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Riccati Equations Arising in Indefinite
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Abstract—The optimal control problem in a finite time horizon
with an indefinite quadratic cost function for a linear system sub-
ject to multiplicative noise on both the state and control can be
solved via a constrained matrix differential Riccati equation. In
this paper, we provide general necessary and sufficient conditions
for the solvability of this generalized differential Riccati equation.
Furthermore, its asymptotic behavior is investigated along with its
connection to the generalized algebraic Riccati equation associated
with the linear quadratic control problem in infinite time horizon.
Examples are presented to illustrate the results established.

Index Terms—Asymptotic analysis, generalized Riccati equa-
tion, indefinite stochastic linear quadratic (LQ) control, linear
matrix inequality, solvability.

I. INTRODUCTION

L INEAR quadratic (LQ) control is one of the most funda-
mental and widely used tools in modern engineering. In

recent years, the applications in fields such as mathematical fi-
nance require the study of stochastic LQ control models that
are qualitatively different from traditional LQ models in that
the control will affect not only the (deterministic) drift compo-
nent of the system dynamics, but also the (stochastic) diffusion
component. For instance, adjusting the position of certain as-
sets held in a portfolio affects not only its return, but also its
volatility. Furthermore, the direct cost for exercising the control
could be zero or even negative, while finding the optimal control
remains a meaningful problem, as the noise (diffusion) part of
the state process will automatically deter any overzealous con-
trol actions.

To be specific, consider the following stochastic LQ problem:

Minimize

subject to
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Note that the above model has multiplicative white noises on
both the state and control. In the special case when ,

, the system is a deterministic time-varying linear
system, and it is well known that the LQ problem is meaning-
less if for almost every, , the control weighting matrix in
the cost, has at least one negative eigenvalue. However, recent
studies [11], [12], [20] show that when the stochastic
LQ problem could be still well posed even ifis singular or in-
definite. In fact, a singular or indefinite may naturally occur
in a wide class of practical problems, ranging from portfolio
selection [29], option pricing [19], to pollution control [11]. In
addition, in some cases is identically zero as the control cost
is only implicitly incurred by the underlying uncertainty; see
[29], [19]. Another interesting case of the LQ problem is when

is identically zero and , the state weighting matrix in
the cost, is negative while is positive definite. This con-
stitutes a generalization of the stochastic control problem
[14], [25], [17].

The aboveindefinitestochastic LQ control problems lead to
the following constrained nonlinear backward differential ma-
trix equation:

(1)

In this paper, we refer to this equation as ageneralized differ-
ential Riccati equation(GDRE). It will play a central role in
the treatment of the indefinite LQ problem. It is shown in [11]
that,in the case when , the solvability of the GDRE is
sufficientfor solving the LQ problem. Indeed, a unique optimal
control, which has a linear state feedback structure, can be con-
structed explicitly based on the solution to the GDRE (1). Thus,
solving the original indefinite LQ problem boils down to that
of solving the GDRE. It should be noted that a Riccati equation
was first derived by Bismut [7] for a stochastic LQ problem with
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control-dependent diffusions and random coefficients, however
its solvability was proved, using a functional analysis approach,
under the key assumption that the control costis positive defi-
nite. A similar Riccati equation was later studied by Bensoussan
[6], where the positive definiteness ofwas again imposed. A
stochastic Riccati equation, formulated as a nonlinear backward
stochastic differential equation (BSDE), was first introduced in
[11] for indefinitestochastic LQ problems with random coef-
ficients. While the solvability issue of this Riccati BSDE, as a
very challenging problem, is yet to be resolved, some special
cases, especially in the case of deterministic coefficients where
the Riccati BSDE degenerates to the GDRE (1), have been set-
tled. Specifically, in [11], a necessary and sufficient condition is
given for the solvability of the GDRE for the case when
and and, based on this condition, an algorithm of com-
puting its solution is proposed. However, the algorithm assumes
the availability of an initial solution which is in fact hard to lo-
cate. In the case when , some necessary condition for
the LQ problem to be solvable is derived based on a decompo-
sition approach in [12]. Nevertheless, solvability of the GDRE
(1) in general remains, as cited in [11], as an outstanding open
problem.

It is one of the objectives of this paper to tackle this open
problem. First, we extend the result in [11] by showing that the
existence of auniqueoptimal control to LQ problem isequiva-
lent to the solvability of the GDRE (1). Next, we provide a nec-
essary and sufficient condition for the solvability of the GDRE
in terms of the feasibility of a certain linear matrix inequality
(LMI). This LMI is different from the traditional one [8] for it
is parameterized by the timeand involves the derivative in.
The LMI condition derived can be interpreted as a generaliza-
tion of the well-known real bounded lemma which plays a cen-
tral role in the stochastic theory [14], [25], [17]. Indeed, the
condition gives rise to qualitative information about the solv-
ability of the GDRE. For example, it implies that the solvability
is “convex” with respect to some problem parameters (e.g., the
weighting matrices). It also leads to some comparison theorem
for the solutions to the GDRE. More importantly, the condition
suggests some numerical test of the solvability of the GDRE.
One example is when all the coefficients are time-invariant, it
suffices to check if there is any constant symmetric matrix sat-
isfying the proposed LMI condition. This can be done efficiently
via a semidefinite programming [24], [15].

Let us emphasize again that our results do not assume that the
matrix function is coercive and/or continuous as commonly
assumed in the literature. In this paper, is simply required to
be an essentially bounded measurable function, as are the other
parameters of the problem.

