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Abstract

This paper is concerned with a stochastic linear-quadratic (LQ) problem in an in�nite time horizon with multiplicative
noises both in the state and the control. A distinctive feature of the problem under consideration is that the cost weighting
matrices for the state and the control are allowed to be inde�nite. A new type of algebraic Riccati equation – called a
generalized algebraic Riccati equation (GARE) – is introduced which involves a matrix pseudo-inverse and two additional
algebraic equality=inequality constraints. It is then shown that the well-posedness of the inde�nite LQ problem is equivalent
to a linear matrix inequality (LMI) condition, whereas the attainability of the LQ problem is equivalent to the existence
of a “stabilizing solution” to the GARE. Moreover, all possible optimal controls are identi�ed via the solution to the
GARE. Finally, it is proved that the solution to the GARE can be obtained via solving a convex optimization problem
called semide�nite programming. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

During the past decades, linear-quadratic (LQ) control theory based on Riccati equations, both for deter-
ministic [9,14,16] and stochastic [17,4,7] systems, has developed into a major research �eld in control theory
and has found tremendous applications for solving real world problems. In the LQ literature, it is typically
assumed that the cost function has a positive-de�nite weighting matrix for the control term and a nonnegative
de�nite weighting matrix for the state term. In fact, the nonnegative de�niteness of the control cost matrix is
necessary for the well-posedness of the deterministic LQ problem.
However, it was found in [6] for the �rst time that a stochastic LQ problem with inde�nite control cost

may still be well-posed. This phenomenon, which occurs when the di�usion term depends on the control,
has to do with the deep nature of the uncertainty involved. To intuitively explain this, let us �rst recall the
reason why a deterministic LQ problem with a negative control cost matrix becomes ill-posed. Indeed, in this
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case one can arbitrarily increase the control level, so as to arbitrarily reduce the total control cost, and hence
the cost function value, to negative in�nity. Thus the problem is trivial and meaningless. Contrary to this,
in a stochastic LQ problem where the control inuences the volatility, even if the control cost is negative,
increasing the control level to in�nity may not result in a negatively in�nite cost. The reason is that while
increasing the control will reduce the control cost, it will also enlarge the uncertainty in the system (because
the di�usion term is a�ected by the control) which is essentially costly. Therefore, one has to strike a balance
between the gain due to a larger control and the loss due to a greater risk, which, in turn, gives rise to a
meaningful and well-posed problem.
In [6], the inde�nite stochastic LQ problem was studied for the case of continuous-time, single-objective, and

�nite time horizon. Subsequent researches include extensions to the cases of discrete-time [12], multi-objective
[11], and in�nite time horizon [1]. In all these works the standard matrix inverse is involved in the Riccati
equation, requiring the related term to be nonsingular. Applications of inde�nite LQ problems can be found
in [6] for pollution control, in [18] for portfolio selection, and in [10] for hedging a contingent claim.
In this paper, we study an inde�nite stochastic LQ problem in the in�nite time horizon, without assum-

ing nonsingularity of any matrix involved. A new type of algebraic Riccati equation – called a generalized
algebraic Riccati equation (GARE) – is introduced which involves a matrix pseudo-inverse and two addi-
tional algebraic equality=inequality constraints. Since now the LQ problem is inde�nite, the well-posedness
of the problem becomes the �rst important issue. We derive the necessary and su�cient condition for the
well-posedness in terms of a so-called linear matrix inequality (LMI) condition that is easier to handle compu-
tationally [5,15]. Moreover, the attainability of the LQ problem, namely, the existence of an optimal control,
is investigated via the GARE. It turns out that the solvability of the GARE is necessary for the attainability
but not su�cient. This is due to the nature of an in�nite time horizon problem, which requires a meaningful
control to be stabilizing. Therefore, we further introduce the notion of a stabilizing solution to the GARE and
show that the attainability of the LQ problem is equivalent to the existence of a stabilizing solution to the
GARE.
The rest of the paper is organized as follows. In Section 2, we formulate the inde�nite LQ problem and

give necessary preliminaries. Section 3 is devoted to the well-posedness of the problem whereas Section 4 to
the attainability. In Section 5, we discuss solving the LQ problem via a convex optimization problem. Some
illustrative examples are given in Section 6. Finally, Section 7 concludes the paper.

