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On the Estimation of Interleaved Pulse Train Phases

Tanya L. Conroy and John B. MoqrEellow, IEEE

Abstract—Some signals are transmitted as periodic pulse trains (PRFs) and phases; therefore, the estimation of these charac-
where information is in the timing of the arrival of the pulses. A teristics is perhaps a useful starting point. One computationally
number of pulse trains arriving over the same time interval are — gfficiant method for this uses fast Fourier transform techniques
said to beinterleaved We propose an on-line method for estimating . . .
pulse train phases and fine-tuning pulse repetition frequency to determine the_ number of traln_s present and their I_DRFS
(PRF) estimates of a known number of interleaved pulse trains. but does not deinterleave the trains [8]. The computational
The computational effort is of order IN , where IV is the number  effort required is of orderV log N. A state-space method
of pulses received. In particular, we employ an extended Kalman for parameter estimation is given in [9] to estimate the pulse

filter, where discontinuities in the signal model are appropriately gnetition interval and the variance of the jitter noise of a single

smoothed. .
pulse train.
Index Terms—Phase estimation, pulse train deinterleaving. None of the above methods seek to directly estimate the
phases of the interleaved pulse trains. In this paper, a new signal
I. INTRODUCTION model for use with an extended Kalman filter is proposed. As

_ oo . with [8], we do not deinterleave the pulse trains but estimate
S;)ME signals occur as periodic trains of pulses. FOr efgejr characteristics. Here, we directly estimate the phases and
mple, signals used in radar systems, communication Sy&g 1 ne the PRF estimates obtained using the method in [8] of
tems, and possibly neural systems appear in this form. Ofteya jierleaved pulse trains with computational effort of order
number of pulse trains are received over a single channel duriRg |; is assumed that the pulse trains are periodic and that

the same time interval, resulting in arerleavedpulse train. It yhe number of sources is finite and known (also from spectral
is important to be able to separate the pulses in the mterleavaq%ysis 8]).

train in terms of their source in order to extract desired infor-
mation. This process is termgdilse train deinterleavingOne
application for pulse train deinterleaving is in radar detection Il. SIGNAL MODEL
[1]. : . _ 4 ‘
. . . . . ) (@)
Previously proposed pulse train deinterleaving methods m_ConS|derM periodic pulse train sources. L¢t and 6

clude sequential search [2] and histogramming [2], [3], whic Fenote the PRF and phase of _thb source. Note that the
work well in low-noise environments. Another approach is fird{u!S€ train phases take values in the intefai2r). Pulses
aen occur at timeg2mn + 6%) /(2 f)) for i € [1, M] and

to formulate the problem as a stochastic discrete-time dynal h ved interl d sianal . fth
linear model and then deinterleave the signal using either fér-— 0,1, _2_’ - The receive m_ter eaved signal consists of the
ward dynamic programming with fixed look-ahead or a probg_uperposmon of thé/ pulse “‘?"”5 prodU(_:ed by these Sources.
bilistic teacher [4]. All these methods are computationally e)&'—eftl’ tQ’h' ) d’ tn delnot(_e the tlrtr)]les OT arrlvfaI”(N consecutive
pensive. If the pulse train to be deinterleaved containmulses, PY'S€S: T | e deinter ei\_’(';n_g pro lem IS as Io JOWS.
then these methods require a computational effort of aiédfer Deinterleaving Task:Given pulse arrival timegy, - --, fy
or higher. It could be argued that/¥ is, say, 100 to 300 pulses,and the number of sources presé#it determine which source
then theO(N?) is not unattractive, but iV is say, 10 000, then produced each pulse. . S
O(N?) is not tractable for real time implementation. A first step toward solving this is phase/PRF estimation.

An extended Kalman filter [5] approach to deinterleavine? Phase/PRF d Eﬁtlmatmg Ta?IGNen pulse arrival _t|mes
using a modified version of the signal model in [4] is present ﬁ’ f’ ty andt (% nurr(; erho sszl(Jir)ces% presﬁ\rﬁ; (lastlmatg
in [6]. Here, the computational effort required is of ordérAn- t e frequenciesf'” and phase of each pulse train
other method for deinterleaving using the Kalman filter deriveld ™ ,1’ 2, M. ) ) L
from techniques for multiple target tracking is presented in [7], Since our computer |_mple_mentat|0n of the est|mat|op algo-
where a maximum of three trains are present in the interlea\fété]'ms_are in discrete time, it makes sense to WOFk with d_|s-
train. crete-time models that are fast sampled approximate versions