The next issue of interest is the asymptotic behavior of the
solution to the GDRE (1) as the time horizon expands to be
infinitely large, and its connection to the so-calledgeneralized
algebraic Riccati equation(GARE) explored extensively in [2]

(2)

where all the coefficient matrices are time-invariant. As well-
known GARE corresponds to the stochastic LQ problem in in-
finite time horizon [2]

Minimize

subject to:

where an admissible control is such that the corresponding tra-
jectory satisfies . In other words, the
input controls of the system are assumed to be (mean-square)
stabilizing.

The asymptotic behavior of the differential Riccati equation
in the classical deterministic LQ setting has been largely
studied; see [9]. Although some open problems still remain
[23], the asymptotic theory has been well established [26], [10].
However, the indefinite stochastic LQ case remains unexplored.
In fact, the literature on the subject concerns only the definite
case where there is no noise on the control. The first study can
be traced back to [27], [28]. The paper [1] provides a convex
optimization approach for solving the GARE (2) (with ,

, and ). A direct treatment of the infinite
horizon stochastic LQ problem with multiplicative noise both
on the state and the control ( ) with possibly
singular is also given in [1]. A recent paper [16] inves-
tigates the convergence properties of the “linearly perturbed”
deterministic time-invariant Riccati equation introduced in [27]
with positive and .

In this paper we carry out an asymptotic analysis for the in-
definite stochastic LQ case. The results establish the link be-
tween finite and infinite time horizon LQ problems as well as
that between the GDRE and GARE. We show that if the terminal
condition of the GDRE (1) is a feasible point to certain LMI
(which can be examined and solved by existing efficient numer-
ical algorithm), then its corresponding solution exists, which
converges monotonically to some solution of the corresponding
GARE as the time horizon increases to infinity. The conver-
gence to themaximal solutionof the GARE is also investigated.
We show that if there exists a terminal condition
(not necessarily positive and may be indefinite) such that the
corresponding solution of the GDRE converges to the maximal
solution of the GARE, then the convergence holds for any ter-
minal condition “larger” than . In particular, the existence and
the convergence hold for any terminal condition larger than the
maximal solution.

The rest of the paper is organized as follows. In Section II,
we first formulate the indefinite stochastic LQ problem in finite
time horizon and present some preliminaries. Then we show that
the solvability of the GARE is necessary and sufficient for the
existence and uniqueness of the optimal control. Section III is
devoted to the solvability of the GDRE for three different cases.
Some comparison theorems are also obtained. In Section IV, we
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consider the indefinite LQ problem in infinite time horizon and
its associated GARE, carry out an asymptotic analysis for the
GDRE, and establish its link to the GARE. In Section V, we
give examples to illustrate the results obtained. Finally, Section
VI concludes the paper.

II. PROBLEM STATEMENT AND PRELIMINARIES

Notation: In this paper, the following notation is adopted:
space of all of real matrices;
transpose of a matrix ;
sum of diagonal elements of a square
matrix ;
kernel of a matrix ;

;
space of all symmetric matrices;
subspace of all nonnegative definite ma-
trices of ;
expected value of a random variable
set of all essentially bounded, Lebesgue
measurable and -valued func-
tions on .

Given a filtered probability space , where
, and a Hilbert space with the norm , define the

Hilbert space

is an -adapted, -valued

measurable process on

and

with the norm

A. Indefinite LQ Problem

The GDRE (1) arises in the stochastic LQ control problem
where the system dynamics is governed by the following linear
stochastic differential equation

(3)

where are, respectively, the initial time
and initial state, and is a given one-dimensional (1-D) stan-
dard Brownian motion on . Note that the results of the
paper can be extended to the multidimensional Brownian mo-
tion case without essential difficulty. An admissible control
is an -valued, -adapted measurable process. The set of all
admissible controls is denoted by .

Associated with the above dynamics, we consider the
quadratic cost function for and

(4)

The solution of the system (3) is called the response of
the control , and is called an admissible
pair. The objective of the problem is to minimize the cost func-
tion , for a given , over
all . The value function is defined as

(5)

An admissible pair is calledoptimalif it achieves
the infimum of . The optimization problem
(3) and (4) is calledwell posedif , for all

.
Throughout this paper, we make the following assumptions

on the coefficients of the LQ problem (3) and (4)

(6)

Note that we have not assumed any definiteness of the above
coefficients. We shall then categorize LQ problems into the fol-
lowing classes. An LQ problem is called

1) definiteif , , a.e. , and
;

2) singular if , is singular, a.e.
, and ;

3) indefinite if there is no restriction on the definiteness of
and .

It is easily verified that in both cases 1) and 2) the LQ problem
is well posed. Moreover, the existence and uniqueness of an
optimal control are guaranteed in the case 1), whereas it is not
true for the case 2) where there may be no optimal control or
infinitely many optimal controls. The general situation 3) is the
most complicated one to analyze, whose solution is the main
objective of this paper.

B. LMI, GDRE and LQ

In our analysis below, the following LMI will play a central
role:

(7)
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where is a continuously differentiable symmetric matrix
function such that

a.e. and
(8)

Let us start with the following lemma.
Lemma 2.1:Let be any continuously differentiable

symmetric matrix function with respect to time and
be an admissible pair of (3). Then, for any

(9)

Proof: By Ito’s formula, we have (the argumentis sup-
pressed)

Taking integrations and expectations we get (9).
Now, we establish a link between the well posedness of the

LQ problem and the LMI condition (7) and (8).
Theorem 2.1:If there exists a symmetric matrix function

satisfying (7) and (8), then the LQ problem (3) and (4) is
well posed.

