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Abstract—The optimal control problem in a finite time horizon
with an indefinite quadratic cost function for a linear system sub-
ject to multiplicative noise on both the state and control can be
solved via a constrained matrix differential Riccati equation. In
this paper, we provide general necessary and sufficient conditions
for the solvability of this generalized differential Riccati equation.
Furthermore, its asymptotic behavior is investigated along with its
connection to the generalized algebraic Riccati equation associated
with the linear quadratic control problem in infinite time horizon.
Examples are presented to illustrate the results established.
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+ [C(t)z(t) + D(t)u(t)] dw(t)
x(to) =0 € R™.

Note that the above model has multiplicative white noises on
both the state and control. In the special case wién = 0,
D(-) = 0, the system is a deterministic time-varying linear
system, and it is well known that the LQ problem is meaning-
less if for almost every, R(t), the control weighting matrix in
the cost, has at least one negative eigenvalue. However, recent
studies [11], [12], [20] show that wheb(t) # 0 the stochastic

LQ problem could be still well posed eveniifis singular or in-

definite. In fact, a singular or indefinit® may naturally occur

in a wide class of practical problems, ranging from portfolio

selection [29], option pricing [19], to pollution control [11]. In
INEAR quadratic (LQ) control is one of the most fundaaddition, in some casés is identically zero as the control cost
mental and widely used tools in modern engineering. is only implicitly incurred by the underlying uncertainty; see

recent years, the applications in fields such as mathematical[#9], [19]. Another interesting case of the LQ problem is when

nance require the study of stochastic LQ control models thatis identically zero and)(¢), the state weighting matrix in

are qualitatively different from traditional LQ models in thathe cost, is negative whil&(#) is positive definite. This con-

the control will affect not only the (deterministic) drift compo-stitutes a generalization of the stochadiig, control problem

nent of the system dynamics, but also the (stochastic) diffusifii®], [25], [17].

component. For instance, adjusting the position of certain as-The abovandefinitestochastic LQ control problems lead to

sets held in a portfolio affects not only its return, but also itthe following constrained nonlinear backward differential ma-

volatility. Furthermore, the direct cost for exercising the contratix equation:

could be zero or even negative, while finding the optimal control

remains a meaningful problem, as the noise (diffusion) part of

the state process will automatically deter any overzealous con-

trol actions.

To be specific, consider the following stochastic LQ problem:

matrix inequality, solvability.

I. INTRODUCTION

[ P(t)+ A(t) P(t) + P(H)A(t)
+O@) PO + Q)

Minimize X[R(t) + D(t) P(t)D(¢)]~* 1)
T / / n
Hu() =B [ [/ Q) + 2/ L) P(T)XLBA(? P(#) + D(eY POC() + L(2)] = 0,
+ w(t) R(t)u(t)] dt + E[x(T) Mxz(T)] L R(t) D(tS’P(t)D(t) >0, aetel0,T]
subject to

dr(t) = [A®)z(t) + B(t)u(t)] dt In this paper, we refer to this equation ageneralized differ-

ential Riccati equatiolGDRE). It will play a central role in
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,qd?ntrol, which has a linear state feedback structure, can be con-

sktucted explicitly based on the solution to the GDRE (1). Thus,
solving the original indefinite LQ problem boils down to that
&t solving the GDRE. It should be noted that a Riccati equation

was first derived by Bismut [7] for a stochastic LQ problem with
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control-dependent diffusions and random coefficients, howewshere all the coefficient matrices are time-invariant. As well-

its solvability was proved, using a functional analysis approadknown GARE corresponds to the stochastic LQ problem in in-

under the key assumption that the control d@st positive defi- finite time horizon [2]

nite. A similar Riccati equation was later studied by Bensoussan

[6], where the positive definiteness &fwas again imposed. A

stochastic Riccati equation, formulated as a nonlinear backwanghimize

stochastic differential equation (BSDE), was first introduced in +oo

[11] for indefinite stochastic LQ problems with random coef-/ (%(-)) ::E/ [2(t) Qu(t)+2x(t) Lu(t) +u(t) Ru(t)] dt

ficients. While the solvability issue of this Riccati BSDE, as a bject to: o

very challenging problem, is yet to be resolved, some spemaLd

cases, especially in the case of deterministic coefficients wheret(t) = [Ax(t) + Bu(t)] dt + [Cx(#) + Du(t)] duw(?)

the Riccati BSDE degenerates to the GDRE (1), have been set#(to) =z0 € R"

tled. Specifically, in [11], a necessary and sufficient condition is

given for the solvability of the GDRE for the case whén= 0

andL = 0 and, based on this condition, an algorithm of comwhere an admissible control is such that the corresponding tra-

puting its solution is proposed. However, the algorithm assumjestory satisfiedim; . , . E[z(¢)'z(¢)] = 0. In other words, the

the availability of an initial solution which is in fact hard to lo-input controls of the system are assumed to be (mean-square)

cate. In the case whefi # 0, some necessary condition forstabilizing.

the LQ problem to be solvable is derived based on a decompoThe asymptotic behavior of the differential Riccati equation

sition approach in [12]. Nevertheless, solvability of the GDREn the classical deterministic LQ setting has been largely

(1) in general remains, as cited in [11], as an outstanding opstadied; see [9]. Although some open problems still remain

problem. [23], the asymptotic theory has been well established [26], [10].
It is one of the objectives of this paper to tackle this opedowever, the indefinite stochastic LQ case remains unexplored.

problem. First, we extend the result in [11] by showing that the fact, the literature on the subject concerns only the definite

existence of ainiqueoptimal control to LQ problem isquiva- case where there is no noise on the control. The first study can

lentto the solvability of the GDRE (1). Next, we provide a nechbe traced back to [27], [28]. The paper [1] provides a convex

essary and sufficient condition for the solvability of the GDRBptimization approach for solving the GARE (2) (with = 0,

in terms of the feasibility of a certain linear matrix inequality. = 0, @ > 0 andR > 0). A direct treatment of the infinite

(LMI). This LMl is different from the traditional one [8] for it horizon stochastic LQ problem with multiplicative noise both

is parameterized by the timeand involves the derivative i on the state and the contral’(# 0, D # 0) with possibly

The LMI condition derived can be interpreted as a generalizaingular® > 0 is also given in [1]. A recent paper [16] inves-

tion of the well-known real bounded lemma which plays a cetigates the convergence properties of the “linearly perturbed”

tral role in the stochastifl, theory [14], [25], [17]. Indeed, the deterministic time-invariant Riccati equation introduced in [27]

condition gives rise to qualitative information about the solwvith positive @ and R.

ability of the GDRE. For example, it implies that the solvability In this paper we carry out an asymptotic analysis for the in-

is “convex” with respect to some problem parameters (e.g., thefinite stochastic LQ case. The results establish the link be-

weighting matrices). It also leads to some comparison theoréween finite and infinite time horizon LQ problems as well as

for the solutions to the GDRE. More importantly, the conditiothat between the GDRE and GARE. We show that if the terminal

suggests some numerical test of the solvability of the GDREondition of the GDRE (1) is a feasible point to certain LMI

One example is when all the coefficients are time-invariant, (iivhich can be examined and solved by existing efficient numer-

suffices to check if there is any constant symmetric matrix satal algorithm), then its corresponding solution exists, which

isfying the proposed LMI condition. This can be done efficientlgonverges monotonically to some solution of the corresponding

via a semidefinite programming [24], [15]. GARE as the time horizon increases to infinity. The conver-
Let us emphasize again that our results do not assume thatgagce to thenaximal solutiorof the GARE is also investigated.

matrix functionR(-) is coercive and/or continuous as commonlyVe show that if there exists a terminal conditi6i?’) = M

assumed in the literature. In this pap&(;) is simply required to (not necessarily positive and may be indefinite) such that the

be an essentially bounded measurable function, as are the o@gsresponding solution of the GDRE converges to the maximal

parameters of the problem. solution of the GARE, then the convergence holds for any ter-

The next issue of interest is the asymptotic behavior of tfinal condition “larger” thar/. In particular, the existence and
solution to the GDRE (1) as the time horizon expands to @€ convergence hold for any terminal condition larger than the

infinitely large, and its connection to the so-caligeneralized Maximal solution.

algebraic Riccati equatio(GARE) explored extensively in [2] ~ The rest of the paper is organized as follows. In Section I,
we first formulate the indefinite stochastic LQ problem in finite

time horizon and present some preliminaries. Then we show that

the solvability of the GARE is necessary and sufficient for the

I ! _ !

