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Abstract

This paper presents some studies on partially observed linear quadratic Gaussian (LQG) models where the stochastic
disturbances depend on both the states and the controls, and the measurements are bilinear in the noise and the states=controls.
While the Separation Theorem of standard LQG design does not apply, suboptimal linear state estimate feedback controllers
are derived based on certain linearizations. The controllers are useful for nonlinear stochastic systems where the linearized
models include terms bilinear in the noise and states=controls and are signi�cantly more accurate than if the bilinear terms
are set to zero. The controllers are calculated by solving a generalized discrete time Riccati equation, which in turn has
properties relating to well posedness of the associated LQG problem. c© 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

The classical linear quadratic Gaussian (LQG) con-
trol theory for stochastic linear systems assumes that
the stochastic disturbances are additive and not control
or state dependent [1–4]. Relaxing this assumption to
allow state and control dependence in the noise terms
leads to a broad class of stochastic models, which
have applications for real-world control. For exam-
ple, in a stock market the investments (controls) made
by so-called “large investors” are going to a�ect uc-
tuations (disturbances) of the market. Working with
models involving a bilinear noise dependence allows
an improved approximation of the underlying non-
linear stochastic system.
Recently, linear quadratic regulator (LQR) theory

has been generalized for a class of linear=bilinear
stochastic systems in continuous time [3,6]. The asso-
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ciated optimal state feedback control laws are linear,
being calculated by solving a so-called stochastic
Riccati equation which specializes to the familiar con-
ventional Riccati equation when the disturbances are
independent of the states and controls. The stochastic
Riccati equations are by no means as well understood
as in the standard case, at least in the continuous time
setting. There remains open questions concerning
existence and uniqueness of the solutions of these
equations. There is also an intriguing property that
the control weighting matrix R in a standard quadratic
integral cost term need not be positive de�nite, even
in the continuous time case.
What is the situation then for the partially observed

case? To what extent does the standard LQG method-
ology [1] with its Separation Theorem apply? Can we
achieve useful linear state estimate feedback laws?
In this paper the above questions are addressed

for the discrete time case and some initial results
are presented. The expectation is that since the
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models are bilinear in the state and the noise, as
well as in the control and the noise, some of the
virtues of the standard linear Gaussian theory will be
lost. Certainly, even if the noise signals are Gaus-
sian, the states and control signals will in general
be non-Gaussian. Consequently, optimal (informa-
tion) state estimators will be in�nite dimensional,
in general; see for example [5]. Even so, since a
conditional linear minimum square error (LMSE)
covariance state estimator is known for the mod-
els of interest, and is �nite dimensional, it makes
sense from an implementation point of view to work
with such a state estimator and the resulting linear
state estimate feedback law, even if such a law is
suboptimal.
The conditional LMSE �lter has the structure of a

Kalman �lter, see [1], but with a Kalman gain which
is state estimate and control dependent. Likewise, the
quadratic state cost when expressed in terms of state
estimates instead of true states is nonlinear. Appropri-
ate linearizations of the �lter equations and cost terms,
neglecting higher order terms but allowing terms bi-
linear in the noise and controls=state estimates in the
�lter, allows application of a discrete-time analogy
of the recently studied LQR theory in [3]. This leads
to an ‘optimal’ linear state estimate feedback law un-
der assumptions of negligible higher order terms. In
practise, this law has some degree of sub-optimality
because the neglected higher-order terms may be sig-
ni�cant. However, the neglected terms do not include
terms bilinear in the innovations (prediction errors)
and the state estimates=controls, so there is a chance
for improved performance over the standard LQG
approach which neglects these terms as well as
higher-order terms.
The paper is organized as follows. In Section 2

an optimal feedback controller is derived for a com-
pletely observed discrete time, linear quadratic reg-
ulators (LQR) with state- and control-dependent
noise. As in the standard case, solving a discrete time
Riccati equation is a key step in calculating the op-
timal controller. In fact, the associated Riccati equa-
tion is a generalization of the standard discrete time
Riccati equation. The existence properties of this
equation and its relationship to the well posedness
of the control problem is discussed in Section 3.
Section 4 is concerned with an approximate Kalman
�lter for the partially observed LQG model. Finally,
suboptimal linear state estimate feedback laws are
obtained in Section 5 by combining the results in
Sections 2 and 4.