Proof: Using Lemma 2.1 and a simple manipulation we
have, for any

Hence, the LQ problem (3) and (4) is well posed.
Next, we show that a GDRE solution also ensures the well

posedness of the LQ problem and, moreover, provides an op-
timal feedback control law.

Theorem 2.2:If the GDRE (1) admits a solution , then
the LQ problem (3) and (4) is well-posed. Moreover, there is a
unique optimal control with the following feedback form:

(10)

Furthermore, the value function is given by

(11)

Proof: This result is proved in [11, Th. 3.2] for the case
when . But the proof is extended directly to the case

.
The preceding result shows that the solvability of the GDRE

is sufficient for the existence and uniqueness of an optimal con-
trol to the LQ problem. Conversely, we are going to prove that
the solvability of the GDRE is alsonecessaryto the existence
of a uniqueoptimal control. To this end, we first make use of
the main results in [3, Th. 3.1, Th. 5.2] which are summarized
below.

Proposition 2.1 [3]: The following conditions are equiva-
lent.

1) The LQ problem (3) and (4) has a unique op-
timal open-loop control for any initial condition

.
2) There exists a solution to the following constrained

differential equation (with the time argument sup-
pressed)

a.e.
(12)

where denotes the Moore–Penrose pseudo inverse of
a matrix [21].

Moreover, the set of all the optimal controls with respect to the
initial condition is determined by the
following [parameterized by ]:

(13)

where and .
Now, as an immediate consequence of Proposition 2.1, we

have the following.
Theorem 2.3:The LQ problem (3) and (4) has a unique op-

timal control for any initial condition
if and only if the GDRE (1) admits a solution. Moreover, the
optimal control is a linear state feedback given by (10).

Proof: The sufficiency part follows from Theorem
2.2. Now, we prove the solvability of the GDRE (1) as-
suming that the LQ problem has a unique optimal control.
In view of Proposition 2.1 it suffices to prove that the matrix

is nonsingular for a.e. . To
this end, let be the unique optimal control with respect to
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the initial condition , which by Proposition 2.1 is given
by

where and are chosen to be arbitrary de-
terministic constants. By the uniqueness of , it is necessary
that

a.e. (14)

Noting that any symmetric matrix commutes with its pseu-
doinverse [21], we conclude from (14) that

a.e.

This implies that is nonsingular.
In general, a nonlinear differential equation may admit many

solutions. However, when the GDRE has a solution it must be
unique. In fact, the uniqueness of its solution seems to be in-
herent due to the connection between the GDRE and the LQ
problem.

Corollary 2.1: If there exists a solution to the GDRE
(1), then, it must be unique.

Proof: Let and be two solutions of (1) with
. Then, by Theorem 2.2, we have

Hence, .

III. EXISTENCE OFSOLUTION TO GDRE

By Theorem 2.2, one only needs to solve the GDRE in order
to solve the LQ problem. The aim of this section is to give
conditions under which the GDRE has a solution. An impor-
tant implication of our conditions is that they identify the set
of all terminal points such that the corresponding
GDREs admit solutions. We will show that this set is convex
and can be described by an LMI set. Another interesting aspect
is that the solvability of the GDRE is “convex” with respect to
the weighting matrices and .

In what follows, we solve the problem for three different
cases. However, before that, we state the following lemma
which will be used in the sequel.

Lemma 3.1 (Schur’s Lemma [8]):Let matrices ,
and be given with appropriate dimensions. The fol-

lowing conditions are equivalent:

i) .

ii) .

A. Definite Case

The solvability of the GDRE (1) in the definite case is a con-
sequence of the solvability of a more general Riccati equation
(with random coefficients) proved by Bismut [7]. However, we
supply an independent proof here because it is much simpler in
the present case of deterministic coefficients and, moreover, it
is interesting to compare it with those in the singular and indef-
inite cases.

Theorem 3.1:Assume that , , a.e.
, and . Then, the GDRE (1) has a solution

on with , .
Proof: By the classical ordinary differential equation

theory, the GDRE (1) has a local solution on some max-
imal interval . Since , the inequality
constraint in (1) is satisfied automatically at anywhen
exists. Hence in order to prove that the existence is actually
global on , it suffices to show that there is no escape
time, or is uniformly bounded on . To this end,
we are going to show that there exists a positive scalar
independent of such that

First, to see that let be an arbitrary initial
state of the system (3) starting at a time . Then,
Theorem 2.2 implies

Next, let be a solution to the system (3) corresponding to
the initial and the admissible control . Then,
Theorem 2.2 implies

From the above inequality, and the fact that satisfies a ho-
mogeneous linear equation, it follows that there exists a scalar

such that . The proof is completed.

B. Singular Case

In the singular case, the GDRE (1) no longer admits a solution
automatically, as in the definite case. We will give conditions
that ensure the existence.
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Theorem 3.2:Assume that , a.e. ,
and . Moreover, assume that either and

, or . Then, the GDRE (1) has a solution
on with , , if and only if

ker ker a.e. (15)

Proof: The “only if” part is straightforward. Now, let us
prove the “if” part and suppose that (15) holds. Let the GDRE
(1) have a local solution on some maximal interval

. Define as . In fact, this limit is
well defined and can be determined via

where is an optimal pair corresponding to
an arbitrary initial state at the initial time . Next,
we show that or, as

, that is non-
singular. Suppose that there is so that

. Then

implying and .
It follows that ker (noting that ) and
hence by (15), (otherwise, leading to a
contradiction). Consider the system (3) starting at the time
with the initial state . Then, Theorem 2.2 yields

(16)

where is the unique optimal pair so-
lution to the LQ problem on , with

. Since
the initial state , we claim that

(17)

Indeed, by Ito’s formula, it is easy to see that sat-
isfies a linear equation on . Hence, it will be identically
zero should it be zero at any time instant, contracting to the fact
that . This proves (17).