AP+ PA+CPC+Q—(PB+CPD+1) existence and uniqueness of the optimal control. Section Il is
X(R+D'PD)y"Y(BP+D'PC+L)=0 (2) devoted to the solvability of the GDRE for three different cases.

R+D'PD>0 Some comparison theorems are also obtained. In Section IV, we
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consider the indefinite LQ problem in infinite time horizon and Associated with the above dynamics, we consider the
its associated GARE, carry out an asymptotic analysis for theadratic cost function fo(to, z0) € [0, T) x R™ and
GDRE, and establish its link to the GARE. In Section V, we(-) € Uyqg

give examples to illustrate the results obtained. Finally, Section

VI concludes the paper. J(to, zo; u())
T
Il. PROBLEM STATEMENT AND PRELIMINARIES IE/ [2(t) Q(#)x(t)+2x(t) L(t)u(t) +u(t) R(t)u(t)] dt
to
Notation: In this paper, the following notation is adopted: + E[x(T) Mx(T)). 4)
Rxm space of all. x m of real matrices;
M transpose of a matrii/; . .
i ’ The solutionz(-) of the system (3) is called the response of
Tr(M) i;g?ri)c()fj\}j}agonal elements of a squarthe controks(-) € U,q , and(z(-), w(-)) is called an admissible
rer( M kernel f’ matrixi- pair. The objective of the problem is to minimize the cost func-
;;( ) _e \/%_ ' tion J (g, xo; u(-)), for a given(to, o) € [0, T) x R", over
| M| N ( ); . . allu(-) € Uyq. The value function is defined as
Sn space of allh x n symmetric matrices;
N subspace of all nonnegative definite ma- _
trices of S™; V(to, x0) = udléfb I (to, wo; u(-)). (®)
Ex expected value of a random variahle o
L>(a, b; R™*P) set of all essentially bounded, Lebesgue . _— N . _
measurable andR™*?-valued func- AN admissible paifz*(-), v*(-)) is calledoptimalif it achieves

tions on[a, 0]. the infimum of J(¢g, zo; u(-)). The optimization problem

Given a filtered probability spade?, F, P; F;), wheret € (3) and (4) is calledvell posedf V(to, z0) > —oc, for all

[0, 7], and a Hilbert spac& with the norm|| - ||x, define the (to, o) € [0, T) X R". _ .
Hilbert space Throughout this paper, we make the following assumptions

on the coefficients of the LQ problem (3) and (4)

L3(0, T; X) = {¢(~) ‘¢(~) is anF;-adapted X -valued A(), C() € L=(0, T; R™™)
B(-), D(-), L(-) € L>(0, T; R™*"x)

(6)
Q) € L=(0, T; 8™), R(-) € L>(0, T S™)

measurable process @h 77,

T
andE/ lp(t, w)||5% dt < —i—oo} M e S™.
0
Note that we have not assumed any definiteness of the above
with the norm coefficients. We shall then categorize LQ problems into the fol-
lowing classes. An LQ problem is called
T 1/2 1) definiteif [ 2% L9 1> 0, R(#) > 0, a.et € [0, T], and
2 L) R(t) ’
ol 7,2 = <E/ llp(t, wllx dt) M > 0;
0 2) singularif [©%) “91 > 0, R(¢) > 0 is singular, a.e.

L(t)" R(t)
t € [0, T),andM > 0;
3) indefiniteif there is no restriction on the definiteness of
A. Indefinite LQ Problem [I?((tt))’ 2((?)] and M.
The GDRE (1) arises in the stochastic LQ control problem lItis easily verified that in both cases 1) and 2) the LQ problem
where the system dynamics is governed by the following linegr well posed. Moreover, the existence and uniqueness of an

stochastic differential equation optimal control are guaranteed in the case 1), whereas it is not
true for the case 2) where there may be no optimal control or

do(t) = [A(®)z(t) + B(t)u(t)] dt infinitely many optimal controls. The general situation 3) is the
HO)a(t) + D(E)u(t)] dul?) 3) most complicated one to analyze, whose solution is the main

objective of this paper.

B. LMI, GDRE and LQ

where(t 0, T") x R™ are, respectively, the initial time . . .
(o, o) € [0, T) P y In our analysis below, the following LMI will play a central

and initial state, and(-) is a given one-dimensional (1-D) stan- "
dard Brownian motion orf¢g, 7']. Note that the results of themle'
paper can be extended to the multidimensional Brownian maq- . , , ,
tion case without essential difficulty. An admissible conirol) PHAP+PA+CPCOHQ ‘ PB+CPD+ L
is anR™=-valued,F;-adapted measurable process. The set of gl B'P4+DPC+L ‘ R4+ D'PD

admissible controls is denoted b¥. (1)

>0
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where P(-) is a continuously differentiable symmetric matrix-urthermore, the value function is given by
function such that
V(to, .Z‘o) = .T()P(to)xo, \V/(to, .Z'o) € [0, T] x R". (11)
R(t) + DY P(#)D(t) >0, a.eitel0, 7], andP(T)< M. ) . .
() + Dy PO DY) [ ] (1)< @) Proof: This result is proved in [11, Th. 3.2] for the case

Let us start with the following lemma when L = 0. But the proof is extended directly to the case

Lemma 2.1:Let S(-) be any continuously differentiable © 7 0 : . %
symmetric matrix function with respect to time afel-), u(-)) The preceding result shows that the solvability of the GDRE
be an admissible pair of (3). Then, for afy t1 € [0 T’] is sufficient for the existence and uniqueness of an optimal con-

trol to the LQ problem. Conversely, we are going to prove that

/ _ / the solvability of the GDRE is alsnecessaryo the existence
Efz(t1) ngl)x(tl) #(to) S(to)x(to)] of a uniqueoptimal control. To this end, we first make use of
= E/ [/(S+A'S+SA+C'SC)x the main results in [3, Th. 3.1, Th. 5.2] which are summarized
to below.
+2u'(B'S + D'SC)x + o/ D' S Du](¢) dt Proposition 2.1 [3]: The following conditions are equiva-
S+A'S+SA+C'SC | SB+C'SD]  lent.

1) The LQ problem (3) and (4) has a unique op-

M|

B'S + D'SC | Dp'sp ! S >
timal open-loop control for any initial condition
X |:$:| (t) dt. (9) (t07 370) € [07 T] X R™.
w 2) There exists a solutioR(-) to the following constrained

differential equation (with the time argumemntsup-
Proof: By Ito’s formula, we have (the argumenis sup-

pressed)
pressed)
. (P+PA+AP+C'PCHQ—(PB+C'PDH+L)
/ ot / /
+ 20/ (B'S + D'SC)x + ' D' SDu] dt P(T) = M
! ! ! /
+ [2'(C'S + SCYx + w(D'S + SD)u] dw(t). (R+ D'PDYR+ D'PDY{(B'P+ D'PC + 1)
Taking integrations and expectations we get (9). o —(B'P+D'PC+L")=0,
Now, we establish a link between the well posedness of the | g + D’'PD > 0, aetel0, 7]
LQ problem and the LMI condition (7) and (8). (12)
Theorem 2.1:If there exists a symmetric matrix function whereMt denotes the Moore—Penrose pseudo inverse of
P(.) satisfying (7) and (8), then the LQ problem (3) and (4) is a matrix M [21].
well posed. Moreover, the set of all the optimal controls with respect to the
Proof: Using Lemma 2.1 and a simple manipulation wénitial condition (¢o, z¢) € [0, T) x R™ is determined by the
have, for anyu(-) € Usq following [parameterized byY, =)]:
I (to, zo;u(-)) uy, = (t) = = {[R(t) + D(t) P() D(1)]
g [ =] x[B(t) P(t) + D(tY P(t)C(t) + L(t)']
B / u Y (1) = [R() + Dt PO D@
P+ AP+PA+C'PC+Q ‘ PB+C'PD+ L X[R(t) + D(t) P(t)D®)]Y ()} =(t)
X
B'P+D'PC+L | R+DPD + 2(t) — [R(t) + D(t) P(t)D(®)]"
x [R(t) + D(t) P(t)D(t)]=() (13)