2. Discrete time LQR results

In this section, we derive parallel results to those of
[3], but in discrete time rather than continuous time.
These will be useful in a later section. The results in
this section are also of interest on their own right, as
discrete time algorithms are useful in practice.
Consider the discrete time stochastic signal model

xk+1 = (Ak + wA
k �Ak)xk + (Bk + wB

k �Bk)uk + wk;

(1)

where xk ∈Rn is the state, uk ∈Rm is the control,
and wA

k ; w
B
k ∈R are noise terms, assumed here to

be martingale increments on Gk−1, where Gk−1 is
the �-algebra generated by past noise terms up to
wA

k−1; w
B
k−1; wk−1. Thus xk is measurable with respect

to Gk and

E[wA
k−1|Gk−1]=E[wB

k−1|Gk−1]=E[wk−1|Gk−1]= 0:

The covariances are assumed to be

E[(wA
k−1)

2|Gk−1]=E[(wB
k−1)

2|Gk−1]= 1;

E[wkw′
k |Gk−1]=Qk

and

E[wA
k−1w

B
k−1|Gk−1]= �AB

k ;

E[wk−1wA
k−1|Gk−1]= �A

k ;

E[wk−1wB
k−1|Gk−1]= �B

k :

Generalizations of the dependent noise terms wA
k �Ak

and wB
k �Bk to the case of non-scalar noise is im-

mediate by working with terms
∑N

i=1w
Ai

k �Ai
k and∑N

i=1w
Bi

k �Bi
k .

It should be noted that the time-varying versions of
Eq. (1) result from linearizations of nonlinear stochas-
tic models of the form xk+1 =f(xk ; uk ; wk). Lineariza-
tions which set the bilinear terms in the noise to zero
result in the standard stochastic models.
The performance index of the problem is given by

the standard quadratic sum cost

JT = E

{
T−1∑
k=0

(x′kQ
c
kxk + u′kR

c
k+1uk)

(2)

+ x′TQ
c
T xT − x′0Q

c
0x0

}
:
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In this model, all the Ak;�Ak , etc. are (determinis-
tic) matrices with appropriate dimensions, Qc

k and Q
are non-negative de�nite matrices, and Rc

k are sym-
metric matrices (could be inde�nite, as in standard
discrete time LQR theory).
Let us solve the above stochastic optimal control

problem in two di�erent cases. The results derived be-
low will be applied in Section 4 for partially observed
models.
Case I: �A

k = �B
k =0.

Let us consider �rst the case when wk⊥wA
k ; w

B
k , so

that �A
k = �B

k =0. In this case, we are going to show
that the optimal control takes the form

uk =Kc
k xk ; (3)

where

Kc
k =−(
c

k+1)
−1Lc

k+1;

Lc
k+1 =B′

kSk+1Ak + �AB
k �B′

kSk+1 �Ak;


c
k+1 =B′

kSk+1Bk +�B′
kSk+1 �Bk + Rc

k+1:

Here, Sk is the solution of a backward matrix Riccati
equation

Sk = A′
kSk+1Ak − Lc′

k+1(

c
k+1)

−1Lc
k+1

+ (Qc
k +�A′

kSk+1�Ak); (4)

ST =Qc
T :

In fact, assuming the existence of the solution Sk of
Eq. (4), the control law (3)–(4) is seen to be optimal
by completion of the square arguments as follows.
First, note that

T−1∑
k=0

(x′kSkxk − x′k+1Sk+1xk+1)= x′0S0x0 − x′T ST xT ; (5)

and

(uk − Kc
k xk)

′
c
k+1(uk − Kc

k xk)

= u′k

c
k+1uk + 2x′kL

c′
k+1uk

+ x′kL
c′
k+1(


c
k+1)

−1Lc
k+1xk (6)

= u′k(R
c
k+1 + B′

kSk+1Bk +�B′
kSk+1�Bk)uk

+2x′k(A
′
kSk+1Bk + �AB

k �A′
kSk+1�Bk)uk

+ x′kL
c′
k+1(


c
k+1)

−1Lc
k+1xk :