To proceed, we consider two cases according to the assump-
tion of the theorem.

Case 1) . The equality (16) implies that
the integrand on its right-hand side must be zero almost
surely on . Since , it must hold that

, , a.e. . This contradicts
(17).

Case 2) . Again (16) leads to ,
. Hence, , which is a contraction.

Finally, the same argument as in the proof of Theorem 3.1
can be used to show that is uniformly bounded on ,
completing the proof.

Remark 3.1:The condition (15) is equivalent to the in-
equality , which can be checked by
calculating the smallest eigenvalue .
If , then the condition (15) reduces to that has
a full column rank almost everywhere or, equivalently, that

, a.e. . On the other hand, if
(meaning that the control does not enter into the diffusion
term), then (15) is equivalent to the standard positive definite
condition , a.e. .

C. Indefinite Case

In this section, we consider the general indefinite case. We
will show how we can reduce this case to the definite one.

Consider the following convex set of -valued func-
tions, parameterized by the terminal conditionas shown in
(18) at the bottom of the page.

We have the following result.
Theorem 3.3:The GDRE (1) [with the terminal condition

] has a solution if and only if .
Proof: If the Riccati equation (1) has a solution, then,

and, by Lemma 3.1, we have

Namely, .
Conversely, suppose . Then, take any and

define

a.e.

(18)
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Thus, . Moreover, Lemma 3.1 yields

Now, consider a new Riccati equation

(19)

By Theorem 3.1, there exists a unique positive solution to
(19). Define . Then clearly

and . Using equation (19) and some manipulation,
we can easily verify that is a solution to the GDRE (1).

The following two corollaries concern the solvability of the
GDRE (1) with the data and , , and regarded as param-
eters.

Corollary 3.1: The set of all terminal conditions such that
the GDRE (1) admits a solution is unbounded from above and
is convex.

Proof: The unboundedness follows from Theorem 3.3 and
the fact that for any . The convexity is
straightforward by Theorem 3.3.

Corollary 3.2: The set of all weighting matrices and
such that the GDRE (1) admits a solution is unbounded from

above and is convex.
Proof: This is straightforward by Theorem 3.3.

Corollary 3.3: If is the solution to the GDRE (1) with a
terminal condition , then

.
Proof: Let be arbitrary and be the

solution to (19). Then, solves the GDRE (1)
by the proof of Theorem 3.3, and it is the unique solution by
Corollary 2.1. It follows that and the proof is
complete.

Corollary 3.4 (Comparison Theorem):If and are
two solutions of the GDRE (1) with , then

Proof: This is implied by the fact that
along with Corollary 3.3.

Before concluding this section, we compare our results with
those obtained in a preceding paper [11]. In [11], it is proved
that when is indefinite but and

, the GDRE admits a solution if and only if the following
condition holds: there exists such that the standard
deterministic Riccati equation

(20)

has a solution satisfying

(21)

Now, we are going to show that in the special setting of [11]
our general condition reduces to the condition of [11]
mentioned above. In fact, our condition even leads to a relax-
ation of (20) with the “ ” in the first equality of (20) replaced
by “ .” To this end, first let satisfy (20) and (21). Then, by
Lemma 3.1, we have

Since , it follows that

(22)

Hence, . Conversely, assume that . Define
, and

The above simply means that solves the following standard
Riccati equation:

Now, let be the solution to

Since and , by the well-known compar-
ison theorem for standard Riccati equation (see, e.g., [22]) we
have . This, in particular, implies that

.

IV. A SYMPTOTIC BEHAVIOR OF GDRE

In this section, we carry out asymptotic analysis to the GDRE
(1) and investigate its relation to the GARE which is associ-
ated with the stochastic LQ problem in infinite time horizon.
The asymptotic properties of the GDRE reveal valuable infor-
mation on the evolution of a finite time horizon LQ problem as
the horizon increases. More importantly, the asymptotic anal-
ysis will establish links between the indefinite stochastic LQ
problems in a finite time horizon and the infinite time horizon.
The main result in this section is the convergence of the solu-
tion of the GDRE (1) to the so-called maximal solution of the
corresponding GARE.

Since GARE is to be involved, we need to assume that all
the matrices in (3) and (4) are time in-
variant. From now on, we denote by the solution of (1)
with the parameterized terminal time. Note that since all the
coefficients of (1) are time invariant, may exist for

. We are going to study the limit
which by time-invariance is equal to
or simply .
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A. Mean-Square Stabilizability

First, we define the notion of mean-square stabilizability,
which is connected to the stochastic LQ problem for the infinite
time horizon case [2].

Definition 4.1: The system (3) is said to be mean-square sta-
bilizable if there exists a control law of feedback form

(23)

with being a constant matrix, such that for every initial
, the closed-loop system

(24)

satisfies

In this case, the control law given by (23) is called a mean-square
stabilizing control.

In the infinite horizon case, the cost function may in general
be unbounded from above in the absence of the mean-square sta-
bilizability, in which case the optimal control problem becomes
ill-posed. Hence the analysis of the asymptotic properties of the
GDRE will be carried out under the following natural condi-
tion of mean-square stabilizability of the system. We will show
that this assumption guarantees the boundedness of the solu-
tions to the GDRE. When there is no noise on the system (i.e.,

), this assumption reduces to the well-known de-
terministic stabilizability condition of the pair .