The deinterleaving task relies on the assumption that tAEthe Precise continuous-time models. The signal can be de-
different trains will have different pulse repetition frequencieScriPed by a discrete-time model

Manuscript received May 5, 1999; revised August 8, 2000. The associate ed- Thal =Tk + Uk, To
itor coordinating the review of this paper and approving it for publication was + ’
Dr. Vikram Krishnamurthy. Yr =hy +wr. 1)

The authors are with the Department of Systems Engineering, Research
School of Information Sciences and Engineering, Australian National Univeﬁ . . . . . . .
sity, Canberra, Australia (e-mail: Tanya.Conroy@syseng.anu.edu.au). ere,k is the discrete-time index, and the received signab

Publisher Item Identifier S 1053-587X(00)10162-X. thenumber of pulsedetected before the discrete time stejn

1053-587X/00$10.00 © 2000 IEEE



CONROY AND MOORE: ESTIMATION OF INTERLEAVED PULSE TRAIN PHASES 3421

addition,z;, is the state variable @twith elements of the PRFs 80) /(2m F)) 1/f®
@ and phase8® as follows: - ™=

SN G A

372: |: ,El),"wf;EM),@;(cl)a "'79£A4):| (2) |

Time=0

where there aré/ pulse train sourceg,” is the PRF, and_”
is the phase of traify as shown in Fig. 1. The termg andwy, Fig. 1. Single pulse train and its characteristics.
represent noise on the states and received signal.

The received signdly, is the number of pulses that have ar-
rived in the interleaved train at timie A typical example ofi,
for M = 4 is shown in Fig. 2, where jumps occur when a puls
is received. Note that the jumps are not instantaneous due to
discrete nature of the model. A pulse is only known to arriv
within a discrete time period rather than at an exact time. Tht
hx can be expressed in terms of the state as follows:

Pulse number

hg) = fOr — 69 /27 — 7’,(:)
Mo
Iy, = Zhg) 3)
=1

7

Wherer,(c) is a minimum value remainder term that ensures th.
hgj) is an integer. The remainder term can also be related to t

state since for each pulse train at each time insté’ﬁtis equal
to the fractional part of V& — 6 /2r. Fi

The termsy;,, wy in (1) represent noise on the states and re-
ceived signal, respectively. Thus, represents drifting of phase 500
and frequency or, equivalently, cumulative jitter on the state:
and w;, represents noncumulative jitter, which translates to *®
variation in the number of pulses observed at titrend could 4,1
also be used to represent the number of false detections of pul
or missing pulses. For simplicity, we assume thaandw;, are  °°r
independent, zero mean, and Gaussian with covariapgcend .,
Ry, respectively. Since the received sigpalis an integerwy,
must, in reality, be integer-valued noise, but as Fig. 3 shows, fi5%%°r
Gaussian noncumulative jitter added to the pulse arrival time .|
the noise distribution on the received signal is also Gaussian.

It can be seen from (3) that; depends nonlinearly on the 3
state; therefore, the state space model (1) is nonlinear. The N,y
linearities inh;, are discontinuous; therefore, the signal mode
cannot be used in its present form to derive an extended Kalm "
filter (EKF). o

Remark: In [6], a discrete-event state-space model is for = - (-jzutputerror(m?mberofpulsezs) * °
mulated with the “discrete-time” variable being the integer
number of pulses that have arrived. This method is of ofder Fig: 3. Distribution of noise on the received signal in the presence of

. . . noncumulative Gaussian jitter noise?( = 10ns?) on the pulse times of
Here k depends on the rate at which the interleaved train is Sagia; The output noise variance in this case is 1.35 pulses.
pled. Since the sample rate only linearly increases the order of
the deinterleaver, this method is also of ordéfor any reason- )
able sample rate. In the simulations that follow, we use a sample SM0Othing:
rate of 100 kHz, which is about 10 times higher than the highestA key proposal of this paper is to exploit the extended Kalman
PRF present. It is important only that this rate be fast enouglter in some way for recursively estimating the states (phases
to accurately capture the interleaved train and slow enough aoid PRFs of the pulse trains) from the data This is a first
to cause instability in the EKF. This instability occurs when thstep toward deinterleaving. In order to use an EKF for deinter-
input to the EKF varies infrequently in comparison to the saneaving, our approach is to smooth the nonlinearities inherent in
pling rate. the signalh;. so that these can be linearized. This can be done,

Time, k (msec)

g.2. Received signdl{".