Hence JT can be re-organized by using Eqs. (4)–(6)
and eliminating Qc

k ; R
c
k+1 to yield

JT =E

{
T−1∑
k=0

(uk − Kc
k xk)

′
c
k+1(uk − Kc

k xk)

+x′0(S0 − Qc
0)x0

}

+E

{
T−1∑
k=0

[x′k+1Sk+1xk+1 − x′kA
′
kSk+1Akxk (7)

−x′k�A′
kSk+1�Akxk − 2x′kLc′

k+1uk

−u′k(B
′
kSk+1Bk +�B′

kSk+1�Bk)uk ]

}
:

Substituting for xk+1 from Eq. (1), and from Lc
k+1, the

third term simpli�es as
∑T−1

k=0 tr(Sk+1Qk). That is,

JT = E

{
T−1∑
k=0

(uk − Kc
k xk)

′
c
k+1(uk − Kc

k xk)

}
(8)

+
T−1∑
k=0

tr(Sk+1Qk) + x′0(S0 − Qc
0)x0:

Therefore Eqs. (1) and (2) are well posed if 
c
k+1

is positive de�nite. In this case, the control law
(2)–(4) is the unique optimal control which achieves
a minimum cost

JT (min)=
T−1∑
k=0

tr(Sk+1Qk) + x′0(S0 − Qc
0)x0: (9)

However, we have assumed that 
c
k+1 is strictly pos-

itive de�nite for every k. In fact, by de�ning Kc
k as

a solution of the equation 
c
K+1K

c
k =Lc

k+1, and using
the concept of pseudo-inverses, the above results can
be shown to hold for the case when 
c

k+1 is positive
semi-de�nite. That is, the LQR problem (1)–(2) is
well posed if and only if
c

k+1 is positive semi-de�nite.
In Section 3, we shall address this issue of existence
of solutions in more detail. In particular, we shall ex-
amine the e�ect of the bilinear terms on the solution
of the Riccati equation (4), and the well posedness of
Eqs. (1) and (2).
In continuous time LQR theory, a standard assump-

tion is that the control weighting matrix R is strictly
positive de�nite. This is necessary for the problem to
be well posed. Recent results by Chen et al. [3] for
the continuous time problem show that R can have
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negative eigenvalues if the di�usion term in the sys-
tem equations depends on the control. It is interest-
ing to note therefore that in the discrete time problem,
the control weighting matrices Rk can have negative
eigenvalues and the problem remain well posed, even
if the bilinear terms �Ak and �Bk are all zero! That
is, 
c

k+1 can be positive semi-de�nite, even if some
or all the Rk matrices have negative eigenvalues, and
�A and �B are zero. Of course, if �A or �B are
non-zero, then Rk can be ‘more’ negative-de�nite and
the problem still remain well posed.
Case II: �A

k 6=0; �B
k 6=0.

In the event that wk and (wA
k ; w

B
k ) are correlated so

that �A
k ; �

B
k 6=0, then the optimal control requires not

only the state feedback term as in Eq. (3) but also an
external input as

uk =Kc
k xk + bk ; (10)

where bk is calculated by linear backward recursions
as now described.
Without loss of generality, assume �x0 :=E[x0]= 0,

and de�ne

�A
k := Sk+1�Ak�A

k ; �B
k := Sk+1�Bk�B

k ;

�A
k :=
k+1Kk; �B

k :=
k+1:
(11)

Going through similar calculations as in Eq. (7), one
ends up with the following additional cost term in-
volving bk ; �A

k ; �
B
k :

J odd =
T−1∑
k=0

((�A
k − b′k�

A
k )�xk + (�

B
k − b′k�

B
k ) �uk): (12)

Here �xk :=E[xk ]; �uk :=E[uk ] which satisfy, from
taking expectations in Eq. (1), �xk+1 =Ak �xk +
Bk �uk . To see that J odd = 0 can hold by a suitable
bk selection, �rst substitute �x0 = 0; �x1 =A0 �x0 +
B0 �u0 =B0 �u0; �x2 =A1B0 �x0 +B1 �u1, etc. Then, Eq. (12)
can be re-organized as a matrix equation

[1 1 · · · 1]



× 0 : : : 0
× × 0
...