Assumption 4.1:The system (3) is mean-square stabilizable.
Remark 4.1:The following condition is equivalent to As-

sumption 4.1 [2]: There exists a matrix and a symmetric ma-
trix such that

(25)

Moreover, by the change of variable and using
Schur’s lemma one obtains an equivalent LMI condition: there
exists a matrix and a symmetric matrix such that

(26)

This also provides a mean-square stabilizing feedback control
.

To prove the boundedness and the asymptotic convergence of
the solutions to the GDRE we will make use of the following

lemma which at the same time gives another equivalent condi-
tion to Assumption 4.1.

Lemma 4.1:The following properties are equivalent:

1) system (3) is mean-square stabilizable;
2) there is a constant matrix such that the solution of (24)

satisfies , for any .
Proof: That 2) 1) is obvious. To show the opposite im-

plication, suppose that the system (3) is mean-square stabiliz-
able by a feedback matrix . Denote
where satisfies the system equation (24). By Ito’s formula,

satisfies the following linear differential equation:

(27)

The mean-square stabilizability condi-
tion implies

. Hence,
is an asymptotically stable solution to a linear, time-invariant
deterministic system (27). It follows then there exist positive
constants and such that

Hence, the desired result follows.

B. Solvability of GDRE and GARE

In this section, we characterize the solvability of GDRE and
GARE in terms of certain LMI conditions. Define the following
nonlinear operator from to

(28)

Recall that the GARE (2) can be rewritten as

and (29)

Let us define the following subset of as shown in (30) at
the bottom of the page.

The following result shows that any element of the set
leads to solutions to the GDRE (1) as well as the

GARE (29).
Theorem 4.1:Assume that . Then, for any ter-

minal condition with , the solution
to the GDRE (1) exists and is bounded on

. Moreover, is monotonically nondecreasing as

(30)
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time decreases, and converges to a solutionto the GARE
(29) as .

Proof: Fix . Denote by the solution
of the differential Riccati equation (19) with .
Denote

(31)

Now, Let be arbitrary and consider the following
cost function for the system (3):

(32)

Applying Theorem 2.2, we have

Since the matrix is nonnegative, for any
we have

namely, monotonically nondecreases asdecreases.
Observe that by time invariance of the system, de-

pends only on . To be precise, we have the following
equality

Let be an arbitrary stabilizing control. Then by
Assumption 4.1 and Lemma 4.1, we have

where denotes the maximum eigenvalue of a matrix
. Thus, is bounded and nondecreasing as .

As a result, the following limit exists

which is constant and independent of the terminal time. Let-
ting in (19), we conclude that satisfies the fol-
lowing GARE:

(33)

Now, define Clearly, is
monotonically nondecreasing asdecreases, and there exists a

such that

(34)

Combining (33) and (34) it follows from a simple calculation
that is the solution of (29).

The following shows that starting from a terminal state in the
set the trajectory of the solution to the GDRE (1) stays
in this set at any time backward.

Corollary 4.1: Assume that . Then for any ter-
minal condition with , the solution

to the GDRE (1) satisfies

(35)

Proof: By Theorem 4.1, is monotonically nonde-
creasing as decreases. Hence, . The result
then follows from Lemma 3.1.

The following result, which establishes the equivalence be-
tween the nonemptiness of the set and the solvability
of the GARE (29), has been proved in [2, Th. 5.6] (for the case

) by optimization techniques and a regularization argu-
ment. Here, we give another simple proof via the results just
obtained.

Corollary 4.2: There exists a solution to the GARE (29) if
and only if .

Proof: If there exists a solution to the GARE (29), then
clearly in view of Lemma 3.1. Conversely, if

, then Theorem 4.1 applies to yield the solvability
of (29).

C. Maximal Solution of GARE

Definition 4.2: A solution to the GARE (29) is called a max-
imal solution, denoted by , if

Definition 4.3: A solution to the GARE (29) is called a
stabilizing solution if the feedback control

(36)

is mean-square stabilizing for the system (3).
By using the completion of square technique, we show that

a stabilizing solution to the GARE, if there is any, must be the
maximal solution.

Theorem 4.2:The stabilizing solution to the GARE (if there
is any) is unique and coincides with the maximal solution.

Proof: Let be a stabilizing solution. It then suffices to
show that . To this end, let

, which is a stabilizing feed-
back control by the assumption, and be the corresponding
state trajectory starting from . By stability we have
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. Applying Lemma 2.1 with
, we have

Now, applying Lemma 2.1 with and using the
same manipulation as above, we get

where
. The above inequality shows that as the initial

condition is arbitrary.
Before going further in the analysis of the asymptotic conver-

gence of the GDRE to the maximal solution to the GARE some
important remarks are in order.

Remark 4.2:The maximal solution or the stabilizing solution
(if it exists) can be determined numerically by the following
semidefinite programming [2, Th. 5.6]:

max

subject to

(37)

Remark 4.3:The importance of the maximal solution to the
GARE is that it corresponds to the optimal cost value for the
infinite time horizon LQ problem. In other words, while there
may be many solutions to the GARE, it is only the maximal
solution that is interesting to us in view of the LQ problem.
Moreover, the maximal solution gives bounds to the optimal
cost value for the finite horizon case. Indeed, by virtue of the
comparison theorem (Corollary 3.4), the solution to the GDRE
with a terminal condition has an upper bound

whereas that with a terminal condition has
a lower bound .

The following theorem has been proved in [2, Ths. 5.3, 5.4]
for the case , by using a duality analysis for an associated
semidefinite programming problem. For the general case
while the proof there appear to be extendible, we supply here a
different (but simpler) proof based on the asymptotic analysis
of the corresponding GDRE.