x B } (t) dt + 2, Pzo + Blz(T) (M — P(T))=(T)]
whereY(-) € LZ(0, T; R™*") andz(-) € L%(0, T; R"™).
Now, as an immediate consequence of Proposition 2.1, we
) have the following.
Hence, the LQ problem (3) and (4) is well posed. ¢ Theorem 2.3:The LQ problem (3) and (4) has a unique op-
Next, we show that a GDRE solution also ensures the Wella1 control for any initial conditior(to, zo) € [0, T) x R”
posedness of the LQ problem and, moreover, provides an @dsng only if the GDRE (1) admits a solution. Moreover, the

timal feedback control law. _ _ optimal control is a linear state feedback given by (10).
Theorem 2.2:1f the GDRE (1) admits a solutiof(-), then Proof: The sufficiency part follows from Theorem

the LQ problem (3) and (4) is well-posed. Moreover, there isa, Now, we prove the solvability of the GDRE (1) as-
unique optimal control with the following feedback form: suming that the LQ problem has a unique optimal control.
In view of Proposition 2.1 it suffices to prove that the matrix

u(t) = —[R(t) + D) P(t)D(t)] " [R(t) + D(t) P(¢+)D(t)] is nonsingular for a.e. € [0, T]. To
x [B(t)' P(t) + D(t) P(t)C(t) + L(t)']=(¢). (10) this end, let.*(-) be the unique optimal control with respect to

Z .’IZ’IOP.’L'O
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the initial condition(0, ), which by Proposition 2.1 is given Lemma 3.1 (Schur's Lemma [8])Let matricesX = X',
by Y =Y’ and Z be given with appropriate dimensions. The fol-
lowing conditions are equivalent:

uw*(t) = — {[R(t) + D) P(t)D(t)]
" x [(th)’P((t))—i- l()zt)’(P)(]t)C(t) #y|4+y @ DX-ZYTRZrzo0. Y>>0
— [R(t) + D(t) P(t) D(1)]" Ix z
X[R(t) + D(t) P(£)D(E)]Y } =(t) ) [ y} 20, ¥>o0
+ 2 — [R(t) + D) P(t)D(®)]!
x [R(t) + D(t) P(t)D(t)]= A. Definite Case

The solvability of the GDRE (1) in the definite case is a con-
sequence of the solvability of a more general Riccati equation
(with random coefficients) proved by Bismut [7]. However, we
supply an independent proof here because it is much simpler in
the present case of deterministic coefficients and, moreover, it

whereY € R™+*" andz € R™+ are chosen to be arbitrary de-
terministic constants. By the uniquenesbdf-), it is necessary
that

i)
I = [R(t) + D) P(t) D(t)] is interesting to compare it with those in the singular and indef-
x [R(t) + D) P(t)D(t)] = 0 inite cases.
a.ete 0, T7. (14)  Theorem 3.1:Assume thaf %) ()] > 0, R(¢) > 0, ae.

t € [0, T],andM > 0. Then, the GDRE (1) has a solutiét{-)
Noting that any symmetric matri&/ commutes with its pseu- On[0, 7] with P(t) > 0,V ¢ € [0, T7.

doinverseM T M = MMT [21], we conclude from (14) that Proof: By the classical ordinary differential equation
theory, the GDRE (1) has a local solutiét{-) on some max-
[R(t) + D( ) (t)D(t) T[R(t) (t)/P(t)D(t)] imal interval (tm,, T] C [0, T] S|nceR(t) > 0, the inequa”ty

constraint in (1) is satisfied automatically at ahwhen P()
exists. Hence in order to prove that the existence is actually
) aete(0, 1] global on [0, T, it suffices to show that there is no escape
time, or P(-) is uniformly bounded or{t,,, T]. To this end,
This implies tha{R(¢) + D(¢)' P(¢)D(¢)] is nonsingular. ¢ we are going to show that there exists a positive sgalar 0
In general, a nonlinear differential equation may admit mangdependent of,,, such that
solutions. However, when the GDRE has a solution it must be

]
= [R(t) + D) PO)DWOI[R() + D) P(1) D)
=1

unigue. In fact, the uniqueness of its solution seems to be in- 0< P(t) < pl, Vte (tm, T
herent due to the connection between the GDRE and the LQ
problem. First, to see thaP(-) > 0 letzy € R™ be an arbitrary initial
Corollary 2.1: If there exists a solutio(-) to the GDRE state of the system (3) starting at a tithes (¢, 7]. Then,
(1), then, it must be unique. Theorem 2.2 implies
Proof: Let P, (-) and P»(-) be two solutions of (1) with . )
P(T) = P(T) = M. Then, by Theorem 2.2, we have A P(t)ro = min E / x Q/ L||=z (s)ds
u()EUaa . U L' R||lu
V(to, .Z‘o) :ngl (to)xo = .Z‘()Pg(to)xo
Y (to, o) € [0, T] x R™. +2(T) M=(T) p 2 0.
Hence,Pi(-) = P»(:). ¢ Next, letz(-) be a solution to the system (3) corresponding to
the initial (¢, zo) and the admissible contral(-) = 0. Then,
I1l. EXISTENCE OFSOLUTION TO GDRE Theorem 2.2 implies

By Theorem 2.2, one only needs to solve the GDRE in order
to solve the LQ problem. The aim of this section is to give ; p(#)z, < E
conditions under which the GDRE has a solution. An impor-
tant implication of our conditions is that they identify the set
of all terminal pointsP(7) = M such that the correspondingFrom the above inequality, and the fact th@t) satisfies a ho-
GDRESs admit solutions. We will show that this set is convefogeneous linear equation, it follows that there exists a scalar
and can be described by an LMI set. Another interesting aspéce 0 such thatsg P(t)xzo < Bzgzo. The proof is completed:
is that the solvability of the GDRE is “convex” with respect to
the weighting matrices, Q andR. B. Singular Case

In what follows, we solve the problem for three different Inthe singular case, the GDRE (1) no longer admits a solution
cases. However, before that, we state the following lemnaatomatically, as in the definite case. We will give conditions
which will be used in the sequel. that ensure the existence.

/t 2()0(s)a(s) ds + 2(TY Mz(T)
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Theorem 3.2:Assume thatf((:)), fzgi))] >0,a.ete[0,T], Indeed, by lto’'sformula,itiseasytosee tit.. (t)x.(¢)'] sat-
andM > 0. Moreover, assume that eithe(t) = 0 andQ(¢) > isfies a linear equation of,,, 7. Hence, it will be identically
0, Vt € [0, T],or M > 0. Then, the GDRE (1) has a solutionzero should it be zero at any time instant, contracting to the fact
P(-)on[0, T)with P(t) > 0,¥ t € [0, T, if and only if thatz.(t.) # 0. This proves (17).
To proceed, we consider two cases according to the assump-
kerR(t) nkerD(t) = {0}, aetel0,T). (15) tion of the theorem.
Case 1) L(t) = 0, Q(¢t) > 0. The equality (16) implies that

Proof: The “only if’ part is straightforward. Now, let us the integrand on its right-hand side must be zero almost

prove the “if’ part and suppose that (15) holds. Let the GDRE surely on[t,,, T]. SinceQ(t) > 0, it must hold that
(1) have a_IocaI solutlop on some maximal mter@fa;,ll, _T]_ - 2.(t) =0, P — a.s., a.e4 € [tm, T]. This contradicts
[0, T. Define P(t,,) aslim;_¢_ 4 P(t.). In fact, this limit is (17).
well defined and can be determined via Case2)M > 0. Again (16) leads tar,(T) Mz, (T) = 0,
2t Plt)a(tm) . P —a.s..Hencex,(T) = O', which is a contraction.
T Finally, the same argument as in the proof of Theorem 3.1
_ {/ [ (5) Q(5) 2+ (5) + 2 (5) L(s)us (s) can be used to show th&X-) is uniformly bounded o,,., 77,
o completing the proof. &
Remark 3.1:The condition (15) is equivalent to the in-
+u*(s)’R(s)u*(s)]ds—i—a:*(T)'Ma:*(T)} equality R(t) + D(t)’D(t) > 0, which can be checked by
calculating the smallest eigenvalug,;,(R(t) + D(t)' D(t)).
If R(t) = 0, then the condition (15) reduces to thaf-) has
a full column rank almost everywhere or, equivalently, that
D(t)'D(t) > 0,a.et € [0, T). On the other hand, iD(¢) =0
(meaning that the control does not enter into the diffusion
term), then (15) is equivalent to the standard positive definite
conditionR(t) > 0, a.e.t € [0, T).

