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On the Estimation of Interleaved Pulse Train Phases
Tanya L. Conroy and John B. Moore, Fellow, IEEE

Abstract—Some signals are transmitted as periodic pulse trains
where information is in the timing of the arrival of the pulses. A
number of pulse trains arriving over the same time interval are
said to beinterleaved. We propose an on-line method for estimating
pulse train phases and fine-tuning pulse repetition frequency
(PRF) estimates of a known number of interleaved pulse trains.
The computational effort is of order , where is the number
of pulses received. In particular, we employ an extended Kalman
filter, where discontinuities in the signal model are appropriately
smoothed.

Index Terms—Phase estimation, pulse train deinterleaving.

I. INTRODUCTION

SOME signals occur as periodic trains of pulses. For ex-
ample, signals used in radar systems, communication sys-

tems, and possibly neural systems appear in this form. Often, a
number of pulse trains are received over a single channel during
the same time interval, resulting in aninterleavedpulse train. It
is important to be able to separate the pulses in the interleaved
train in terms of their source in order to extract desired infor-
mation. This process is termedpulse train deinterleaving. One
application for pulse train deinterleaving is in radar detection
[1].

Previously proposed pulse train deinterleaving methods in-
clude sequential search [2] and histogramming [2], [3], which
work well in low-noise environments. Another approach is first
to formulate the problem as a stochastic discrete-time dynamic
linear model and then deinterleave the signal using either for-
ward dynamic programming with fixed look-ahead or a proba-
bilistic teacher [4]. All these methods are computationally ex-
pensive. If the pulse train to be deinterleaved containspulses,
then these methods require a computational effort of order
or higher. It could be argued that if is, say, 100 to 300 pulses,
then the is not unattractive, but if is say, 10 000, then

is not tractable for real time implementation.
An extended Kalman filter [5] approach to deinterleaving

using a modified version of the signal model in [4] is presented
in [6]. Here, the computational effort required is of order. An-
other method for deinterleaving using the Kalman filter derived
from techniques for multiple target tracking is presented in [7],
where a maximum of three trains are present in the interleaved
train.

The deinterleaving task relies on the assumption that the
different trains will have different pulse repetition frequencies
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(PRFs) and phases; therefore, the estimation of these charac-
teristics is perhaps a useful starting point. One computationally
efficient method for this uses fast Fourier transform techniques
to determine the number of trains present and their PRFs
but does not deinterleave the trains [8]. The computational
effort required is of order . A state-space method
for parameter estimation is given in [9] to estimate the pulse
repetition interval and the variance of the jitter noise of a single
pulse train.

None of the above methods seek to directly estimate the
phases of the interleaved pulse trains. In this paper, a new signal
model for use with an extended Kalman filter is proposed. As
with [8], we do not deinterleave the pulse trains but estimate
their characteristics. Here, we directly estimate the phases and
fine tune the PRF estimates obtained using the method in [8] of
the interleaved pulse trains with computational effort of order

. It is assumed that the pulse trains are periodic and that
the number of sources is finite and known (also from spectral
analysis [8]).

II. SIGNAL MODEL

Consider periodic pulse train sources. Let and
denote the PRF and phase of theth source. Note that the
pulse train phases take values in the interval . Pulses
then occur at times for and

The received interleaved signal consists of the
superposition of the pulse trains produced by these sources.
Let denote the times of arrival of consecutive
pulses. The deinterleaving problem is as follows.

Deinterleaving Task:Given pulse arrival times
and the number of sources present, determine which source
produced each pulse.

A first step toward solving this is phase/PRF estimation.
Phase/PRF Estimation Task:Given pulse arrival times

and the number of sources present, estimate
the frequencies and phases of each pulse train

.
Since our computer implementation of the estimation algo-

rithms are in discrete time, it makes sense to work with dis-
crete-time models that are fast sampled approximate versions
of the precise continuous-time models. The signal can be de-
scribed by a discrete-time model

(1)

Here, is the discrete-time index, and the received signalis
thenumber of pulsesdetected before the discrete time step. In
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addition, is the state variable atwith elements of the PRFs
and phases as follows:

(2)

where there are pulse train sources, is the PRF, and
is the phase of train, as shown in Fig. 1. The terms and
represent noise on the states and received signal.

The received signal is the number of pulses that have ar-
rived in the interleaved train at time. A typical example of
for is shown in Fig. 2, where jumps occur when a pulse
is received. Note that the jumps are not instantaneous due to the
discrete nature of the model. A pulse is only known to arrive
within a discrete time period rather than at an exact time. Thus,

can be expressed in terms of the state as follows:

(3)

where is a minimum value remainder term that ensures that
is an integer. The remainder term can also be related to the

state since for each pulse train at each time instant,is equal
to the fractional part of .

The terms in (1) represent noise on the states and re-
ceived signal, respectively. Thus, represents drifting of phase
and frequency or, equivalently, cumulative jitter on the states,
and represents noncumulative jitter, which translates to a
variation in the number of pulses observed at timeand could
also be used to represent the number of false detections of pulses
or missing pulses. For simplicity, we assume thatand are
independent, zero mean, and Gaussian with covariancesand

, respectively. Since the received signalis an integer,
must, in reality, be integer-valued noise, but as Fig. 3 shows, for
Gaussian noncumulative jitter added to the pulse arrival times,
the noise distribution on the received signal is also Gaussian.