. . .
× × : : : ×





�u0
�u1
...
�uT


=0:

Denoting the lower triangular matrix as L and the
row vector [1 1 · · · 1] as 1′, then this holds if
1′ L=0; that is, the sum of the columns of L is zero.
Starting with the last column allows calculation of bT ,
and then the second last column allows calculation of

bT−1 in terms of bT . Proceeding, allows calculation of
bk in terms of bk+1; : : : ; bT .
Thus, using a backwards recursion, {bk} is calcu-

lated by solving successively (with forward substitu-
tions)

�B
T − bT�B=0;
(�A

T − bT�A
T )BT−1 + (�B

T−1 − bT−1�B
T−1)= 0;

...
(�A

T − bT�A
T )(AT−1AT−2 · · ·A1B0)

+ (�A
T−1 − bT−1�A

T−1)(AT−2 · · ·A1B0) + · · ·
+(�0 − b0�B

0 )= 0;

(13)

for bT ; bT−1; bT−2; : : : ; b0. The equations have the
form Lb=d where L is lower triangular and
b′= [bT bT−1 · · · b0], which is readily solved for b.

3. Discrete time Riccati equation

In the continuous time LQR problem, a standard as-
sumption is that the control weighting matrix R(t) is
strictly positive de�nite. In the paper by Chen et al. [3],
it is shown that for full observation stochastic LQR
problems with control-dependent di�usion terms, this
assumption is not necessary. In fact, they derive nec-
essary and su�cient conditions for the solvability of
the associated Riccati equation and show that these
conditions can be satis�ed (and the associated LQR
problem well posed) by control weighting matrices
with negative eigenvalues. In this section, we exam-
ine the e�ect of the terms �Ak and �Bk on the well
posedness of the LQR problem (1)–(2).
Recall that the LQR problem (1)–(2) is well posed

if and only if 
c
k ¿ 0 for every k. Note once again

that it is possible for the standard LQR problem (i.e.
�Ak =0 and �Bk =0) to be well posed with either
Qk¡0 or Rk¡0 (but obviously not both). We show in
this section that if �Ak 6=0 or �Bk 6=0, then Qk and
Rk can be made ‘more negative’. That is, we can re-
place Qk by �Qk 6Qk and Rk by �Rk 6Rk and with the
associated problem still remaining well posed. Bounds
on the allowable decrease are also derived for certain
special cases.
Before doing this however, we need to intro-

duce some notation. LetK={(S0; : : : ; ST ) |Sj∈Rn×n;
symmetric}; Q={(Q0; : : : ; QT ) |Qj∈Rn×n, symme-
tric} and P={(R1; : : : ; RT ) |Rj ∈Rm×m, symmetric}.
Given a sequence �Rc=( �Rc

1 ; : : : ; �R
c
T )∈P of control
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weights and �Qc=( �Qc
0 ; : : : ; �Q

c
T )∈Q of state weights,

the standard discrete time Riccati equation

Sk =A′
kSk+1Ak − A′

kSk+1Bk( �Rc
k+1

+B′
kSk+1Bk)−1B′

kSk+1Ak + �Qc
k ; (14)

ST = �Qc
T ;

gives rise to a sequence (S0; : : : ; ST )∈K. Hence, we
can de�ne a mapping  :P×Q→K which maps
a sequence of control weights �Rc=( �Rc

1 ; : : : ; �R
c
T )∈P

and state weights �Qc=( �Qc
0 ; : : : ; �Q

c
T )∈Q to the so-

lution  ( �Qc; �Rc)= ( 0( �Qc; �Rc); : : : ;  T ( �Qc; �Rc))∈K
of Eq. (14).
Suppose now that �Qc=Qc ∈Q is given (and �xed)

while �Rc is the variable. In this case, we shall write
 (Qc; �Rc) simply as  ( �Rc). It follows that the as-
sociated (standard) LQR problem is solvable if and
only if

�Rc
k+1 + B′

k k+1( �Rc)Bk¿0: (15)

We begin by examining the case �Ak =0. Before stat-
ing our main results, we note the following.