where (z.(-), u«(-)) is an optimal pair corresponding to
an arbitrary initial statec(t,,) at the initial timet,,. Next,
we show thatR(t,.) + D(tn) P(t.)D(tn) > 0 or, as
P@,,) > 0, that R(¢,,) + D(tn) P(tm)D(t,y) is non-
singular. Suppose that there s # =z, € R" so that
[R(ty) + D(tp) P(tm)D(tm)]xo = 0. Then

C. Indefinite Case

2o[R(tm) + D(tm) P(tm)D(tm)]zo = 0 . . : o
In this section, we consider the general indefinite case. We

implying x5 R(t,)zo = 0 andx) D(t,,)' P(tm)D(ty)zo = 0. Will show how we can reduce this case to the definite one.
It follows thatzo € kerR(t,,) (noting thatR(¢,,) > 0) and Consider the following convex s, of S™-valued func-
hence by (15)D(t..)zo # 0 (otherwise,zo = 0 leading to a tions, parameterized by the terminal conditibhas shown in
contradiction). Consider the system (3) starting at the tigpe (18) at the bottom of the page.

with the initial stateD(t,,,)zo. Then, Theorem 2.2 yields We have the following result.
Theorem 3.3:The GDRE (1) [with the terminal condition
0=a{,D(tm) P(tm)D(tm)xo P(T) = M] has a solution if and only i?y; # (.
T Proof: If the Riccati equation (1) has a solutidh, then,
=E / [.(3) Q(8)x(8) + 224 (5) L(s)us(s) P(T) = M and, by Lemma 3.1, we have
tm

P+ AP+PA+C'PC+Q ‘ PB+C'PD+L
> 0.
B'P+D'PC+ L' | R+DPD

+ wy (8) R(8)u.(8)] ds + x4 (T)’Ma:*(T)}

(16)
Namely,P € Py, £ 0. .
where (z.(-), u.(-)) is the unique optimal pair so- Conversely, supposB,, # (0. Then, take any’ € Py, and

lution to the LQ problem on(t,,, 7], with w.(¢) = define
—(R + D'PD)™Y(B'P + D'PC + L")(t)z.(t). Since ) . o )
the initial stater..(¢,,) = D(t,,)zo # 0, we claim that QP)=P+A'P+PA+C'PCH+Q,
{ R(P)=R+D'PD
z(t) #0, P—as, Vi€ [tm, T] 17) L(P)=PB+C'PD+L.

P() [07 T] -8, P(T) <M,

P+ AP+ PA+CPC+Q ’ PB+C'PD+L

Pa & >0%. (18)

B'P+DPC+L | R+DPD
R+D'PD>0, aetel0, 1]
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Thus,R(P) > 0. Moreover, Lemma 3.1 yields Now, we are going to show that in the special setting of [11]
our general conditiof; # () reduces to the condition of [11]
Q(P) — L(P)R(P)—lL(P)’ > 0. mentioned above. In fact, our condition even leads to a relax-
ation of (20) with the " in the first equality of (20) replaced
Now, consider a new Riccati equation by “>.” To this end, first letP satisfy (20) and (21). Then, by

Lemma 3.1, we have
Zp+AZp+ZpA+C'ZpC+ Q(P)
—[ZIBB + C/ZIBD + L(E)][R(P) + .D/ZIB.D]_1
[B'Zp+ D' ZpC + L(P)] =0, (19)
R(P)+D'ZpD > 0,
Zp(T) = M - P(T) > 0

P(T) = M.

P+AP+PA+Q PB -0
B'P K |="

SinceR + D'PD > K > 0, it follows that

P+ AP+PA+Q PB
By Theorem 3.1, there exists a unique positive solufigi-) to [ B'P R+ D/pp} 0
(19). DefineP() = Zp(-) + P(-). Then clearlyR + D'PD > R+D'PD>0, P(T)=M.
0 andP(T) = M. Using equation (19) and some manipulation,
we can easily verify thaP(-) is a solution to the GDRE (1) (22)
The following two corollaries concern the solvability of the
GDRE (1) with the data/ andL, ©, andR regarded as param- Hence, Py, # 0. Conversely, assume thite Py, # 0. Define
eters K R + D/PD > 0 and
Corollary 3.1: The set of all terminal condition& such that .
the GDRE (1) admits a solution is unbounded from above and Q=P + A'P + PA— PBK'B'P+Q > 0.
iS convex.
Proof: The unboundedness follows from Theorem 3.3 anthe above simply means th&t solves the following standard
the fact thatP,;, C Py, for any M > M. The convexity is Riccati equation:
straightforward by Theorem 3.3. &
Corollary 3.2: The set of all weighting matrices, ¢ and
R such that the GDRE (1) admits a solution is unbounded from
above and is convex.
Proof: This is straightforward by Theorem 3.3. &
Corollary 3.3: If P is the solution to the GDRE (1) with a . , L
terminal conditionP(T) = M, thenP(-) > P() vV P()e P +AP+PA-PBK"BP+Q=0, P(I)=M.
Par. N N
Proof: Let P € Py be arbitrary andZ;, > 0 be the SinceQ = @—QandM > P(T’), by the well-known compar-
solution to (19). ThenP = Zp + P solves the GDRE (1) ison theorem for standard Riccati equation (see, e.g., [22]) we

P+AP+PA-PBK'BP+Q—-0=0.

Now, let P be the solution to

by the proof of Theorem 3.3, and it is the unique solution bjaveP(-) > P(-). This, in particular, implies thak+ D' PD >
Corollary 2.1. It follows that” — P = Z;, > 0 and the proofis £ + D’PD K.
complete. &

Corollary 3.4 (Comparison Theorem)f P, (-) andF»(-) are IV. ASYMPTOTIC BEHAVIOR OF GDRE

two solutions of the GDRE (1) witt, (1)) < P»(T), then In this section, we carry out asymptotic analysis to the GDRE

(1) and investigate its relation to the GARE which is associ-
Pi(t)<P(t) Vtelo,T] ated with the stochastic LQ problem in infinite time horizon.
The asymptotic properties of the GDRE reveal valuable infor-
Proof: This is implied by the fact thal’1(-) € Pp,(ry mation on the evolution of a finite time horizon LQ problem as
along with Corollary 3.3. <& the horizon increases. More importantly, the asymptotic anal-
Before concluding this section, we compare our results wiflsis will establish links between the indefinite stochastic LQ
those obtained in a preceding paper [11]. In [11], it is provestoblems in a finite time horizon and the infinite time horizon.
that whenR is indefinite butC = 0, L = 0, @ > 0 and The main result in this section is the convergence of the solu-
M > 0, the GDRE admits a solution if and only if the followingtion of the GDRE (1) to the so-called maximal solution of the
condition holds: there exists = K’ > 0 such that the standard corresponding GARE.
deterministic Riccati equation Since GARE is to be involved, we need to assume that all
) the matricesA, B, C, D, L, @, R in (3) and (4) are time in-
{ P+ AP+ PA—PBK'BP+Q=0 (20) variant. From now on, we denote (-, T") the solution of (1)

PT)=M with the parameterized terminal tinffé Note that since all the
_ o coefficients of (1) are time invarianE(t, 7°) may exist fort €
has a solution” satisfying (—o0, +00). We are going to study the limitm, , ., P(¢, T)

which by time-invariance is equal tanz_4) . 4o (0, T'—1)
R+DPD>K. (21) or simplylimgy_ ;o P(0, T).
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A. Mean-Square Stabilizability lemma which at the same time gives another equivalent condi-