Theorem 4.3:Assume that the set has a nonempty
interior, i.e., there exists such that and

. Then, the GARE (29) admits a stabilizing
solution.

Proof: Let such that ,
. Consider , which is the solution to (19) with the

terminal condition (which exists by Theorem 3.1).
As in the proof of Theorem 4.1, we see that nondecreases
and asymptotically converges (asdecreases to ) to some
constant symmetric matrix that solves the following GARE:

where and are defined as in (31).
Now, since solves the GARE (29) and

it suffices to prove that the feedback control law

is mean-square stabilizing. To this end, first observe thatis
positive definite

Define
. Then, satisfies

(38)

Since has a full column rank and is positive
definite we have

which by Remark 4.1 implies that is mean-
square stabilizing and the proof is complete.

The following result establishes the existence of the maximal
solution to the GARE (29).

Theorem 4.4:Let and be given such that
, then the GARE (29) has a maximal solution.

Proof: This can be proved by using Theorem 4.3 and a
regularization argument as in the proof of [2, Th. 5.6].

D. Asymptotic Analysis of GDRE

Theorem 4.1 gives a convergence of the solution of the GDRE
toasolution of the GARE. This, however, is not sufficient since,
as mentioned earlier, only themaximal solutionof the GARE is
important in terms of ultimately solving the LQ problem. In this
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subsection we present the main results of this section, namely,
the convergence of the solution of the GDRE to the maximal
solution of the GARE.

First, we need a few lemmas.
Lemma 4.2:Assume that

and . Then, there exist and satisfying

(39)

Moreover, and are the maximal solutions of their respec-
tive GAREs.

Proof: This can be proved by using Theorems 4.3 and 4.2,
and an argument similar to that in the proof of [2, Lemma 5.1].

The following lemma was first proposed in [16], but only for
the case when there is no multiplicative noise on the control (i.e.,

) and the weighting matrices are such that
and (namely, a standard definite LQ case). Here, we
present the result in a general setting.

Lemma 4.3:Let and be given. Assume
that the solution of the GDRE (1) exists on and
for some there is a neighborhood of such that

is monotonically nondecreasing (resp. nonincreasing) as
decreases in . Then, is monotonically nondecreasing
(resp. nonincreasing) asdecreases in .

Proof: In view of Corollary 3.4 and the time-invariance,
the same argument in the proof of [16, Lemma 5.3-(ii)]
applies.

Lemma 4.4:Let be an arbitrary symmetric matrix such
that . Then there exists an such that the
following GARE

admits a symmetric solution with .
Proof: It can be easily seen that given there ex-

ists a sufficiently large such that
This, along with the assumption that , leads

to the existence of the maximal solution, , to the GARE

by virtue of Theorem 4.4. Finally, follows from the
maximality of .

Define

such that
(40)

Theorem 4.5:Assume that and let
be given. Then there exists such that

the GDRE (1) with the terminal condition admits
a solution on . Moreover, is monotonically
nonincreasing as decreases, and converges to the maximal
solution to the GARE (29) as .

Proof: By Lemma 4.4 there exists and such that

and . Let and consider the GDRE

with the terminal condition . This equation must
have a solution on in view of Theorem 4.1 and
Corollary 3.1. Notice that at time the above GDRE specifies
as Hence in a neighborhood of .
It follows from Lemma 4.3 that is monotonically nonin-
creasing as decreases in . Now, let be the max-
imal solution to the GARE (29). Then, Lemma 4.2 implies that

, which in turn yields that by Corol-
lary 3.4. Since is nonincreasing and bounded below as
decreases, the limit exists and is easily
seen to be a solution to the GARE (29). Moreover, .
By the maximality of we conclude that . The
proof is complete.

Finally, the following theorem stipulates that Theorem 4.5
still holds foranyterminal condition “larger” than the maximal
solution of the GARE. More generally, if there exists some ter-
minal condition such that the corresponding so-
lution to the GDRE converges to the maximal solution of the
GARE, then the convergence still holds for any other terminal
condition larger than .

Theorem 4.6:Let be the maximal solution to the
GARE (29). Then, the GDRE (1) with a terminal condition

admits a solution , and converges to
as . More generally, if a solution of the GDRE

(1) with a terminal condition converges to as
the time goes to , then any solution of the GDRE (1) with
a terminal condition also converges to .

Proof: Let be a solution to the GDRE (1) with
, which exists by Theorem 4.1 and Corol-

lary 3.1. Theorem 4.5 yields that there exists
such that converges to as , where
solves the GDRE (1) with the terminal condition .
Now, Corollary 3.4 implies that

Hence, the first part of the theorem follows from the fact that
. The second part of the theorem can be

proved similarly.

V. ILLUSTRATIVE EXAMPLES

In this section, we present two examples to illustrate the re-
sults obtained. Consider the following 1-D LQ problem with
constant coefficients

Minimize

subject to
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(41)

Before going further, let us see how Assumption 4.1 translates
into. By Remark 4.1 the mean-square stabilizability is equiva-
lent to the following condition: There exists a scalar ,
such that or that
the maximum of the function is negative. This leads to the
following inequality:

(42)

Example 6.1:Consider the case where the coefficients of the
system satisfy . It is easy to
verify that in this case (42) holds.

Assume that the weighting constants in the cost function are
chosen from the following set:

(43)

The GDRE (1) reads

and
(44)

With the data satisfying (43), it is easy to see that
there is a such that . Hence
Theorem 3.3 yields that the above equation admits a solution.
Indeed this solution can be explicitly obtained as

where it can be directly verified that .
Now, which is exactly the
maximal solution of the corresponding GARE

Example 6.2:Now, assume that the system satisfies (42) and

The above condition means that the equality part of the GARE

admits two real solutions, say and . If the control weight
is such that , then is

the maximal solution to the GARE and the set is ex-
actly the interval . Moreover, for
any terminal condition , Theorem
4.1 implies that the corresponding solution to GDRE exists and
nondecreasinglyconverges to a solution of the GARE, which
in the present case must be for there are only two
solutions to the GARE.