2. Problem formulation and preliminaries

We make use of the following notation throughout the paper:

M ′: the transpose of a matrix M ;
Tr(M): the sum of diagonal elements of a square matrix M ;
|M | :=√

Tr(MM ′);
Sn: the space of all n× n symmetric matrices;
Ex: Expected value of a random variable x.

2.1. Problem formulation

Let (
;F;P;Ft) be a given �ltered probability space with a standard one-dimensional Brownian motion
w(t) on [0;+∞) (with w(0)=0). The Brownian motion is assumed to be one dimensional only for simplicity;
there is no essential di�erence with the multi-dimensional case. De�ne the following set:

Lloc2 (R
k) =



�(·):[0;+∞)× 
→ Rk |�(·) is Ft-adapted; measurable;

and E
∫ T

0
|�(t; !)|2 dt ¡+∞; ∀T¿0


 :
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The system under consideration is described by the following Itô stochastic di�erential equation:

dx(t) = [Ax(t) + Bu(t)] dt + [Cx(t) + Du(t)] dw(t);
x(0) = x0 ∈ Rn; (1)

where A; B; C and D are real matrices of dimension n× n, n× nu, n× n and n× nu, respectively. A process
u(·) is called a control if u(·) ∈ Lloc2 (Rnu). A control u(·) is called (mean-square) stabilizing (w.r.t. x0) if the
corresponding state x(·) of (1) with the initial state x0 satis�es limt→+∞ E[x(t)′x(t)] = 0. A feedback control
u(t) =Kx(t), where K is a constant matrix, is called stabilizing if for every initial state x0, the corresponding
state x(·) of (1) satis�es limt→+∞ E[x(t)′x(t)] = 0. System (1) is called (mean-square) stablizable if there
exists a stabilizing feedback control u(t) = Kx(t) where K is a constant matrix.

Remark 2.1. The mean-square stabilizability can be conveniently veri�ed by the following linear matrix
inequality (LMI) condition:[

AX + XA′ + BY + Y ′B′ CX + DY
XC′ + Y ′D′ −X

]
¡ 0: (2)

Precisely, the controlled system is mean-square stabilizable if and only if (2) is feasible (with respect
to the variables X ¿ 0 and Y ) and the feedback control law u(t) = YX−1x(t) is one stabilizing control; see
[1, Theorem 2.1].

De�nition 2.1. For a given x0 ∈ Rn, the set of admissible controls is de�ned as follows:
Uad(x0), {u(·) ∈ Lloc2 (Rnu) | u(·) is mean-square stabilizing w:r:t: x0}: (3)

Throughout this paper we assume that system (1) is stabilizable. Hence Uad(x0) is nonempty for any x0. It
is easily seen that Uad(x0) is a convex subset of Lloc2 (R

nu).
For each (x0; u(·)) ∈ Rn ×Uad(x0) the associated cost function is de�ned as

J (x0; u(·)) = E
∫ +∞

0
[x(t)′Qx(t) + 2x(t)′Lu(t) + u(t)′Ru(t)] dt; (4)

where L ∈ Rn×nu , Q ∈ Sn, R ∈ Snu are given matrices. The optimal control problem is to minimize the cost
functional J (x0; u(·)), for every x0 ∈ Rn, over u(·) ∈ Uad(x0). The value function V is de�ned as

V (x0) = inf
u(·)∈Uad(x0)

J (x0; u(·)): (5)

The LQ problem is called well-posed if

V (x0)¿−∞; ∀x0 ∈ Rn: (6)

Any control u∗(·) that achieves the in�mum in (5) is called optimal (w.r.t. x0). In this case, the LQ problem
is called attainable (w.r.t. x0).
The above problem is referred to as a (stochastic) linear-quadratic (LQ) problem. Since the symmetric

matrix[
Q L
L′ R

]
(7)

is allowed to be inde�nite, it is also called an inde�nite LQ problem. Notice that J (x0; u(·)) is not necessarily
convex in u(·) due to the inde�niteness of the matrix (7).