Jitter noise output B
error distribution

Gaussian distribution
with same variance b
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b : ' { ! : j The EKF equations are simplified by the constant state equa-
: ' : : ' tion in the signal model. This yields constant time-update equa-
tions, and therefore, the filter equations are

g1/ = Tryn—1 + Klyr — ha(Eryp—1)]
Ky =Py 1 Hy(H' Py Hy + Ry)

Pijrjw =Pujp1r — KeH' 3Py + Qi (8)
where
Zpy1/1 filtered estimate ofryyy;
K, Kalman gain;
Py x—1 error covariance matrix &t given measurements to
k—1.

Notice that the nonsmooth estimate of the input signal
hi(Zx/1—1) is used in the state update equation. The initializa-

0 0.1 0.2 03 0.4 0.5 0.6 0.7

Time, k (msec) tion here is given byeg,_; = %o, wherezg = [f’o é’o]’, and
Fig. 4. Smoothed signa; . Fo-1 = B, . . .
Remark: The EKF is near optimal under the following con-
ditions:
for example, by truncating a Fourier series expansiofofo « good initial estimates of the parameters;
A terms. The resultant expression for is « low noise;
‘ ‘ ‘ » good approximations of the smoothed nonlinearities.
' = (f;gz)k — 0 2m — 1/2) When operating outside these conditions, there is no theory that
A states how well it will operate. See [5] for further information
+ > sin (2rafik - 0" Jar on the EKF.
a=1
M
B = Z hz(”). @ IV. RESULTS
P Ten sets of randomly generated PRFs and phases were used

to construct interleaved pulse trains with various numbers of

In practice, the first term of the Fourier seried [= 1in  component trains to test the effectiveness of the EKF parameter
(4a)] appears sufficient to approximate the original discontiestimation method. There was no noise on the interleaved trains.
uous signal for filtering purposes. A$ increases, the smoothitwas found that in eight out of the ten cases, the EKF parameter
signal better approximates the original signal, becoming lesstimator could fine tune the PRF estimates and estimate the
smooth with each term added. This is undesirable in this casigases of up to seven interleaved pulse trains after processing
where a smooth approximate signal is needed for use in the EI4h. interleaved train with 2000 pulses. The mean error in the
Fig. 4 shows the smoothed version of the signal in Fig. 2. PRF and phase estimates over the eight cases was 13.8e-3%

The smoothed signal model is now and 2.0%, respectively. The other two cases are dealt with in
the section on estimation failure below.
Try1 =Tk +V6 , Zo Fig. 5 shows typical results for the PRF fine tuning and phase
yr = hi(z1) + wy (5) estimation from the EKF with no noise on the interleaved train.
The interleaved train input consists of 2000 puls¥s=£ 2000)
whereh; () is given in (4). with five component pulse traind{ = 5). The estimation re-

sults are as shown in Tables | and II.

These results are obtained with an initial 10% uncertainty
] _inthe PRF’s and unknown phases on the intef9alr). The
In order to construct an EKF from the signal model given iyitialization matrices used reflect this. Herg, is given by

Ill. EXTENDED KALMAN FILTER

(5), alinearization ohj(xy) (4) is needed. This is féi) = 0.9 (by spectral studies [8]) arﬁﬁi) randomly se-
() @) lected from a normal distribution ovffr, 27). The initialization
s — [ <, Ohg(xr)/Ofy 7, -, ORG (1) /086, } (6) for the error covariance matrik, is therefore given as follows:
vhere Py = diag ((f(i))Q/l()O) Onrscm ]
. 4 4 0 diag(x2/3) |
8hk((ﬂi?)k) k2% COS(27rf,EZ)k _ 9’(3)) MxM g /3)
Iy The noise covarianck;, was set to 10 to add some robustness