Let us look at a specific case with the following parameter
values: , ,

whereas not yet fixed. The corresponding GDRE and GARE
are

respectively. The solutions to the GARE are and
. The maximal solution to the GARE is therefore

. The GDRE can be rewritten as

(45)

By examining the sign of the function
it can be easily seen that

nondecreasingly converges to when
, whereas decreasingly converges to

when .

VI. CONCLUDING REMARKS

In this paper, we have characterized the solvability of a gen-
eralized differential Riccati equation, which is crucial to solving
the indefinite stochastic LQ control problems that were first put
forth in [11], in terms of a parameterized (the timebeing the
parameter) LMI involving the derivative in. The condition we
obtained reduces to the one given in [11] in the special setting
of [11]. Moreover, it gives rise to qualitative information on the
solvability with respect to the problem data.

From the computational point of view, the generalized dif-
ferential Riccati equation is much harder than the generalized
algebraic Riccati equation for which a systematic numerical ap-
proach was proposed in [2]. Solving the parametrized LMI pro-
posed in this paper appears to be a big challenge to researchers
in both control and mathematical programming areas.

REFERENCES

[1] M. Ait Rami and L. El Ghaoui, “LMI optimization for stochastic Riccati
equation,”IEEE Trans. Automat. Contr., vol. 41, pp. 1666–1671, Nov.
1996.

[2] M. Ait Rami and X. Y. Zhou, “Linear matrix inequalities, Riccati equa-
tions, and indefinite stochastic linear quadratic control,”IEEE Trans.
Automat. Contr., vol. 45, pp. 1131–1143, June 2000.

[3] M. Ait Rami, J. B. Moore, and X. Y. Zhou, “Indefinite stochastic
linear quadratic control and generalized differential Riccati equation,”,
Preprint.

[4] A. Albert, “Conditions for positive and nonnegative definiteness in terms
of pseudo-inverse,”SIAM J. Appl. Math., vol. 17, pp. 434–440, 1969.

[5] M. Athans, “Special issues on linear-quadratic-Gaussian problem,”
IEEE Trans. Automat. Contr., vol. AC-16, pp. 527–869, Dec. 1971.

[6] A. Bensoussan, “Lecture on stochastic control—Part I,”Lecture Notes
in Math., vol. 972, pp. 1–39, 1983.

[7] J.-M. Bismut, “Linear quadratic optimal stochastic control with random
coefficients,”SIAM J. Contr. Optim., vol. 14, pp. 419–444, 1976.

[8] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan,Linear Matrix
Inequality in Systems and Control Theory. Philadelphia, PA: SIAM,
1994.

[9] S. Bittanti, A. J. Laub, and J. C. Willems,The Riccati Equation. New
York: Springer-Verlag, 1991.

[10] F. M. Callier and J. L. Willems, “Criterion for the convergence of the
solution of the Riccati Differential equation,”IEEE Trans. Automat.
Contr., vol. AC-26, pp. 1232–1242, Dec. 1981.



440 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 3, MARCH 2001

[11] S. Chen, X. Li, and X. Y. Zhou, “Stochastic linear quadratic regulators
with indefinite control weight costs,”SIAM J. Control Optim., vol. 36,
pp. 1685–1702, 1998.

[12] S. Chen and X. Y. Zhou, “Stochastic linear quadratic regulators with
indefinite control weight costs—II,”SIAM J. Control Optim., vol. 39,
pp. 1065–1081, 2000.

[13] M. H. A. Davis, Linear Estimation and Stochastic Control. London,
U.K.: Chapman and Hall, 1977.

[14] A. El Bouhtouri and A. J. Prichard, “Stability radii of linear systems
with respect to stochastic perturbations,”Syst. Control Lett., vol. 21, pp.
29–33, 1992.

[15] L. El Ghaoui, R. Nikoukhah, and F. Delebecque. (1995) LMITOOL: A
front-end for LMI optimization in matlab. [Online]Available via anony-
mous ftp to . Available: ftp.ensta.fr, under /pub/elghaoui/lmitool

[16] M. D. Fragoso, O. L. V. Costa, and C. E. de Souza, “A new approach to
linearly perturbed Riccati equations arising in stochastic control,”Appl.
Math. Optim., vol. 37, pp. 99–126, 1998.

[17] D. Hinrichsen and A. J. Prichard, “StochasticH ,” SIAM J. Control
Optim., vol. 36, pp. 1504–1538, 1998.

[18] R. E. Kalman, “Contribution to the theory of optimal control,”Bol. Soc.
Mat. Mex., vol. 5, pp. 102–119, 1960.

[19] M. Kohlmann and X. Y. Zhou, “Relationship between backward sto-
chastic differential equations and stochastic controls: A linear-quadratic
approach,”SIAM J. Control Optim., vol. 38, pp. 1392–1407, 2000.

[20] A. E. B. Lim and X. Y. Zhou, “Optimal stochastic LQR control with in-
tegral quadratic constraints and indefinite control weights,”IEEE Trans.
Automat. Contr., vol. 44, pp. 1359–1369, July 1999.

[21] R. Penrose, “A generalized inverse of matrices,” inProc. Cambridge
Philos. Soc., vol. 52, 1955, pp. 17–19.