2.2. Generalized algebraic Riccati equation

First, we recall some properties of the pseudo-inverse [13]. For any matrix M there exists a unique matrix
M † satisfying

MM †M =M; M †MM † =M †; (MM †)′ =MM †; (M †M)′ =M †M: (8)
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It can be easily seen (by singular value decomposition) that for any symmetric matrix M the following hold:

M † =M †′ ; MM † =M †M ; M¿0 i� M †¿0; and M 1=2(M 1=2)† =MM † for M¿0: (9)

De�nition 2.2. Let (A; B; C; D; L) ∈ Rn×n × Rn×nu × Rn×n × Rn×nu × Rn×nu and (Q; R) ∈ Sn ×Snu be given
constant matrices. The following constrained nonlinear algebraic equation

A′P + PA+ C′PC + Q − (PB+ C′PD + L)(R+ D′PD)†(B′P + D′PC + L′) = 0;
[I − (R+ D′PD)(R+ D′PD)†](B′P + D′PC + L′) = 0;
R+ D′PD¿0;

(10)

with the unknown P ∈ Sn, is called a generalized algebraic Riccati equation (GARE).

For notational convenience, we use the following throughout this paper:

M(P), A′P + PA+ C′PC + Q; L(P), PB+ C′PD + L; N(P), R+ D′PD: (11)

In particular, if R + D′PD is nonsingular, then the pseudo-inverse becomes the standard inverse and the
second constraint in (10) is redundant. In this case, GARE (10) reduces to the one considered in [1]:

M(P)−L(P)N(P)−1L(P)′ = 0;
N(P)¿ 0:

(12)

Another interesting special case is R + D′PD = 0, where GARE (10) becomes a system of algebraic linear
equations

M(P) = 0; L(P) = 0; N(P) = 0: (13)

De�nition 2.3. A solution P to GARE (10) is said to be a maximal solution if P¿P̃ for any P̃ with

M(P̃)−L(P̃)N(P̃)†L(P̃)′¿0;
[I −N(P̃)†N(P̃)]L(P̃)′ = 0;
N(P̃)¿0:

(14)

The following lemma will be frequently used in this paper.

Lemma 2.1. Let S ∈ Sn be given. Then for any admissible pair (x(·); u(·)) of system (1); we have

E[x(t2)′Sx(t2)− x(t1)′Sx(t1)]− E
∫ t2

t1
[x′(M(S)− Q)x + 2x′(L(S)− L)u+ u′D′SDu](t) dt = 0: (15)

Proof. This is immediate by applying Itô’s formula to x(t)′Sx(t).

The following is the main result of this section.

Theorem 2.1. Assume that GARE (10) has a solution P and there exist Y (·) ∈ Lloc2 (R
nu×n) and z(·) ∈

Lloc2 (R
nu) such that the following control:

uY;z(t) =−[N(P)†L(P)′ + (I −N(P)†N(P))Y (t)]x(t)− [I −N(P)†N(P)]z(t) (16)

is admissible with respect to any initial x0. Then the stochastic LQ problem (1)–(5) is well-posed and uY;z(·)
is indeed an optimal control. Moreover; the value function is V (x0) = x′0Px0.

Proof. First of all, applying Lemma 2.1, we can express the cost function as follows:

J (x0; u(·)) = x′0Px0 + E
∫ +∞

0
[x′M(P)x + 2x′L(P)u+ u′N(P)u](t) dt; ∀u(·) ∈ Uad(x0): (17)
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De�ne

L1(t) = Y (t)−N(P)†N(P)Y (t); L2(t) = z(t)−N(P)†N(P)z(t):

Using the properties (8) and (9) of the pseudo-inverse we conclude that L1 and L2 satisfy

N(P)Li(t) =N(P)†Li(t) = 0; L(P)Li(t) = 0; i = 1; 2: (18)

Then equality (17) is equivalent to

J (x0; u(·)) = x′0Px0 + E
∫ +∞

0
{x′[M(P)−L(P)N(P)†L(P)′]x

+[u+ (N(P)†L(P)′ + L1)x + L2]′N(P)[u+ (N(P)†L(P)′ + L1)x + L2]}(t) dt

= x′0Px0 + E
∫ +∞

0
{[u+ (N(P)†L(P)′ + L1)x + L2]′

N(P)[u+ (N(P)†L(P)′ + L1)x + L2]}(t) dt: (19)

As a consequence, J (x0; u(·)) is minimized by the control uY;z(·) given by (16) with the optimal value being
x′0Px0.