First, we define the notion of mean-square stabilizabilitf°n ©© Assum.ption 4.1 _ _ _
which is connected to the stochastic LQ problem for the infinite LéMma 4.1: The following properties are equivalent:

time horizon case [2]. 1) system (3) is mean-square stabilizable;
Definition 4.1: The system (3) is said to be mean-square sta- 2) there is a constant matrix such that the solution of (24)
bilizable if there exists a control law of feedback form satisfiesE[f, ™ x(t)'z(t) dt] < +o0, for any(to, o).
Proof: That 2)=-1) is obvious. To show the opposite im-
w(t) = Kx(t), K e R™®=X" (23) plication, suppose that the system (3) is mean-square stabiliz-

able by a feedback matriX’. Denote X (t) = E[z(t)z(t)']
with K being a constant matrix, such that for every initiaivherez(-) satisfies the system equation (24). By Ito’s formula,

(to, zo), the closed-loop system X (-) satisfies the following linear differential equation:
de(t) = (A+ BK)z(t) dt + (C + DK)z(t) dw(t) (24) X =(A+BK)X + X(A+ BK)
.’L’(to) = 29, o € R" —|—(C’—i—.D.[()AXV(C(—{-_DI()/7 (27)
X(to) = .1‘0.7}6.
satisfies
The mean-square stabilizability condi-
lim E[z(t)'z(t)] = 0. tion  limy 4o E[z(t)z(¢)] = 0 implies

e limy oo X(¢) = limyy o0 E[z(t)z(t)] = 0. Hence, X (-)

In this case, the control law given by (23) is called a mean-squasean asymptotically stable solution to a linear, time-invariant

stabilizing control. deterministic system (27). It follows then there exist positive
In the infinite horizon case, the cost function may in generabnstantsy and/3 such that

be unbounded from above in the absence of the mean-square sta-

bilizability, in which case the optimal control problem becomes | X(®)] = |[E[z(®)z(t)]| < e
ill-posed. Hence the analysis of the asymptotic properties of the
GDRE will be carried out under the following natural condiHence, the desired result follows. &

tion of mean-square stabilizability of the system. We will show
that this assumption guarantees the boundedness of the sBluSolvability of GDRE and GARE
tions to the GDRE. When there is no noise on the system (i.e.yp, this section, we characterize the solvability of GDRE and

¢ =0, D =0), this assumption reduces to the well-known deg ARE in terms of certain LMI conditions. Define the following
terministic stabilizability condition of the paitd, B). nonlinear operatoR from 8" x R™%™« x §7 x §™« t0 §"
Assumption 4.1:The system (3) is mean-square stabilizable.

Remark 4.1:The following condition is equivalent to As-
: ) . R(P, L, Q, R)
sumption 4.1 [2]: There exists a matdx and a symmetric ma-

trix X such that S ANP+PA+C'PC+Q—(PB+C'PD+L)
x (R+D'PD)"YB'P+D'PC+L"). (28)
(A+BK)X+X(A+BK)'+(C+DK)X(C+DK)' <0,
X > 0. (25) Recall that the GARE (2) can be rewritten as
Moreover, by the change of variablé = KX and using R(P,L,Q,R)=0 and R+D'PD>0. (29)
Schur’s lemma one obtains an equivalent LMI condition: there
exists a matrixy” and a symmetric matriX such that Let us define the following subset &f* as shown in (30) at
the bottom of the page.
AX+ XA +BY +Y'B’ CX+ DY The following result shows that any element of the set
XC'+Y'D -X <0 (26) Pr.o. r leads to solutions to the GDRE (1) as well as the
GARE (29).
This also provides a mean-square stabilizing feedback controlTheorem 4.1:Assume tha®r, o r # 0. Then, for any ter-
u(t) = Y X La(t). minal conditionP(7") = P with P € Py, g g, the solution

To prove the boundedness and the asymptotic convergencé’¢f) = P(-, T') to the GDRE (1) exists and is bounded on
the solutions to the GDRE we will make use of the followind—oc, T']. Moreover, P(t) is monotonically nondecreasing as

AP+ PA+C'PC+Q ‘PB+C@D+L

N P —— ) >0

PL,Q,R: pP=r B/P+D/PC+L/ ‘ R+D/PD . (30)
R+D'PD >0
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time ¢ decreases, and converges to a solufibto the GARE
(29) ast — —oo.

Proof: Fix P € Pr, ¢ r.Denote byZ(-, T) the solution

of the differential Riccati equation (19) withd; (7', ') = 0.
Denote
Q(P)=AP+PA+C'PC+Q
R(P)=D'PD+R (31)
L(P)=PB+C'PD+ L.
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Now, defineP(t, T) = Zp(t, T) + P. Clearly, P(t, T) is
monotonically nondecreasing aslecreases, and there exists a

P such that

P= hm P(t,T)=Zp+ P. (34)

Combining (33) and (34) it follows from a simple calculation
that P is the solution of (29). &

Now, Letz(t) = o be arbitrary and consider the following ~ The following shows that starting from a terminal state in the

cost function for the system (3):
T ! 5
—E / z| QP )/
. Lu L(P)

Applying Theorem 2.2, we have

T (t, zo;u(-)) f?g,ﬂ {fb } (s) ds.
(32)

inf

L Z5(t, Two =
Lo p( )Zo w(eUna

Ip(t, 2(t); u())-

L(P)

Since the matrix Q) RUP)

Ly ] is nonnegative, for any < ¢,
we have

Zf’(tQ’ T) < Zf’(tlﬁ T)’

namely,Z(t, T') monotonically nondecreasestadecreases.

Observe that by time invariance of the systéf ¢, T') de-
pends only onT" — t).
equality

Zn(t, T) = Z3(0, T —¢), Vi<T.

Letu(t) = Kz
Assumption 4.1 and Lemma 4.1, we have

z0Zp(t, T)xo
= .’IZ()ZIB(O, T-— t)xo

< E/OT_t [;?x} [2(3155)’ ég
<vone([ 6] 88 5B
/0 T Ble(s) ()] ds

< 400

B [x. ]
|

)

(t) be an arbitrary stabilizing control. Then b

setPr, ¢, r the trajectory of the solution to the GDRE (1) stays
in this set at any time backward.

Corollary 4.1: Assume thaP, ¢, r # 0. Then for any ter-
minal conditionP(7") = P with P € Pr ¢ g, the solution
P(-) to the GDRE (1) satisfies

P(t)e Pro.r Vt<T. (35)

Proof: By Theorem 4.1,P(t) is monotonically nonde-
creasing as decreases. Henc&(t) < 0, V t < T The result
then follows from Lemma 3.1. &

The following result, which establishes the equivalence be-
tween the nonemptiness of the $&t o r and the solvability
of the GARE (29), has been proved in [2, Th. 5.6] (for the case
L = 0) by optimization techniques and a regularization argu-
ment. Here, we give another simple proof via the results just
obtained.

To be precise, we have the following Corollary 4.2: There exists a solution to the GARE (29) if

and only if P, ¢ r # 0.
Proof: If there exists a solutio’ to the GARE (29), then
clearly P € Pr ¢ r in view of Lemma 3.1. Conversely, if

yPL o r#0, then Theorem 4.1 applies to yield the solvability

of (29). &

C. Maximal Solution of GARE

Definition 4.2: A solution to the GARE (29) is called a max-
imal solution, denoted by’,,..«, if

-Pmax Z P \V/ P € PL,Q,R-

Definition 4.3: A solution P to the GARE (29) is called a
stabilizing solution if the feedback control

u(t)= —(R+D'PD)"Y(B'P+D'PC+ Lz(t) (36)

where A\,.x(G) denotes the maximum eigenvalue of a matrix

G. Thus,Z(t, T) is bounded and nondecreasingas —oc.
As a result, the following limit exists

7 - lim
r T—t——+oo

= . im Zi)(t, T) = ZI*)(O, T— t)

which is constant and independent of the terminal tifné et-

ting ¢ — —oc in (19), we conclude thak ;, satisfies the fol-
lowing GARE:

 LP),
D'Z;

0,

AP), B(P) a3

is mean-square stabilizing for the system (3).

By using the completion of square technique, we show that
a stabilizing solution to the GARE, if there is any, must be the
maximal solution.