3’12(%) __t 1 cos(2r [P — 6. (7) to modeling uncertainties);. was set to zero because there is
89,(3) 2r o no cumulative jitter present in the system.
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: ) ' ' ' ' S — the effect of the positive definit&;) but that this bias is small.
ol I Estimated P“FL_ Processing more pulses slightly improves the phase estimation,
; but beyond around 2000 pulses, this improvement is minimal.
7_"' i Of course, one would not be surprised if a method involving
of order N? calculations (or higher) achieved similar, or better
ok ] results, but the main message from this work is that very useful
= results are achieved using a method requiring only of ofder
EA ] calculations.
:
4 1 A. Sensitivity to Initial Conditions
o, | As with [6], or any method that uses an EKF for estimation
s or deinterleaving, this parameter estimation method is sensitive
o | toinitial conditions chosen. Here, an initial estimate for PRF
A:_~~--~—-- is known (perhaps using the method of [8]) and assumed to be
; : - . L - - within 10% of the true value. The difficulty lies in choosing an
Q 10 20 30 40 50 60 70 e
Time (msec) initial value for the phases.
¢ , ' ' " ' ’ Since the pulse train phases are assumed to lie on the interval
! b) ——  Actual hasesels L .
s Lz Estimaledphases | [0, 27), the initial estimates for the phases are randomly chosen
— . from a uniform distribution over this interval. It makes sense
sHi e T T 1  then to use a bank of filters, each with a different initialization
'a".",l\ P el T T for phase, with the filter leading to the least average prediction
ARG T TS s s ] error squared being chosen. Since this method is of akder
g J',’\ N’ _ it will retain its computational advantage over most previous
2 E‘,‘\,’-vﬁv""‘-f' deinterleaving methods if the number of filters in the bank is
ff“as-j\.,“f;{w 1 much less thamv.
[
sg S 1 . )
? 1 e B. Jitter Noise
25f . 1 Noise is present in all real-world signals, so it is important to
.k I — | testthis pulse train parameter estimation method in the presence
of noise. Here, we examine only the case where white Gaussian
15, m P = m = = ~ hoise with known variance is present. It could be possible to
Time (msec) deal with noise of unknown variance or bias usingadaptive
Fig.5. Parameter estimation over 1000 pulses. (a) Actual and estimated Plil(-alman filter, but this is beyond the scope of this paper
(b) Actual and estimated phases. *fime-of-arrival jitter noise with varianceo? =
1 ng, 2 ng, 5 ng and 10 ns® was added to the inter-
TABLE | leaved pulse train. This noise is honcumulative jitfey.is set
COMPARISON OFPRFs to 10 whens? = 1 ng or 2 ng and 20 whers? = 5 ng
Train No— Aciual PRF Est PRF rror or 10 ng. As Wlth _t.he noise-free cas€);, is zero as thert_a_ls
(kHz) (kHz) (%) no noncumulative jitter present. To determine how significant
1 1.3238 13237  4.8e-3 these noise levels are when applied to the pulse trains in the
2 1.7364 1.7363  6.3e-3 simulation, the noise standard deviation is compared with the
3 2.0830 2.0828  5.8e-3 period of the highest frequency train. Here, that train has a
4 2.7595 2.7595  1.5e-3 | s | (PR of: - h
5 79944 79945  9.50.3 pulse repetition interval (PRI) dfyy = 0.138 ms so that
whens? = 1 ng
TABLE I 4
COMPARISON OFPHASES TN = 0.2285
Train No. Acugighase ESt('rilh)ase E(;Sr or the standard deviation of the jitter is 23% of the smallest pe-
T 150 146 06 riod present. When? = 2 ng?, 5 ng® and10 ng?, the standard
2 5.31 5.25 1.0 deviation of the jitter is 32%, 51%, and 72% of the smallest pe-
3 4.90 4.82 1.3 riod, respectively.
g g'gg ;'2515 ig Fig. 6 shows how the performance of the system degrades as

jitter noise is increased. Here, we assume that the parameters
of a set of pulse trains have been successfully estimated if the

As can be seen from Table I, the fine tuning of the PRF &verage phase error is within 10%. Table 11l shows the average
very effective. Table Il indicates that there can be some biBRF and phase errors for the maximum number of trains esti-
in estimating the phase (due to inaccuracies in the model andted at each noise level.
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Fig. 6. Degradation of algorithm with increasing noise. 551 1
i .
S P
‘; T
TABLE Il asiht y e ]
AVERAGE PRFAND PHASE ERRORS FOR ATYPICAL SET OF PULSE TRAINS gﬂ“. e § PR Vo
UNDER VARIOUS NOISE CONDITIONS g “i?llf@*if: - ]
rel A G
Noise No. of Average PRF  Average Phase g as ',!-'il !.’ ‘4,;' ]
% lowest PRI Trains Error (%) Error (%) o 1-: '“': "_,IA"‘
0% 7 12.7¢-3 21 o Y b |
23% 6 20.1e-3 4.0 e
32% 4 37.3e-3 8.2 usl W e ein e ]
51% 2 7.7e-3 7.6 ’ RIS
72% 0 - - 2k e —
. .. . . . 1'50 1lo 2lo 3lo 4I0 5.0 6:) 70
Fig. 7 shows the effect of jitter noise with variance £ os Time (msec)