The above theorem suggests the following de�nition.

De�nition 2.4. A solution P to GARE (10) is called stabilizing if there exists an admissible control of the
form (16). Moreover, P is called static stabilizing if there exists a constant matrix Y such that the feedback
control law u(t) =K(P; Y )x(t) with the following feedback gain:

K(P; Y ), −N(P)†L(P)′ − [I −N(P)†N(P)]Y (20)

is admissible with respect to any x0.

We have an equivalent LMI condition for the existence of static stabilizing solutions to GARE (10).

Theorem 2.2. A solution P of GARE (10) is static stabilizing if and only if there exist a matrix Z and a
symmetric matrix X such that

 APX + XA′P + B[I −N(P)†N(P)]Z
+Z[I −N(P)†N(P)]B

CPX + D[I −N(P)†N(P)]Z

XC′
P + Z

′[I −N(P)†N(P)]D −X


¡ 0; (21)

where

AP = A− BN(P)†L(P)′;

CP =C − DN(P)†L(P)′:

Proof. It follows immediately from (2) in Remark 2.1.

The following result concerns the uniqueness of a stabilizing solution to GARE (10).

Theorem 2.3. There is at most one stabilizing solution to GARE (10). Moreover; a stabilizing solution to
(10) must be its maximal solution.

Proof. Let P1 and P2 be two stabilizing solutions to (10). Then Theorem 2.1 implies that x′0P1x0 = x
′
0P2x0

for any x0 ∈ Rn, leading to P1 = P2.
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Next, let P be the stabilizing solution to the GARE and P̃ be any symmetric matrix satisfying (14). Putting
P̃ in (19) we have

J (x0; u(·))¿x′0P̃x0 ∀u(·) ∈ Uad(x0):
Taking in�mum over u(·) ∈ Uad(x0) and applying Theorem 2.1, we have x′0Px0=V (x0)¿x′0P̃x0. This completes
the proof.

Remark 2.2. Although there may be in�nitely many optimal controls (which by de�nition are all mean-square
stabilizing), there is at most one stabilizing solution of GARE (10), as in the standard (de�nite) LQ case.

Corollary 2.1. Let P be a stabilizing solution to GARE (10). Then optimal controls of LQ problem (1)–(5)
are obtained in the following special cases:
(i) If R+ D′PD = 0; then any admissible control is optimal.
(ii) If R+ D′PD¿ 0; then there is a unique optimal control that is given by u(t) =−N(P)−1L(P)′x(t).

Proof. To prove (i), let P be the stabilizing solution to (10) such that R+D′PD= 0. Using Lemma 2.1 we
have

J (x0; u(·)) = x′0Px0 + E
∫ +∞

0
[x′M(P)x + 2u′L(P)x + u′N(P)u](t) dt = x′0Px0; ∀u(·) ∈ Uad(x0):

Hence J (x0; u(·))=V (x0), ∀u(·) ∈ Uad(x0). This proves the desired result. On the other hand, (ii) is immediate
by Theorem 2.1.

3. Well-posedness of LQ problem

The aim of this section is to investigate the well-posedness of the LQ problem via an LMI condition.
First, the following technical result can be shown by a simple adaptation of the well-known result in the
deterministic case (see, e.g., [3]).

Lemma 3.1. LQ problem (5) is well-posed if and only if there exists a unique constant symmetric matrix
P such that

V (x0) = x′0Px0 ∀x0 ∈ Rn: (22)

Now, consider the following convex set of constant symmetric matrices

P,
{
P ∈ Sn

∣∣∣∣
[
M(P) L(P)
L(P)′ N(P)

]
¿0

}
: (23)

Theorem 3.1. LQ problem (1)–(5) is well-posed if and only if P 6= H. In this case; P has a maximal
element P ∈ P (i.e.; P¿P̃ ∀P̃ ∈ P). Moreover; we have

V (x0) = x′0Px0 ∀x0 ∈ Rn:

