pii1 = Pu — o(Py) grad (P (49)

derivativef’(x) is zero ifand only if{ 1 + x)/1 + 4z = 1+ 3x.
By squaring up and cancellations, this is seen to be equivaléafiverges quadratically fast to the unique global minimum
tox = 0. But f/(0) < 0 and thereforef’(z) must be negative £* € Ppc of @.
for all z > 0, and the result follows. m Moreover, the functior” — «§(P) is continuous orfPp,
SinceA(P) < Xo(P), we conclude that*(P) > «f(P), and satisfiedimp_.p- a(P) = 1.
wherea(P) is defined by (48). Note that the lemma ensures ~ Proof: The proof goes by verifying that the map
that always F : Pge — Ppe, F(P) = P — of(P) grad &(P) satisfies
the assumptions of the previous lemma. First note &i§aP)
0< (P <of"(P)< 1. is smooth for anyP® € P, with P # P*. Thus,F is smooth
and henceDF is Lipschitz continuous at an¥ # P*. If we
Moreover could prove thatF is evenC? at P*, we could finish off with
. . a simple Taylor series argument. Unfortunately, this is not true
phj?)* ap(P) =1 and therefore we require a more complicated argument.
A first step is to show that the derivative gfad ®(P) at
P* is the identity transformation. For arbitrary tangent vectors
Q,Q, € Tp«, we have

holds if P converges to a critical poin®* of ¢. Furthermore,
the function” — «f(P) onPp is continuous.

For any0 < o < «*, we havep’(«) < 0 and hence)(«) <
#(0). Standard Lyapunov-type arguments as, for example, ifts(F*)(D grad ©(£*)2, Q)
[2], shows that the recursion (49) converges to the unique global <P . <Q

=tr A —

minimum P*. Z(Dﬁi(P*)Q)P*AiP*> Py
To show quadratic convergence, we need a lemma. i
Note that the result of the following lemma is well known .

from Calculus for the case @f?-maps. Since this assumption ~ — br <<Q - Z(Dﬁi(P )Q)AZ) 4

is not satisfied in our application, we need to prove the result Lo 1
under the weaker regularity assumption. = w(PTTQPTTY)
Lemma V.2:Let I/ be an open subset ##¢, andF : U — = Ha(P")(Q, ).
v b? aC”-map such that the Qerivativ_@]-"(x) s !_ipschit_z Thus, D grad ®(P*)Q2 = Q for all & € Tp- which proves the
continuous at any € U. Letz* € U denote a fixed point __:
; * . ~ " claim,
of?—“wﬂh DF (") = 0. Then the recursiom.., = #(ax) in Note that the Newton decremeny(P) is the norm of
vis '°°a”¥ quadratically convergent to'. . a smooth function and therefore is Lipschitz continuous.
Proof: Chooser > 0 andL > 0 such_that, using the Moreover, «f is the composition of the smooth function
operator norm and Euclidean norm, respectively, f(x) of (47) with the Newton decrement and therefore
|DF(z)|| < Llz — z*| i; Lipschitz continuous as well. Furthermore, the deriva-
tive of the Newton decrementyo(FP) = |[|G(P)|| where
holds for allz € IR® with |= — z*| < 7. Letg(t) := F(z* + G(P) := Ho(P)~+/2VP(P) is bounded as
* i 1 i
t(x — 2*)), 0 < t < 1. Thus,g is aC* function and by the 1DA(P)]| < |DG(P)|

Fundamental Theorem of Calculus
for all P # P*. SinceDG(P) is a smooth function of, the

[F(z) = Fa")| = |g(11) —9(0)| derivative of \ is locally bounded around*. Applying the
_ / () dt chain rule too§ (P) = f(Mo(F)), we conclude that the same
0 g assertion holds for the derivative af,. The derivative ofF at

any P # P*is
I — of(P)Dgrad ®(P) — Daf(P) grad ®(P).

/01 DF(x* +t(z — a")) (@ — o) dt

1
< / |DF(z* +t(z — z*)|| - |+ — «*|dt  The second summand is the product of a Lipschitz continuous
10 function with a smooth function. Therefore, the second sum-
< Lz —z*? mand is Lipschitz continuous. The third summand is a product
2 of alocally bounded function and a smooth function vanishing at
using the Lipschitz bound. The result follows. m P*. Therefore, the third summand is also Lipschitz continuous
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at P*. This shows the local Lipschitz continuity of the derivaiteration number, this being about 10, which is about the same

tive of 7. Moreover as for the best algorithm of the earlier paper [2] using the same
cost function. The improved efficiency of our algorithm is con-
i, DF(P)=1-ay(P*)Dgrad ®(P*) =0 firmed by operation counts per iteration. For example, for four

fingers, and focusing on the easiest to calculate improvements,
sincea(P*) = 1 andDgrad ®(P*) = I. In particular,7 we achieve improvement factors of more than 15 for the point
is aC!-function with vanishing derivative at the optimum. Theontact case and more than 75 for the soft finger contact case,
desired result follows from the previous lemma. B respectively.
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