Theorem 4.2:The stabilizing solution to the GARE (if there
is any) is unique and coincides with the maximal solution.

Proof: Let P be a stabilizing solution. It then suffices to

show thatP,,,x < P. Tothisend, let(t) = Kz(t) = —(R+
D'PD)~Y(B'P+D'PC+ L')x(t), which is a stabilizing feed-
back control by the assumption, an@) be the corresponding
state trajectory starting from(¢o) = zo. By stability we have
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lim; 100 E[z(t)z(t)] = 0. Applying Lemma 2.1 wittS(¢) = D'PD + R > 0. Then, the GARE (29) admits a stabilizing

P, we have solution.
- Proof: Let P such thatR(P, L, Q, R) > 0, D'PD +
E/ [2(8) Qu(t) + 22(2) Lu(t) + u(t) Ru(t)] dt R > 0. ConsiderZ(-), which is the solution to (19) with the
to terminal conditionZ(7") = 0 (which exists by Theorem 3.1).
= x4 Pro — tligloo E[z(t)' Pz(¢)] As in the proof of Theorem 4.1, we see tli5§(¢) nondecreases

oo and asymptotically converges (aslecreases te-oc) to some
+E/ [u(t)— Kz(t)]'(R+D'PD)[u(t)— Kz(t)] dt ~ constantsymmetric matri¥ , that solves the following GARE:

to

= xoPro. R(Zp, L(P), Q(P), R(P)) =0,  R(P)+D'ZpD>0
Now, applying Lemma 2.1 Witl§(¢) = Pyax and using the whereQ(P), R(P) andL(P) are defined as in (31).
same manipulation as above, we get Now, sinceP = Z, + P solves the GARE (29) and
oo > " N1-lip/77. 177 Y/
)Py = E / [2(8) Qe (8) + 22(¢) Lu(t) + u(t) Ru(t)] dt [R(P)+ D'ZpDI " [B'Zp + D'ZpC + L(P)]
to =(R+D'PD)YB'P+DPC+1L)
+oo
— I
= 2o maxro + B /t [u() = Kmaxa(t)] it suffices to prove that the feedback control law

(B + D' PpoaxD)[u(t) — Kpaxx(t)] dt
Z xi)-PmaxxO

u(t) = —[R(P)+ D'ZD) }B'Zp+ D' Z;C 4 L(P)|2(t)

L is mean-square stabilizing. To this end, first observefyais
WhereKmax = _(R + D/-PmaxD)_ (B/-Pmax + D/-Pmaxc + positive definite

L’). The above inequality shows th&t > P,,.x as the initial

conditionzy is arbitrary. & 202 pro 2 ThZp(s)To

Before going further in the analysis of the asymptotic conver- T ! Q(P) L(P)
gence of the GDRE to the maximal solution to the GARE some =E/ {x} {L(P)’ R(P)} {x} (t)dt > 0.
important remarks are in order. s LY v

Remark 4.2: The maximal solution or the stabilizing solutlonDeﬁne Ky = —[R(P) + DZpD| B Zs + DZpC +

(if it exists) can be determined numerically by the followin

-~ ! . . .
semidefinite programming [2, Th. 5.6]: gL(P) J. Then, K, satisfies

(A+BKp)Zp+ Zp(A+ BKp)

max Tr(P) S ]
subject to + (CjFDKP) Z’f(c+ D~KP) N
AP+PA+CPCHQ | PB+OPD+L = —Q(P) = KR L(P) = L(P)Kp — KR R(P) K,
>0, I77QP) LP I
B'P+DPC+ L ] R+ D'PD == [K} [ffp)) REPH [K} (38)
R+D'PD > 0. P P
37 ~ t
(37) Since[lfﬁ] has a full column rank anj ((If)), géf,i] is positive
Remark 4.3: The importance of the maximal solution to thedefinite we have
GARE is that it corresponds to the optimal cost value for the =
infinite time horizon LQ problem. In other words, while there (A+BKp)'Zp +_Z1”>(A + BKp)
may be many solutions to the GARE, it is only the maximal +(C+DK3)ZH(C+DKp) <0

solution that is interesting to us in view of the LQ problem.

Moreover, the maximal solution gives bounds to the optimahich by Remark 4.1 implies that(t) = Kpz(t) is mean-
cost value for the finite horizon case. Indeed, by virtue of trgfjuare stabilizing and the proof is complete. %
comparison theorem (Corollary 3.4), the solution to the GDRE The following result establishes the existence of the maximal
with a terminal condition”(7") < P... has an upper bound solution to the GARE (29).

Piax Whereas that with a terminal conditid®(7) > P.... has ~ Theorem4.4:LetQ = @', R = R andL be given such that

a lower boundP,,,. Pr. o, r # 0, then the GARE (29) has a maximal solution.

The following theorem has been proved in [2, Ths. 5.3, 5.4]  Proof: This can be proved by using Theorem 4.3 and a
for the casd. = 0, by using a duality analysis for an associatetegularization argument as in the proof of [2, Th. 5.6].
semidefinite programming problem. For the general dase0
while the proof there appear to be extendible, we supply herPa
different (but simpler) proof based on the asymptotic analysisTheorem 4.1 gives a convergence of the solution of the GDRE
of the corresponding GDRE. toasolution of the GARE. This, however, is not sufficient since,

Theorem 4.3:Assume that the sé®;,_ o, r has a nonempty as mentioned earlier, only tmeaximal solutiorof the GARE is
interior, i.e., there exist® such thaﬂz(ﬁ’, L, @, R) > 0and importantinterms of ultimately solving the LQ problem. In this

Asymptotic Analysis of GDRE
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subsection we present the main results of this section, namely, Proof: By Lemma 4.4 there exists > 0 andF,, such that
the convergence of the solution of the GDRE to the maximal

solution of the GARE.
First, we need a few lemmas.
Lemma 4.2: Assume that

Qu Li| | Q2 Ly
Lll Rl - L/2 RQ
andPr, o, r # 0. Then, there exisP; andP; satisfying

R(P1, L1, Q1, By) =0,
R(P2, Lo, Qa2, R2) =0,
P, < P,.

R +D'PD>0
Ry +D'P,D >0
(39)

R(P,, L, Q+al, R)=0, D'P,D+R>0

andP, > M. Let M = P, and consider the GDRE

P+R(P L, Q R =0, R+DPD>0

with the terminal condition?(7’) = M. This equation must
have a solutiorP(-) on (—oo, T’ in view of Theorem 4.1 and
Corollary 3.1. Notice that at tim& the above GDRE specifies
asP(T) — oI = 0. HenceP(T) > 0 in a neighborhood of .

It follows from Lemma 4.3 that’(¢) is monotonically nonin-

creasing as decreases oo, 7. Now, let P, be the max-

Moreover,P; andP; are the maximal solutions of their respecimal solution to the GARE (29). Then, Lemma 4.2 implies that

tive GAREs.

P(T) > Ppax, Whichinturnyields thaP(¢) > Ppax by Corol-

Proof: This can be proved by using Theorems 4.3 and 4.8y 3.4. SinceP(#) is nonincreasing and bounded belowtas
and an argument similar to that in the proof of [2, Lemma §:1]. decreases, the limitm, . ., P(¢) = P exists and” is easily
The following lemma was first proposed in [16], but only foiS€€n to be a solution to the GARE (29). Moreoverz Prasx.
the case when there is no multiplicative noise on the control (i.8Y the maximality ofP;,..x we conclude thal® = Prax. The
D = 0) and the weighting matrices are such that 0, Q > 0 Proofis complete. _ %
and R > 0 (namely, a standard definite LQ case). Here, we Finally, the following theorem stipulates that Theorem 4.5

present the result in a general setting.

still holds foranyterminal condition “larger” than the maximal

Lemma 4.3:LetQ = ', R = R’ andL be given. Assume Solution of the GARE. More generally, if there exists some ter-
that the solutionP(-) of the GDRE (1) exists ofi—oc, 7] and minal conditionP(7T) = M such that the corresponding so-

for somet < 7 there is a neighborhooé(t) of # such that

lution to the GDRE converges to the maximal solution of the

P(t) is monotonically nondecreasing (resp. nonincreasing) a$ARE, then the convergence still holds for any other terminal
decreases id(¢). Then, P(t) is monotonically nondecreasingcondition larger thar/.