Proof. Suppose P 6= H. Let P̃ be any element of P. Then (17) yields

J (x0; u(·)) = x′0P̃x0 + E
∫ +∞

0

(
x
u

)′ [ M(P̃) L(P̃)

L(P̃)′ N(P̃)

](
x
u

)
(t) dt

¿ x′0P̃x0 ∀(x0; u(·)) ∈ Rn ×Uad(x0): (24)

This implies that the original LQ problem is well-posed and

V (x0)¿x0P̃x0: (25)
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Conversely, assume that the LQ problem is well-posed. Then Lemma 3.1 implies the existence of a symmetric
matrix P such that V (x0) = x′0Px0, ∀x0 ∈ Rn. Observe that if P 6= H then it follows from (25) that P¿P̃,
∀P̃ ∈ P. Hence, the proof will be complete if we can show that P ∈ P. To this end, we apply the dynamic
programming principle to get

x′0Px06E

{∫ h

0
[x(t)′Qx(t) + 2x(t)′Lu(t) + u(t)′Ru(t)] dt + x(h)′Px(h)

}
; ∀h¿0; ∀u(·) ∈ Uad(x0):

Applying Ito’s formula to x(t)′Px(t), using the above inequality, and employing Lemma 2.1, we obtain

E
∫ h

0

(
x
u

)′ [ M(P) L(P)

L(P)′ N(P)

](
x
u

)
(t) dt¿0; ∀u(·) ∈ Uad(x0):

Dividing both sides by h and letting h→ 0, we obtain(
x(0)
u(0)

)′ [ M(P) L(P)

L(P)′ N(P)

](
x(0)
u(0)

)
¿0:

Since x(0) ∈ Rn and u(0) ∈ Rnu can be chosen arbitrarily, we conclude[
M(P) L(P)

L(P)′ N(P)

]
¿0; (26)

namely, P ∈ P.

Remark 3.1. The above result gives a very convenient way, in particular computationally, of verifying the
well-posedness of an inde�nite LQ problem. Speci�cally, one only need to solve the LMI condition in (23),
for which many e�cient solvers exist; see [5,8,15].

4. Attainability of LQ problem

This section further characterizes the attainability of the LQ problem in terms of GARE (10). First, we
present some lemmas required in the proof of the main result.

Lemma 4.1 (Extended Schur’s Lemma [2]). Let matrices S = S ′; T = T ′ and U be given with appropriate
sizes. Then the following conditions are equivalent:
(i) S − UT †U ′¿0; T¿0; and (I − TT †)U ′ = 0.

(ii)
[
S U
U ′ T

]
¿0.

Lemma 4.2. Let matrices L;M and N be given with appropriate sizes. Then the following matrix equation

LXM = N (27)

has a solution X if and only if

LL†NM †M = N: (28)

Moreover; any solution to (27) is represented by

X = L†NM † + S − L†LSMM †; (29)

where S is a matrix with an appropriate size.

Proof. The basic idea of the following proof is due to [2, Theorem 1(i)]; we reproduce the proof here for
reader’s convenience.
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If X satis�es the equation LXM = N , then we have

N = LXM = LL†LXMM †M = LL†NM †M:

Conversely, if (28) is satis�ed, then L†NM † is a solution of LXM = N . This proves the �rst part of the
lemma. Now, let Y be any matrix with appropriate size and de�ne X̃ = Y − L†LYMM †. Then X̃ satis�es the
homogeneous equation LX̃M =0. Hence L†NM †+ X̃ must satisfy (27). On the other hand, let X be a solution
to (27). Then by (28), one has LSM = 0 where S = X − LL†NM †M . Hence

X = LL†NM †M + S ≡ LL†NM †M + S − L†LSMM †:

This completes the proof.

The following theorem can be regarded as the converse of Theorem 2.1.

Theorem 4.1. If LQ problem (1)–(5) is attainable w.r.t. any initial x0; then GARE (10) has a stabilizing
solution. Moreover; any optimal control law is of the form (16) for some Y (·) ∈ Lloc2 (Rnu×n) and z(·) ∈
Lloc2 (R

nu).