It can be seen from (3) that depends nonlinearly on the
state; therefore, the state space model (1) is nonlinear. The non-
linearities in are discontinuous; therefore, the signal model
cannot be used in its present form to derive an extended Kalman
filter (EKF).

Remark: In [6], a discrete-event state-space model is for-
mulated with the “discrete-time” variable being the integer
number of pulses that have arrived. This method is of order.
Here, depends on the rate at which the interleaved train is sam-
pled. Since the sample rate only linearly increases the order of
the deinterleaver, this method is also of orderfor any reason-
able sample rate. In the simulations that follow, we use a sample
rate of 100 kHz, which is about 10 times higher than the highest
PRF present. It is important only that this rate be fast enough
to accurately capture the interleaved train and slow enough not
to cause instability in the EKF. This instability occurs when the
input to the EKF varies infrequently in comparison to the sam-
pling rate.

Fig. 1. Single pulse train and its characteristics.

Fig. 2. Received signalh .

Fig. 3. Distribution of noise on the received signaly in the presence of
noncumulative Gaussian jitter noise (� = 10ns ) on the pulse times of
arrival. The output noise variance in this case is 1.35 pulses.

A. Smoothing

A key proposal of this paper is to exploit the extended Kalman
filter in some way for recursively estimating the states (phases
and PRFs of the pulse trains) from the data. This is a first
step toward deinterleaving. In order to use an EKF for deinter-
leaving, our approach is to smooth the nonlinearities inherent in
the signal so that these can be linearized. This can be done,
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Fig. 4. Smoothed signalh .

for example, by truncating a Fourier series expansion ofto
terms. The resultant expression for is

(4)

In practice, the first term of the Fourier series [ in
(4a)] appears sufficient to approximate the original discontin-
uous signal for filtering purposes. As increases, the smooth
signal better approximates the original signal, becoming less
smooth with each term added. This is undesirable in this case
where a smooth approximate signal is needed for use in the EKF.
Fig. 4 shows the smoothed version of the signal in Fig. 2.

The smoothed signal model is now

(5)

where is given in (4).

III. EXTENDED KALMAN FILTER

In order to construct an EKF from the signal model given in
(5), a linearization of (4) is needed. This is

(6)

where

(7)

The EKF equations are simplified by the constant state equa-
tion in the signal model. This yields constant time-update equa-
tions, and therefore, the filter equations are

(8)

where
filtered estimate of ;
Kalman gain;
error covariance matrix atgiven measurements to

.
Notice that the nonsmooth estimate of the input signal

is used in the state update equation. The initializa-
tion here is given by , where , and

.
Remark: The EKF is near optimal under the following con-

ditions:

• good initial estimates of the parameters;
• low noise;
• good approximations of the smoothed nonlinearities.

When operating outside these conditions, there is no theory that
states how well it will operate. See [5] for further information
on the EKF.

IV. RESULTS

Ten sets of randomly generated PRFs and phases were used
to construct interleaved pulse trains with various numbers of
component trains to test the effectiveness of the EKF parameter
estimation method. There was no noise on the interleaved trains.
It was found that in eight out of the ten cases, the EKF parameter
estimator could fine tune the PRF estimates and estimate the
phases of up to seven interleaved pulse trains after processing
an interleaved train with 2000 pulses. The mean error in the
PRF and phase estimates over the eight cases was 13.8e-3%
and 2.0%, respectively. The other two cases are dealt with in
the section on estimation failure below.

Fig. 5 shows typical results for the PRF fine tuning and phase
estimation from the EKF with no noise on the interleaved train.
The interleaved train input consists of 2000 pulses ( )
with five component pulse trains ( ). The estimation re-
sults are as shown in Tables I and II.

These results are obtained with an initial 10% uncertainty
in the PRF’s and unknown phases on the interval . The
initialization matrices used reflect this. Here, is given by

(by spectral studies [8]) and randomly se-
lected from a normal distribution over . The initialization
for the error covariance matrix is therefore given as follows:

diag

diag

The noise covariance was set to 10 to add some robustness
to modeling uncertainties. was set to zero because there is
no cumulative jitter present in the system.
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Fig. 5. Parameter estimation over 1000 pulses. (a) Actual and estimated PRFs.
(b) Actual and estimated phases.

TABLE I
COMPARISON OFPRFS

TABLE II
COMPARISON OFPHASES

As can be seen from Table I, the fine tuning of the PRF is
very effective. Table II indicates that there can be some bias
in estimating the phase (due to inaccuracies in the model and

the effect of the positive definite ) but that this bias is small.
Processing more pulses slightly improves the phase estimation,
but beyond around 2000 pulses, this improvement is minimal.

Of course, one would not be surprised if a method involving
of order calculations (or higher) achieved similar, or better
results, but the main message from this work is that very useful
results are achieved using a method requiring only of order
calculations.