the same five train system as shown in Fig. 5, where no noise is

present. Fig. 7. Parameter estimation over 1000 pulses in the presence of noise with
known variancer? = 1ns?. (a) Actual and estimated PRFs. (b) Actual and

estimated phases.

C. Estimation Failure TABLE IV

. . . . . COMPARISON OFPRFs IN THE CASE OF ESTIMATION FAILURE
Any method for time-of-arrival pulse train deinterleaving or

parameter estimation will fail if the pulse environment is too Train No.  Actual PRF  Est. PRF  Error
dense, i.e., there are too many pulse trains being received during I 1(.1‘122)8 1(_1‘:;;)0 gf;)l
the same time period over the same channel. This causes this 2 1.2715 11992  5.69
method to fail for more than seven pulse trains in the received 3 3.9194 3.9199  2.6e-3
signal. Similarly, no method works well when there is too much 4 5.0299 5.0300  1.4e-3
noise on the received signal.

There are some cases where, even without noise on the TABLE V

system, and with the presence of a bank of EKF estimators

COMPARISON OFPHASES IN THE CASE OF ESTIMATION FAILURE

to eliminate difficulties due to the sensitivity of the EKF to Train No. Actual Phase FEst. Phase Error
initial conditions, the phase and PRFs of a set of trains are not (rad) (rad) (%)
correctly estimated. This occurs primarily when two trains in 1 0.21 1.44 19.5
the interleaved train have PRFs and phases that are very similar. § 2'?3 ‘;'gg 220'13
In this case, even if the other trains are correctly estimated, 4 0.61 0.73 19

these two trains are not due to their similarity. See Tables IV
and V for an example where this is the case. Here, pulse trains
1 and 2 are very similar, and estimation fails. This case is likely

V. CONCLUSION

to prove to be a problem for any estimation or deinterleaving An important aspect of this scheme for estimating the param-
method as the two trains interfere with each other at eveeyers of interleaved pulse trains is its computational efficiency.
pulse. If there areN pulses to be processed in the interleaved train,
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then computations are of ordéf. Since computationally effi-  [9] D. A. Gray, B. J. Slocumb, and S. D. Elton, “Parameter estimation for
cient (ordetV log N) fast Fourier transform methods give fairly pgriodic discrete event processes,'Hroc. Int. Conf. Acoust., Speech,
. . . . Signal Processvol. 4, 1994, pp. 93-96.
accurate estimates of the pulse train frequencies [8], this new
method is used to fine tune the PRF estimates and yield esti-
mates of phase.

Accurate estimates of both phase and PRF could be useful
for deinterleaving periodic pulse trains. With the method af Tanya L. Conroy received the B.Sc. and B.E.
plied here, the phases of up to seven interleaved trains can iﬁ%{fg;‘: il‘i’% s:ld ﬁ?f@i’r Sfﬁsp(e/f,t\il\ﬁ)'y, ggr:[gn;he
estimated to around 2% qf their actual val_ues if 2000 pulses i She recently completed Wofk toward the Ph.D.
processed. The PRF estimates can be fine tuned from a 1 degree in systems engineering at ANU.
error to virtually zero (around 15e-3%) error. Her research interests include signal processing

This method is robust to significant jitter noise on the pul and robotic vision systems.
train times of arrival. Naturally, as more noise is added, perfd
mance degrades with fewer train parameters that can be
mated and greater errors in the estimation.

Of course, in hindsight, the proposed method is a straight-
forward application of the familiar extended Kalman filter. The
significance of this work is that this tool is able to achieve such
useful results in a context in whicha priori, one would not
expect it to perform well since it approximates discontinuiti
by smooth functions. Our experience is that the nature of t
smoothness approximations is critical, and one approximati
at least, as studied here, is seen to be quite facilitating.
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