Proof. First, we prove that (10) has a solution. Since the LQ problem is attainable, and hence well-posed,
Theorem 3.1 yields that the set P has a maximal element P such that V (x0) = x′0Px0, and[

M(P) L(P)

L(P)′ N(P)

]
¿0: (30)

Applying Lemma 4.1 to (30), we have

M(P)−L(P)N(P)†L(P)′¿0;
[I −N(P)N(P)†]L(P)′ = 0;
N(P)¿0:

(31)

Now, let (x∗(·); u∗(·)) be an optimal state-control pair with respect to the initial condition x(0)= x0. Applying
Lemma 2.1 to P and adding this to J (x0; u∗(·)), we have

V (x0) ≡ J (x0; u∗(·)) = x′0Px0 + E
∫ +∞

0
[x′∗(M(P)−L(P)N(P)†L(P)′)x∗](t) dt

+E
∫ +∞

0
[u∗ +N(P)†L(P)′x∗]′N(P)[u∗ +N(P)†L(P)′x∗](t) dt: (32)

Due to the equality V (x0) = x′0Px0 and (31)–(32), each of the two integrands on the right-hand side must be
zero almost everywhere. Hence, we obtain

M(P)−L(P)N(P)†L(P)′ = 0;

which, along with (31), implies that P is a solution to GARE (10).
It remains to show that any optimal control u∗(·) can be represented by (16) for some Y (·) and z(·). From

(32) it follows that

N(P)1=2[u∗(t) +N(P)†L(P)′x∗(t)] = 0;

which gives

N(P)u∗(t) +L(P)′x∗(t) = 0; a:e: t ∈ [0;+∞): (33)

To solve the above equation with the unknown u∗(t), we apply Lemma 4.2 with

L=N(P); M = I; N =−L(P)′x∗(t):

Notice that condition (28) in the present case is implied by the second constraint in GARE (10), hence general
solution (29) with z(t) = S and Y (t) = 0 yields that u(t) can be represented by (16). This also shows that P
is a stabilizing solution of (10). The proof is complete.
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5. Relation to semide�nite programming

In this section we show that any inde�nite LQ problem can be turned into a convex optimization problem,
called a semide�nite programming (SDP). This enables us to use existing SDP algorithms [5,15] to compu-
tationally obtain the optimal controls and value function of the LQ problem as well as the maximal solution
to the GARE if such a solution exists.
To proceed, de�ne the following SDP:

minimize −Tr(P);
subject to

[
M(P) L(P)
L(P)′ N(P)

]
¿0:

(34)

Theorem 5.1. The following hold:
(i) SDP (34) is feasible if and only if LQ problem (1)–(5) is well-posed.
(ii) If (34) is feasible then it has a unique optimal solution P∗ with V (x0) = x′0P

∗x0 ∀x0 ∈ Rn.
(iii) If LQ problem (1)–(5) is attainable then the unique optimal solution of (34) is the stabilizing solution

to GARE (10).

Proof. (i) It follows immediately from Theorem 3.1.
(ii) By Theorem 3.1 the feasible set of (34) has a maximal element P, which is obviously an optimal

solution to (34). To show the uniqueness, let P∗ be any optimal solution to (34). Then by optimality we
have Tr(P− P∗) = 0. On the other hand, the maximality of P implies P− P∗¿0. Now, P− P∗ is a positive
matrix with a null trace, so it has to be identically zero. Finally, by Theorem 3.1 we have V (x0) = x′0Px0.
(iii) This is an immediate consequence of Theorem 2.3 and Theorem 4.1.

We have noticed that for a stochastic LQ problem, R may be inde�nite (negative de�nite, in particular)
while the LQ problem is still well-posed. A natural but interesting question is: How negative R can be before
the LQ problem becomes ill-posed? The following presents a numerical way of determining the “permissible
negative range” of R.

De�nition 5.1. Let Q = Q′ and L be given. The wellposedness margin r∗ is de�ned as the smallest scalar
r ∈ R such that the LQ problem is well-posed for any symmetric matrix R¿r∗I .

The wellposedness margin r∗ has the following interpretation:

• If the smallest eigenvalue of R, �min(R), is such that �min(R)¿r∗, then the LQ problem is well-posed.
• If the largest eigenvalue of R, �max(R), is such that �max(R)¡r∗, then the LQ problem is ill-posed.
• If r∗ = 0, the LQ problem is ill-posed with any R having at least one negative eigenvalue.