Lemma 3.1. Let�Ak =0 and�Bk 6=0. Let (Qc
k ; R

c
k)

be given. Then Eqs. (1) and (2) are well posed if and
only if there exists �Rc

k such that

Rc
k+1 + �B′

k k+1( �Rc)�Bk = �Rc
k+1; (16)

where (Qc
k ; �R

c
k) satisfy Eqs. (14) and (15).

Proof. Obvious.

Remark 3.1. In the continuous time case [3], the ex-
istence of a solution to the Riccati equation that sat-
is�es a condition similar to the one in Lemma 3.1
is su�cient for well posedness of the LQR problem.
However, it is not necessary for well posedness. This
arises in the continuous time case because the Riccati
equation may not have a solution. On the other hand,
the Riccati equation associated with the discrete time
problem always has a solution if pseudo-inverses are
allowed.

Lemma 3.2. If Eqs. (1) and (2) corresponding to
(Qc

k ; R
c
k) are well posed, then Eqs. (1) and (2) with

(Qc
k ; R̃

c
k) are well posed for all R̃

c
k ¿Rc

k .

Proof. Let �= R̃c
k − Rc

k ¿ 0. Then for every feasible
uk , we have

JT = E

{
T−1∑
k=0

(x′kQ
c
k xk + u′k R̃

c
k+1uk)

+x′TQ
c
T xT − x′0Q

c
0x0

}

= E

{
T−1∑
k=0

(x′kQ
c
k xk + u′k(R

c
k+1 + �k+1)uk)

+x′TQ
c
T xT − x′0Q

c
0x0

}

= E

{
T−1∑
k=0

(x′kQ
c
k xk + u′kR

c
k+1uk)

+x′TQ
c
T xT −x′0Q

c
0x0

}

+E

{
T−1∑
k=0

u′k�k+1uk

}

¿ E

{
T−1∑
k=0

(x′kQ
c
k xk + u′kR

c
k+1uk) + x′TQ

c
T xT

−x′0Q
c
0x0

}

¿ 0

from which the result follows.

We are now in the position to state our main result
regarding the inuence of the term �Bk on the prob-
lem (1)–(2).

Theorem 3.1. Let (Qc
k ; R

c
k) be given. If�Ak =0, then

the problem (1)–(2) corresponding to (Qc
k ; R

c
k) is well

posed if and only if

Rc
k+1¿ �Rc

k+1 −�B′
k k+1( �Rc)�Bk (17)

for some �Rc
k such that ( �Q

c
k =Qc

k ; �R
c
k) satis�es

Eqs. (14) and (15).

Proof. Suppose that Eqs. (1) and (2) is well posed
for (Qc

k ; R
c
k). Then by Lemma 3.1, there exists �Rk

such that

Rc
k+1 + �B′

k k+1( �Rc)�Bk = �Rc
k+1 (18)

and (Qc
k ; �R

c
k) satisfy Eqs. (14) and (15). This imp-

lies Eq. (17).
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Conversely, suppose that Eq. (17) holds for some
�Rc
k such that (Q

c
k ; �R

c
k) satis�es Eqs. (14) and (15).

Then there exists some R̃c
k such that

Rc
k+1¿ R̃c

k+1 = �Rc
k+1 −�B′

k k+1( �Rc)�Bk:

By Lemma 3.1, the problem (1)–(2) associated with
(Qc

k ; R̃
c
k) is well posed. Since R

c
k ¿ R̃c

k , it follows from
Lemma 3.2 that Eqs. (1) and (2) with (Qc

k ; R
c
k) are

well posed.

Note in particular that if �Bk 6=0, then the control
weighting matrices R̃c

k can be made ‘more negative’
and the problem (1)–(2) still remains well posed. That
is, if �Bk 6=0, the matrices R̃c

k can be replaced by
matrices Rc such that Rc

k 6 �Rc
k , and the problem (1)–

(2) still remains well posed. The bound on this change
is given by Eq. (17).
In the analysis above, we have assumed that �Qc is

given and �xed. In fact, if we de�ne the inner product
〈·; ·〉Q :Q×Q→R on Q by

〈
Q1; Q2

〉
=

T∑
k=0

tr(Q1k ·Q2k) (19)

and 〈·; ·〉 :K×K→R similarly, then it is easily
shown that  k+1( �Qc; �Rc) is continuous with respect to
�Qc. It follows then that �Qc

k can be made ‘more nega-
tive’ if �Ak =0 and �Bk 6=0. The allowable bounds
on this change is still an open question.
Consider now the case when �Ak 6=0 but �Bk =0.