(resp. nonincreasing) @slecreases ifr—oo, t].

Theorem 4.6:Let P,.. be the maximal solution to the

Proof: In view of Corollary 3.4 and the time-invariance, GARE (29). Then, the GDRE (1) with a terminal condition

the same argument in the proof of [16, Lemma 5.3-(ii

applies.

)ﬁ(T) > Pmax @dmits a solutionP(-), and P(t) converges to

nax @St — —oo. More generally, if a solution of the GDRE

Lemma 4.4: Let M be an arbitrary symmetric matrix such(1) with a terminal conditior(T") = M converges t@,. as
thatR + D'M D > 0. Then there exists am > 0 such that the the time goes te-oo, then any solution of the GDRE (1) with

following GARE

R(P, L, Q+ «l, R) =0, R+DPD>0
admits a symmetric solutiof,, with P, > M.

Proof: It can be easily seen that givéd = M’ there ex-
ists a sufficiently largex > 0 suchthalR (M, L, Q+al, R) >
0. This, along with the assumption th&t+ D' M D > 0, leads
to the existence of the maximal solutiaf,, to the GARE

R(Py, L, Q+al, R)=0, D'P.D+R>0

by virtue of Theorem 4.4. Finally?, > M follows from the

maximality of P,. &
Define

My o.r2{M = M3 PePp o rsuchthat > P}.
(40)
Theorem 4.5:Assume thatPr o r # @ and let
M € My, o r be given. Then there existg’ > M such that
the GDRE (1) with the terminal conditioR(7") = A admits
a solutionP(-) on (—oco, T]. Moreover,P(t) is monotonically

nonincreasing as decreases, and converges to the maximal

solution to the GARE (29) as— —c<.

a terminal conditionP(7T") > M also converges t&,,,x.

Proof: Let P(-) be a solution to the GDRE (1) with
P(T) = M > Pp,x, Which exists by Theorem 4.1 and Corol-
lary 3.1. Theorem 4.5 yields that there exidts> M > P
such thatP(t) converges taP., ast — —oo, where P(-)
solves the GDRE (1) with the terminal conditid¥(1’) = M.
Now, Corollary 3.4 implies that

P(t)> P(t) > Paax, Vt<T.

Hence, the first part of the theorem follows from the fact that
lim; ,_ o, P(t) = Pyax. The second part of the theorem can be
proved similarly. &

V. ILLUSTRATIVE EXAMPLES

In this section, we present two examples to illustrate the re-
sults obtained. Consider the following 1-D LQ problem with
constant coefficients, b, ¢, d, m, ¢, r

Minimize
J=E { [ gz (£)? + ru(t)?] dt + ma:(T)Q}

subject to
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{ da(t) = [ax(t) + bu(t)] dt + [ca(t) + du(t)]dW(t)  whereasn not yet fixed. The corresponding GDRE and GARE
x(to) = xo. are
(41)
| | s =2 sy =m 450,
Before going further, let us see how Assumption 4.1 translates (t)
into. By Remark 4.1 the mean-square stabilizability is equiva- p? — 32p +40 =0, 4p—-5>0

lent to the following condition: There exists a scalarc R,
such thatf (k) = d?k? + 2(b + cd)k + (¢? + 2a) < 0 or that respectively. The solutions to the GARE afe= 16— 6+/6 and
the maximum of the functiorf(k) is negative. This leads to thep, = 16+6+/6. The maximal solution to the GARE is therefore

following inequality:

2ad® — 2bed — b? < 0. (42)

Example 6.1: Consider the case where the coefficients of the

system satisfp +cd = 0, d # 0, 2a + ¢ < 0. Itis easy to
verify that in this case (42) holds.

Assume that the weighting constants in the cost function X

chosen from the following set:
{m, @ nlr@a+ ) —gd? <0, —Z <m}.  (43)
The GDRE (1) reads

=m, andr +d?p(t) > 0
(44)

p(t) = —(2a+F)pt)—q, p(T)

With the data(m, ¢, ») satisfying (43), it is easy to see th at

there is @ > —(r/d?) such thap € Py o, R C PM Hence

Indeed this solution can be explicitly obtained as

(1 +

where it can be directly verified that+ d*p(t) > 0, V¢ < T
Now, lim;—._, p(t) = —(q/(2a + ¢?)), which is exactly the
maximal solution of the corresponding GARE

q
2a + 2’

; —(2a+4¢3)(t=T) _
p(t) 2a + 62> ¢

(2a+cA)p+q=0, r+d*p > 0.

Example 6.2: Now, assume that the system satisfies (42) and[1]

(d%q + 2ar + *r)* — 4qr(2ad® — 2bed — b*) > 0

The above condition means that the equality part of the GARE

(2ad® — b? — 2bed)p® + (d*q + 2ar + Pr)p+qr =0

admits two real solutions, say andp-. If the control weight
7 is such that + d? min{p;, po} > 0, thenmax{p;, p2} is
the maximal solution to the GARE and the 98t ¢, r is ex-
actly the intervallmin{p;, p2}, max{p1, p2}]. Moreover, for
any terminal conditiorp(7’) = m > min{p;, p2}, Theorem

4.1 implies that the corresponding solution to GDRE exists and[8l
nondecreasinglgonverges to a solution of the GARE, which

in the present case must bex{p;, p» } for there are only two
solutions to the GARE.

Let us look at a specific case with the following parameter[1

valuesia = —(1/2), b= -3,¢c=1,d =2, q =8, r = =3,

Pmax = 16 + 61/6. The GDRE can be rewritten as

_ () — 16 +6V6)(p(t) — 16 — 6v/6)

P) 4p(t) — 5 (45)
p(T) =m, dp(t) — 5> 0.
Bg examining the sign of the functiofi(v) = ((v — 16 +

V6)(v — 16 — 6+/6)/4v — 5) it can be easily seen thatt)
nondecreasingly convergesite+6+/6 whenl6 —6v/6 < m <
16 + 61/6, wherea(t) decreasingly converges i6 4 61/6
whenm > 16 + 6v/6.

VI.

In this paper, we have characterized the solvability of a gen-
eralized differential Riccati equation, which is crucial to solving
he indefinite stochastic LQ control problems that were first put
forth in [11], in terms of a parameterized (the timbeing the

CONCLUDING REMARKS

obtained reduces to the one given in [11] in the special setting
of [11]. Moreover, it gives rise to qualitative information on the
solvability with respect to the problem data.

From the computational point of view, the generalized dif-
ferential Riccati equation is much harder than the generalized
algebraic Riccati equation for which a systematic numerical ap-
proach was proposed in [2]. Solving the parametrized LMI pro-
posed in this paper appears to be a big challenge to researchers
in both control and mathematical programming areas.

REFERENCES

M. Ait Rami and L. El Ghaoui, “LMI optimization for stochastic Riccati
equation,”IEEE Trans. Automat. Conjwol. 41, pp. 1666-1671, Nov.
1996.

M. Ait Rami and X. Y. Zhou, “Linear matrix inequalities, Riccati equa-
tions, and indefinite stochastic linear quadratic contrtEEE Trans.
Automat. Contr.vol. 45, pp. 1131-1143, June 2000.

M. Ait Rami, J. B. Moore, and X. Y. Zhou, “Indefinite stochastic
linear quadratic control and generalized differential Riccati equation,”,
Preprint.

A. Albert, “Conditions for positive and nonnegative definiteness in terms
of pseudo-inverse SIAM J. Appl. Math.vol. 17, pp. 434-440, 1969.

M. Athans, “Special issues on linear-quadratic-Gaussian problem,”
IEEE Trans. Automat. Confwol. AC-16, pp. 527-869, Dec. 1971.

A. Bensoussan, “Lecture on stochastic control—Part.gtture Notes

in Math,, vol. 972, pp. 1-39, 1983.

J.-M. Bismut, “Linear quadratic optimal stochastic control with random
coefficients,”SIAM J. Contr. Optim.vol. 14, pp. 419-444, 1976.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnaimear Matrix
Inequality in Systems and Control TheornyPhiladelphia, PA: SIAM,
1994.