A. Sensitivity to Initial Conditions

As with [6], or any method that uses an EKF for estimation
or deinterleaving, this parameter estimation method is sensitive
to initial conditions chosen. Here, an initial estimate for PRF
is known (perhaps using the method of [8]) and assumed to be
within 10% of the true value. The difficulty lies in choosing an
initial value for the phases.

Since the pulse train phases are assumed to lie on the interval
, the initial estimates for the phases are randomly chosen

from a uniform distribution over this interval. It makes sense
then to use a bank of filters, each with a different initialization
for phase, with the filter leading to the least average prediction
error squared being chosen. Since this method is of order,
it will retain its computational advantage over most previous
deinterleaving methods if the number of filters in the bank is
much less than .

B. Jitter Noise

Noise is present in all real-world signals, so it is important to
test this pulse train parameter estimation method in the presence
of noise. Here, we examine only the case where white Gaussian
noise with known variance is present. It could be possible to
deal with noise of unknown variance or bias using anadaptive
Kalman filter, but this is beyond the scope of this paper.

Time-of-arrival jitter noise with variance
ns ns ns and ns was added to the inter-

leaved pulse train. This noise is noncumulative jitter. is set
to 10 when ns or ns and 20 when ns
or ns . As with the noise-free case, is zero as there is
no noncumulative jitter present. To determine how significant
these noise levels are when applied to the pulse trains in the
simulation, the noise standard deviation is compared with the
period of the highest frequency train. Here, that train has a
pulse repetition interval (PRI) of ms so that
when ns

or the standard deviation of the jitter is 23% of the smallest pe-
riod present. When ns ns and ns , the standard
deviation of the jitter is 32%, 51%, and 72% of the smallest pe-
riod, respectively.

Fig. 6 shows how the performance of the system degrades as
jitter noise is increased. Here, we assume that the parameters
of a set of pulse trains have been successfully estimated if the
average phase error is within 10%. Table III shows the average
PRF and phase errors for the maximum number of trains esti-
mated at each noise level.



3424 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 12, DECEMBER 2000

Fig. 6. Degradation of algorithm with increasing noise.

TABLE III
AVERAGE PRFAND PHASE ERRORS FOR ATYPICAL SET OF PULSE TRAINS

UNDER VARIOUS NOISE CONDITIONS

Fig. 7 shows the effect of jitter noise with variance 1 nson
the same five train system as shown in Fig. 5, where no noise is
present.

C. Estimation Failure

Any method for time-of-arrival pulse train deinterleaving or
parameter estimation will fail if the pulse environment is too
dense, i.e., there are too many pulse trains being received during
the same time period over the same channel. This causes this
method to fail for more than seven pulse trains in the received
signal. Similarly, no method works well when there is too much
noise on the received signal.

There are some cases where, even without noise on the
system, and with the presence of a bank of EKF estimators
to eliminate difficulties due to the sensitivity of the EKF to
initial conditions, the phase and PRFs of a set of trains are not
correctly estimated. This occurs primarily when two trains in
the interleaved train have PRFs and phases that are very similar.
In this case, even if the other trains are correctly estimated,
these two trains are not due to their similarity. See Tables IV
and V for an example where this is the case. Here, pulse trains
1 and 2 are very similar, and estimation fails. This case is likely
to prove to be a problem for any estimation or deinterleaving
method as the two trains interfere with each other at every
pulse.

Fig. 7. Parameter estimation over 1000 pulses in the presence of noise with
known variance� = 1ns . (a) Actual and estimated PRFs. (b) Actual and
estimated phases.

TABLE IV
COMPARISON OFPRFS IN THE CASE OFESTIMATION FAILURE

TABLE V
COMPARISON OFPHASES IN THECASE OFESTIMATION FAILURE

V. CONCLUSION

An important aspect of this scheme for estimating the param-
eters of interleaved pulse trains is its computational efficiency.
If there are pulses to be processed in the interleaved train,



CONROY AND MOORE: ESTIMATION OF INTERLEAVED PULSE TRAIN PHASES 3425

then computations are of order. Since computationally effi-
cient (order ) fast Fourier transform methods give fairly
accurate estimates of the pulse train frequencies [8], this new
method is used to fine tune the PRF estimates and yield esti-
mates of phase.

Accurate estimates of both phase and PRF could be useful
for deinterleaving periodic pulse trains. With the method ap-
plied here, the phases of up to seven interleaved trains can be
estimated to around 2% of their actual values if 2000 pulses are
processed. The PRF estimates can be fine tuned from a 10%
error to virtually zero (around 15e-3%) error.

This method is robust to significant jitter noise on the pulse
train times of arrival. Naturally, as more noise is added, perfor-
mance degrades with fewer train parameters that can be esti-
mated and greater errors in the estimation.

Of course, in hindsight, the proposed method is a straight-
forward application of the familiar extended Kalman filter. The
significance of this work is that this tool is able to achieve such
useful results in a context in whicha priori, one would not
expect it to perform well since it approximates discontinuities
by smooth functions. Our experience is that the nature of the
smoothness approximations is critical, and one approximation
at least, as studied here, is seen to be quite facilitating.
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