Let �Rc=Rc ∈P be �xed. Let  :Q→K be a map-
ping such that  ( �Qc)=  ( �Qc; Rc) is the solution of
the standard discrete time Riccati equation

Sk =A′
kSk+1Ak − A′

kSk+1Bk(Rc
k+1 + B′

kSk+1Bk)−1

B′
kSk+1Ak + �Qc

k ; (20)

ST = �Qc
T :

In this case, the associated (standard) LQR problem
is solvable if and only if

Rc
k+1 + B′

k k+1( �Qc)Bk ¿ 0: (21)

In much the same way as the case �Ak =0; �Bk 6=0,
the following result can be shown.

Theorem 3.2. Let (Qc
k ; R

c
k) be given. If�Bk =0, then

the problem (1)–(2) corresponding to (Qc
k ; R

c
k) is well

posed if and only if

Qc
k ¿ �Qc

k −�A′
k k+1( �Qc)�Ak (22)

for some �Qc
k such that (R

c
k ; �Q

c
k) satis�es Eqs. (20) and

(21).

As in the case of Theorem 3.1, Theorem 3.2 shows
how much ‘more negative’ the matrices �Qc

k can be
made when �Ak 6=0 and �Bk =0. Furthermore, if
we de�ne an inner product 〈·; ·〉P :P×P→R on P
as we have for Q (see Eq. (19)), it is easily shown
that  k+1( �Qc; �Rc) is continuous with respect to �Rc.
Therefore, if �Ak 6=0 and �BK =0; �Rc

k can be made
‘more negative’. The allowable bounds on this change
is still an open question. Similarly, the e�ect of both
�Ak 6=0 and �Bk 6=0 is still unresolved.

4. State estimation

In this section, we �rst de�ne a partially observed
signal model. Next, we apply the known Kalman �l-
ter theory to yield a linear minimum variance state
estimator, which is then linearized further so that the
�lter is linear in the states and control, and bilinear
in the innovations (prediction errors) and the states=
controls.
Consider the following partially observed model:

xk+1 = (Ak + wA
k�Ak)xk + (Bk + wB

k�Bk)uk + wk;

yk =(Ck + wc
k�Ck)xk + vk ; (23)

where yk ∈Rp. Here wc
k ; vk are martingale increments,

each orthogonal to wAk ; w
B
k ; wk , and E[vkv′k ] =Rk .

Linear conditional minimum variance state estima-
tor: Applying standard �ltering results [1] yields the
estimator

x̂k+1 =Ak x̂k + Bkuk + Kk( x̂k ; uk)�k ;
(24)

�k =yk − Ck x̂k ;

where the gain Kk( x̂k ; uk) is given in terms of a cou-
pled matrix Riccati equation as follows:

Kk( x̂k ; uk)=Lk
k( x̂k ; uk)−1; (25)

with

Lk =Ak�kC′
k ;


k( x̂k ; uk)=Ck�kC′
k + Rk +�Ck(�k + x̂k x̂

′
k)�C′

k ;

(26)
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and

�k+1 =Ak�kA′
k − Lk
( x̂k ; uk)−1L′

k + Qk

+�Ak(�k + x̂k x̂
′
k)�A′

k +�Bkuku′k�B′
k ;

�0 =E[x0 x′0]: (27)

Here x̂k is the best linear estimate conditioned on
Yk−1, the �-algebra generated by y0; : : : ; yk−1, where
best is in a minimum error variance sense. The asso-
ciated conditional error covariance is

�k =E[(xk − x̂k)(xk − x̂k)′|Yk−1]: (28)

In the derivation of Eqs. (24) and (28), the Projection
Theorem is used, which tells us that

E[�k |Yk−1]= 0; E[ x̂k(xk − x̂k)′|Yk−1]= 0:

(29)

Notice that the dependence of the noise on states and
controls in our model (23) leads to an error covariance
which depends on the past measurements (and con-
trols), and in turn leads to a �lter gain Kk(·; ·) which
is dependent on the past measurements (and controls).
Now this dependency of Kk(·; ·) on x̂k ; uk is by no
means a�ne, but in order to proceed to a control law
based on the LQR theory of Section 2, we must lin-
earize Kk(·; ·) in x̂k and uk .