Theorem 5.2. The well-posedness margin r∗ is the optimal solution to the following SDP:

minimize r

subject to

{[
A′P + PA+ C′PC + Q PB+ C′PD + L
B′P + D′PC + L D′PD + rI

]
¿0:

(35)

Moreover; the optimum is always achievable by r∗¿−∞.

Proof. The �rst part of the result is evident from Theorem 5.1. To prove the second one, �rst observe that
the value function as a function of R,

V (x0; R) = inf
u(·)∈Uad(x0)

E
∫ +∞

0
[x(t)′Qx(t) + 2x(t)′Lu(t) + u(t)′Ru(t)] dt
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is monotone, namely,

V (x0; R1)¿V (x0; R2) ∀x0 ∈ Rn; if R1¿R2:

Now, assume that the optimal solution of (35) r∗ = −∞. Then by de�nition the LQ problem is well-posed
for any R= rI , r ∈ (−∞; 0]. By Theorem 3.1, there exists a sequence of a symmetric matrices Pr , decreasing
as r decreases to −∞, such that

V (x0; rI) = x0Prx0; D′PrD + rI¿0:

Set �r = Tr(D′PrD)¿− Tr(rI)¿0. Then �r is a decreasing positive sequence, so limr→−∞ �r exists and is
�nite. But this contradicts to the fact that �r¿− nr.

6. Examples

In this section we present two examples illustrating the results obtained. In the �rst example, the LQ
problem is well-posed but not attainable, while in the second example the problem is attainable.

Example 6.1. Consider a two-dimensional LQ problem with the following data in the system dynamics (1):

A=
[−10 5

0 3

]
; B=

[
1 0
0 1

]
; C =

[
1 0
0 0

]
; D =

[
1 0
0 0

]
:

First, we show that the system is mean-square stabilizable. By Remark 2.1, we only need to check if the LMI
condition (2) (with respect to the variables X and Y ) has a solution. It turns out that

X =
[
1185:4133 0

0 2974:8354

]
; Y =

[
501:79932 0

−5927:0666 −10411:924
]
:

Next, we consider the LQ problem with the following cost weighting matrices:

Q =
[
54 −10

−10 0

]
; R=

[−1 0
0 0

]
:

We can check that the symmetric matrix

P =
[
2 0
0 0

]

satis�es GARE (10). Thus by Theorem 3.1 the LQ problem is well-posed. Moreover, P is the maximal
solution to (10), but not stabilizing (which is veri�ed by the LMI condition in Theorem 2.2). It then follows
from Theorems 4.1 and 2.3 that the LQ problem is not attainable.

Example 6.2. Take the same data as in Example 6.2 except now

C =
[−1 0

0 0

]
:

Then

P =
[
1 0
0 0

]

is a static feedback stabilizing solution to GARE (10) by Theorem 2.2. Thus it follows from Theorems 2.1
and 4.1 that the LQ problem is attainable with all possible optimal control laws given by (16).
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7. Conclusion

This paper studied LQ models with multiplicative noises in signals and inde�nite quadratic weights in costs.
Such models, which are less restrictive than those in standard LQ theory, better approximate more general,
nonlinear stochastic systems and arise naturally in areas of current interest such as in �nance.
The well-posedness of an LQ problem has been characterized in terms of the existence of a solution to an

LMI condition, and the existence of optimal controls has been understood in terms of the existence of a solution
to a constrained Riccati equation involving a pseudo-inverse, which in turn is the vehicle for calculating all
the optimal controls and the optimal value. These give rise to analytical as well as computational advantages
to solving the LQ problem. It is also worth mentioning that even for the deterministic singular case, the
results presented in this paper are stronger and more general than those in the literature. In particular, in the
deterministic case, GARE (10) reduces to

PA+ A′P − PBR†B′P + Q = 0;
RR†B′P − B′P = 0;
R¿0;

and optimal controls are given by

uY;z(t) = [− R†B′P + Y (t)− R†RY (t)]x(t) + z(t)− R†Rz(t):
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