S. Bittanti, A. J. Laub, and J. C. Willem3he Riccati Equation New
York: Springer-Verlag, 1991.

0] F. M. Callier and J. L. Willems, “Criterion for the convergence of the
solution of the Riccati Differential equationJEEE Trans. Automat.
Contr, vol. AC-26, pp. 1232-1242, Dec. 1981.

(2]

(3]

[4
(5]
(6]
(7]

(9]



440 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 3, MARCH 2001

Xi Chen was born in Sichuan Province, China, in
1965. She received the B.Sc. and M.Eng. degrees in
control theory and application from Nankai Univer-
sity, Tianjin, China, in 1986 and 1989, respectively.
From 1989 to 1996, she worked at the Software

[11] S. Chen, X. Li, and X. Y. Zhou, “Stochastic linear quadratic regulator
with indefinite control weight costs 3IAM J. Control Optim.vol. 36,
pp. 1685-1702, 1998.

[12] S. Chen and X. Y. Zhou, “Stochastic linear quadratic regulators wi
indefinite control weight costs—II,5IAM J. Control Optim.vol. 39,
pp. 1065-1081, 2000. Engineering Institute at Beijing University of Aero-

[13] M. H. A. Davis, Linear Estimation and Stochastic ControlLondon, nautics and Astronautics, Beijing, China. Currently,

U.K.: Chapman and Hall, 1977. I U she is working toward the Ph.D. degree in the Depart-

[14] A. El Bouhtouri and A. J. Prichard, “Stability radii of linear system ment of Systems Engineering and Engineering Man-
with respect to stochastic perturbationSy'st. Control Lett.vol. 21, pp. agement, Chinese University of Hong Kong. Her re-
29-33, 1992. search interests are in the areas of stochastic control,

[15] L. El Ghaoui, R. Nikoukhah, and F. Delebecque. (1995) LMITOOL: APetri nets, software engineering, and computer-aided design in control systems.
front-end for LMI optimization in matlab. [Online]Available via anony-
mous ftp to . Available: ftp.ensta.fr, under /pub/elghaoui/lmitool

[16] M. D. Fragoso, O. L. V. Costa, and C. E. de Souza, “A new approach to
linearly perturbed Riccati equations arising in stochastic contAgipl.
Math. Optim, vol. 37, pp. 99-126, 1998.

[17] D. Hinrichsen and A. J. Prichard, “Stochasfi™>,” SIAM J. Control
Optim, vol. 36, pp. 1504-1538, 1998.

[18] R.E. Kalman, “Contribution to the theory of optimal contrdgdl. Soc.
Mat. Mex, vol. 5, pp. 102-119, 1960.

[19] M. Kohlmann and X. Y. Zhou, “Relationship between backward stg
chastic differential equations and stochastic controls: A linear-quadra
approach,’SIAM J. Control Optim.vol. 38, pp. 1392-1407, 2000.

[20] A.E.B.Limand X. Y. Zhou, “Optimal stochastic LQR control with in-
tegral quadratic constraints and indefinite control weighESEE Trans.
Automat. Conty.vol. 44, pp. 1359-1369, July 1999. and Full Professor (Personal Chair) in 1973. From

[21] R. Penrose, “A generalized inverse of matrices, Pimc. Cambridge 1975-1979, he was Department Head. In 1982, he
Philos. Soc.vol. 52, 1955, pp. 17-19. was appointed a Professorial Fellow in the Depart-

[22] A. Ran and R. Vreugdenhil, “Existence and comparison theorems forent of Systems Engineering, Research School of Physical Sciences, Australian
algebraic Riccati equations for continuous and discrete time systemblational University, and promoted to Professor in 1990. He has been Head of the
Linear Algebra Appl.vol. 99, pp. 63-83, 1988. department since 1992, and is currently in the Research School of Information

[23] H.L. Trentelmaret al, “When does the algebraic Riccati equation havésciences and Engineering. His current research is in control and communication
a negative semi-definite solution,” i@pen Problems in Mathematical systems, and signal processing. He is the coauthor of many books, including
Systems and Control Control Theoly: D. Blondelet al, Eds. New Linear Optimal Contro(Englewood Cliffs, NJ: Prentice-Hall, 197 IQptimal

John B. Moore (S'66—M'68—SM'77—F'79) was born
in China in 1941. He received the B.S., M.S., and
Ph.D. degrees in electrical engineering from the Uni-
versity of Santa Clara, California, in 1963, 1964, and
1967, respectively.

He was appointed Senior Lecturer at the Electrical
Engineering Department, University of Newcastle in
1967, and promoted to Associate Professor in 1968,

York: Springer-Verlag, 1999, pp. 229-237. Filtering (Englewood Cliffs, NJ: Prentice-Hall, 197%)ptimal Control-Linear
[24] L. Vandenerghe and S. Boyd, “Semidefinite programmir®)AM Re- Quadratic MethodgEnglewood Cliffs, NJ: Prentice-Hall,1989pptimization

view, 1996. and Dynamical Systen{dlew York: Springer-Verlag, 1993Hidden Markov
[25] V. A. Ugrinovskii, “RobustH .. control in the presence of stochasticModel Estimation and Control via Reference Meth@Nsw York, Springer-

uncertainty,”Int. J. Contro| vol. 71, pp. 219-237, 1998. Verlag, 1995), andtigh Performance ContrgBoston, MA: Birkhasuer 1997).

[26] J.C.Willems, “Least squares stationary control and the algebraic RiccatiDr. Moore is a Fellow of the Australian Academy of Technological Sciences
equation,”IEEE Trans. Automat. Contwvol. AC-16, pp. 621-634, Dec. and Engineering, and a Fellow of the Australian Academy of Science.
1971.

[27] W. M. Wonham, “On a matrix Riccati equation of stochastic control,”
SIAM J. Contro] vol. 6, pp. 312-326, 1968.

[28] ——, “Random differential equations in control theory,” lim Proba-
bilistic Methods in Applied MathematicA. T. B. Reid, Ed. New York:
Academic, 1970, vol. 2, pp. 131-212.

[29] X.Y. Zhou and D. Li, “Continuous-time mean-variance portfoli selec
tion: A stochastic LQ framework,Appl. Math. Optim. vol. 42, pp.
19-33, 2000.

Xun Yu Zhou (M'97-SM’'99) was born in Jiangsu
Province, China in 1965. He received the Ph.D. de-
gree in applied mathematics from Fudan University,
Shangai, China, in 1989.

From 1989 to 1991 and from 1991 to 1993,
he did postdoctoral research at Kobe University,
Kobe, Japan and the University of Toronto, Canada,
respectively. He is currently an Associate Professor

Mustapha Ait Rami was born in Marrakech, Morocco, in 1964. He receivec

a first Maitrise (B.Sc.) degree in applied mathematics from Université Hass

I, Casablanca, Morocco, and a second Maitrise in pure mathematics from U '.] at the Chinese University of Hong Kong. A Principal

versité Cadi Ayad, Marrakech, Morocco. He received the DEA (M.S.) degrt - ] Investigator of numerous grants, he has done

in nonlinear analysis-optimization and the Ph.D. degree in applied mathemaucs extensive research in optimal stochastic controls,

from the CEREMADE's Department, Université Paris-IX Dauphine, in 1997.mathematical financefinsurance, and discrete-event manufacturing systems.
From 1997 to 1998, he worked on an applied project for EDF Compame has published more than 40 papers in refereed journals, and his new book

France, at the Department de Mathematiques Appliquées, ENSTA, Pafissauthored with J. Yong) is entitl&dtochastic Controls: Hamiltonian Systems

France. From 1998 to 1999, he did postdoctoral research at the Chingfl HIJB EquationgNew York: Springer-Verlag, 1999). He is on the editorial

University of Hong Kong. His research interests are in the areas of robygard ofOperations Research

control theory and optimal stochastic control. His research activities includepr. Zhou was awarded the Alexander von Humboldt Fellowship of Germany

also rank minimization problems and its connections with automatic contrigl 1991 and is currently on the editorial board of the IEE&NSACTIONS ON

and semidefinite programs. AUTOMATIC CONTROL.