[22] A. Ran and R. Vreugdenhil, “Existence and comparison theorems for
algebraic Riccati equations for continuous and discrete time systems,”
Linear Algebra Appl., vol. 99, pp. 63–83, 1988.

[23] H. L. Trentelmanet al., “When does the algebraic Riccati equation have
a negative semi-definite solution,” inOpen Problems in Mathematical
Systems and Control Control Theory, V. D. Blondelet al., Eds. New
York: Springer-Verlag, 1999, pp. 229–237.

[24] L. Vandenerghe and S. Boyd, “Semidefinite programming,”SIAM Re-
view, 1996.

[25] V. A. Ugrinovskii, “RobustH control in the presence of stochastic
uncertainty,”Int. J. Control, vol. 71, pp. 219–237, 1998.

[26] J. C. Willems, “Least squares stationary control and the algebraic Riccati
equation,”IEEE Trans. Automat. Contr., vol. AC-16, pp. 621–634, Dec.
1971.

[27] W. M. Wonham, “On a matrix Riccati equation of stochastic control,”
SIAM J. Control, vol. 6, pp. 312–326, 1968.

[28] , “Random differential equations in control theory,” inIn Proba-
bilistic Methods in Applied Mathematics, A. T. B. Reid, Ed. New York:
Academic, 1970, vol. 2, pp. 131–212.

[29] X. Y. Zhou and D. Li, “Continuous-time mean-variance portfoli selec-
tion: A stochastic LQ framework,”Appl. Math. Optim., vol. 42, pp.
19–33, 2000.

Mustapha Ait Rami was born in Marrakech, Morocco, in 1964. He received
a first Maitrise (B.Sc.) degree in applied mathematics from Université Hassan
II, Casablanca, Morocco, and a second Maitrise in pure mathematics from Uni-
versité Cadi Ayad, Marrakech, Morocco. He received the DEA (M.S.) degree
in nonlinear analysis-optimization and the Ph.D. degree in applied mathematics
from the CEREMADE’s Department, Université Paris-IX Dauphine, in 1997.

From 1997 to 1998, he worked on an applied project for EDF Company,
France, at the Department de Mathematiques Appliquées, ENSTA, Paris,
France. From 1998 to 1999, he did postdoctoral research at the Chinese
University of Hong Kong. His research interests are in the areas of robust
control theory and optimal stochastic control. His research activities include
also rank minimization problems and its connections with automatic control
and semidefinite programs.

Xi Chen was born in Sichuan Province, China, in
1965. She received the B.Sc. and M.Eng. degrees in
control theory and application from Nankai Univer-
sity, Tianjin, China, in 1986 and 1989, respectively.

From 1989 to 1996, she worked at the Software
Engineering Institute at Beijing University of Aero-
nautics and Astronautics, Beijing, China. Currently,
she is working toward the Ph.D. degree in the Depart-
ment of Systems Engineering and Engineering Man-
agement, Chinese University of Hong Kong. Her re-
search interests are in the areas of stochastic control,

Petri nets, software engineering, and computer-aided design in control systems.

John B. Moore(S’66–M’68–SM’77–F’79) was born
in China in 1941. He received the B.S., M.S., and
Ph.D. degrees in electrical engineering from the Uni-
versity of Santa Clara, California, in 1963, 1964, and
1967, respectively.

He was appointed Senior Lecturer at the Electrical
Engineering Department, University of Newcastle in
1967, and promoted to Associate Professor in 1968,
and Full Professor (Personal Chair) in 1973. From
1975–1979, he was Department Head. In 1982, he
was appointed a Professorial Fellow in the Depart-

ment of Systems Engineering, Research School of Physical Sciences, Australian
National University, and promoted to Professor in 1990. He has been Head of the
department since 1992, and is currently in the Research School of Information
Sciences and Engineering. His current research is in control and communication
systems, and signal processing. He is the coauthor of many books, including
Linear Optimal Control(Englewood Cliffs, NJ: Prentice-Hall, 1971),Optimal
Filtering (Englewood Cliffs, NJ: Prentice-Hall, 1979),Optimal Control-Linear
Quadratic Methods(Englewood Cliffs, NJ: Prentice-Hall,1989),Optimization
and Dynamical Systems(New York: Springer-Verlag, 1993),Hidden Markov
Model Estimation and Control via Reference Methods(New York, Springer-
Verlag, 1995), andHigh Performance Control(Boston, MA: Birkhäsuer 1997).

Dr. Moore is a Fellow of the Australian Academy of Technological Sciences
and Engineering, and a Fellow of the Australian Academy of Science.

Xun Yu Zhou (M’97–SM’99) was born in Jiangsu
Province, China in 1965. He received the Ph.D. de-
gree in applied mathematics from Fudan University,
Shangai, China, in 1989.

From 1989 to 1991 and from 1991 to 1993,
he did postdoctoral research at Kobe University,
Kobe, Japan and the University of Toronto, Canada,
respectively. He is currently an Associate Professor
at the Chinese University of Hong Kong. A Principal
Investigator of numerous grants, he has done
extensive research in optimal stochastic controls,

mathematical finance/insurance, and discrete-event manufacturing systems.
He has published more than 40 papers in refereed journals, and his new book
(coauthored with J. Yong) is entitledStochastic Controls: Hamiltonian Systems
and HJB Equations(New York: Springer-Verlag, 1999). He is on the editorial
board ofOperations Research.

Dr. Zhou was awarded the Alexander von Humboldt Fellowship of Germany
in 1991 and is currently on the editorial board of the IEEE TRANSACTIONS ON

AUTOMATIC CONTROL.