A �lter bilinear in the innovations: Consider a lin-
earization of Kk(·; ·), via a Taylor expansion, for sim-
plicity in the p=1 case

Kk( x̂k ; uk)=Kk + Kx
k x̂k + Ku

k uk + o(‖x̂k‖; ‖uk‖):

Neglecting the quadratic and higher-order terms in
x̂k ; uk leads to an approximate �lter

x̂k+1 ≈ Ak x̂k + Bkuk + (Kk + Kx
k x̂k + Ku

k uk)�k
(30)

= (Ak + Kx
k �k) x̂k + (Bk + Ku

k �k)uk + Kk�k :

5. State estimate feedback

The approach taken in an LQG control design is
taken here, namely to consider the state estimator
(24) (or in our case the approximation (30)) as a state
space signal model with state x̂k , and to re-organize
the control performance index JT of Eq. (2) in terms
of x̂k , rather than xk . Noting Eqs. (24) and (28) we

have a re-organization of JT as

JT =
T−1∑
k=0

[ x̂′kQ
c
k x̂k + u′kR

c
k+1uk + tr(Qc

k�k)]: (31)

Actually, �k is perhaps best written as �k( x̂k x̂
′
k ; uku′k)

since it is dependent on x̂k x̂
′
k and uku′k . Now a Taylor

series expansion leads to

�k ≈�0k + �x
k x̂k x̂

′
k + �u

kuku′k ; (32)

being linear in x̂k x̂
′
k and uku′k . Thus Eq. (31) under

Eq. (32) becomes

JT ≈
T−1∑
k=0

[ x̂′k(Q
c
k + �x

k) x̂k + u′k(R
c
k+1 + �u

k)uk

(33)
+tr(Qc

k�
0
k)]:

Now the optimization of Eq. (33) under Eq. (30) can
be tackled using the optimal LQR results of Section 2
with wA=wB=w. Thus,

uoptk ≈Kc
k x̂k + bk ; (34)

where x̂k is derived from the �lter (30). Also Kc
k

are derived from an approximate specialization of
Eqs. (3) and (4) in which �Ak =Kx

k ; �Bk =Ku
k .

The term bk is derived by solving the algebraic equa-
tions (13) in turn for bT ; bT−1; : : : ; b0 being backward
recursions.

6. Conclusion

The LQG approach to partially observed stochastic
models leads to useful suboptimal state estimate linear
feedback controllers when the models are bilinear in
the noise and a linearization of certain equations is
analysed.

Acknowledgements

The authors wish to acknowledge the funding of
the activities of the Cooperative Research Centre for
Robust and Adaptive Systems by the Australian Com-
monwealth Government under the Cooperative Re-
search Centre Program, and the RGCEarmarked Grant
CUHK 4125=97E.



206 J.B. Moore et al. / Systems & Control Letters 36 (1999) 199–206

References

[1] B.D.O. Anderson, J.B. Moore, Optimal Filtering, Pren-
tice-Hall, Englewood Cli�s, NJ, 1978.

[2] B.D.O. Anderson, J.B. Moore, Optimal Control: Linear
Quadratic Methods, Prentice-Hall, Englewood Cli�s, NJ,
1989.

[3] S.P. Chen, X.J. Li, X.Y. Zhou, Stochastic linear quadratic
regulators with inde�nite control weight costs, SIAM
J. Control Optim. 36 (1998) 1685–1702.

[4] M.H.A. Davis, Linear Estimation and Stochastic Control,
Chapman & Hall, London, 1977.

[5] R.J. Elliott, L. Aggoun, J.B. Moore, Hidden Markov Models:
Estimation and Control, Springer, Berlin, 1995.

[6] A.E.B. Lim, X.Y. Zhou, Optimal stochastic LQR control with
integral quadratic constraints and inde�nite control weights,
IEEE Trans. Automat. Control, to appear.


