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On Adaptive HMM State Estimation

Jason J. Ford and John B. Mooieellow, IEEE

Abstract—In this paper new online adaptive hidden Markov P Approximation of the Hessian.
model (HMM) state estimation schemes are developed, based on If’l, p’;« Estimates ofP.
extended least squares (ELS) concepts and recursive pred_|ct|on X, Markov state at timek.
error (RPE) methods. The best of the new schemes exploit the L .
idempotent nature of Markov chains and work with a least X,EZ), 6 ith element.
squares prediction error index, usinga posteriorestimates, more X Diagonal matrix withX on the diagonal.
suited to Markov models then traditionally used in identification b
of linear systems. ~klk, 6

These new schemes learn the set 8f Markov chain states, and Xk|k7 &
the a posterioriprobability of being in each of the states at each Xklk—l 0
time instant. They are designed to achieve the strengths, in terms ’
of computational effort and convergence rates, of each of the two “*k|k—1,8,_1 .
classes of earlier proposed adaptive HMM schemes without the Vi (), V(8) Cost functions.
weaknesses of each in these areas. The computational effort is of wy,, ny Noise terms.

order N. _ _ Yk Observations.

Implementation aspects of the proposed algorithms are dis- . Collection of observations up until time
cussed, and simulation studies are presented to illustrate conver- y Filtration of Y
gence rates in comparison to earlier proposed online schemes. k-

Conditional expectations aky.

ELS Extended least squares.
Index Terms—Hidden Markov model, parameter estimation, EM Expectation-maximization.
recursive estimation. HMM Hidden Markov model.
ODE Ordinary differential equation.
NOMENCLATURE RLS Recursi.ve Ieast. squares.
RPE Recursive prediction error.
QAM Quadrature amplitude modulation.
|k, 85 Unnormalized conditional estimates. WGN White Gaussian noise.
Qlk—1,06 (., ) Inner product.
0 Unknown parameters, i.e., state levels. diag(.) Diagonal matrix from a vector.
O, OF Estimates of state levels. E[], E[|] Expectation operation.
6, Collection of estimates.
6, Error in estimate. o
. Gradients. . INTRODUCTION
A(6) Parameterized HMM model. IDDEN Markov models (HMM's) are a powerful tool
1 Column vector of all ones. in the field of signal processing [1], [2] with application
A, a;j Stochastic transition matrix, elements. to speech processing [4], digital communication systems [3],
B(yy, 0), Matrix of observation probabilities, elements.and biological signal processing [6]. The major limitation
br(1) of schemes for the estimation of HMM parameters revolve
€; Unit vector. around computation and memory requirements.
Fi Filtration of X,. HMM'’s in discrete time can be viewed as having a state
My, Martingale increment. X, at time k belonging to a discrete set, without loss of
N Number of states. generality, denoted a§ = {ei, e, -+, ex}, Wheree; is
Neg Number of parameters. a vector that is zero everywhere excepting itie element,
Ny, Normalization factor. which is one. There are transitions between states described

by fixed probabilities that form a matri® = (a;;), wherea;;
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and memory requirements are in proportion to the square Af HMM State Space Model
the number of Markov states and proportional to the length | o X,

of the signal to be processed. One avenue to improve 'g‘zocess belonging to a finite set. The state spic¢avithout
computational and memory requirements would appear t0 Qs of generalitycan be identified with a set of unit vectors
through the investigation of on-line schemes. It should alsp _ {e1, ea, o enh e = (0,+-+,0,1,0,---,0) € RY
be said that in learning the model parameters in a multipagih 1 in theith position. The transition probability matrix is
arrangement, convergence rates are linear, meaning of orger_ (ai;) for 1 < 4, j < N, where

1/N with respect to the number of passEsthrough the data. - -

The two notable examples of on-line adaptive schemes aij = P(Xpt1 = | Xy = ¢5) (2.1)
for HMM parameters estimation are the recursive Kullé0 that
back—Leibler (RKL) scheme [5] and the recursive prediction
error (RPE) scheme [8]. The RKL scheme converges linearly, E[ X411 Xr] = AX, (2.2)
and each iteration of the parameter update equation heﬁ? .
computational complexity of)(Ny), whereNy is the number where E.] denotes the expectation operator. We also denote

of parameters to be estimated. The RPE scheme [8] sl’.l € 27} to be+the cpmplete flltrat|oq geperated By,
developed with the aim to provide improved convergenv‘{? atis, for any € 2 ’]:’“,'S the comp!ete filtration generated
rates. This scheme is known to be asymptotically efficient a ?f X." ¢ < k Fora br_|ef introduction of the concept of
provide quadratic convergence (0f1/N?)). However, each filtration see.z [2, Appendl_x Al .
iteration of the parameter update equation has computationa\'emma 1:The dynamics of, are given by the state
complexity of O(N3), which can be prohibitive for largé/s. equation
The key contributions of this paper are the proposal of Xpy1 = AXy + Migy (2.3)
several new on-line schemes for HMM parameter estimation, . ] ) .
based on extended least squares (ELS) and recursive predicf@§re Mi+1 is a (A, F) martingale increment in that
error (RPE) concepts with the ELS approach rationalizdd[Mx+1|7x] = 0.
via martingale convergence results, and convergence results Proof [2], [11]:
showp fo(roglg) RPE scEe_r|1_1hesbvia e;nhordinary diﬁerential E[Miy1|Fi] = E[Xiq1 — AXp| Xy, A
equation approach. The best of these new schemes are _ _
based on a least squares prediction error index that ases = ElXpy1 | X, A] = AX = 0.
posteriori estimates rather than prediction estimates. O
A typical application in the simplest of contexts, under study We assumeX,, is hidden, that is, indirectly observed by
in a companion paper, is the demodulation of coded QAReasurementg, in a continuous rang®. The observation
signals with known transition probabilities in a noisy fadingprocessy;, is assumed to be scalar (for simplicity of presen-
channel. The state transition probabilities and channel noisd¢ion only) and to have the form
statistics would be assumed known, but the channel gain and y /
phase changes are unknown and possibly time varying. The Up = O Xy +wp = Xy +up €R (2.4)
problem of estimating the transition probabilities is considergghere 9 ¢ RY is the vector of state values of the Markov
in a companion paper [7]. chain. We also defingy 2 (yo, -, y). We assumew,
The paper is organized as follows. In Section Ill, wgs i.i.d., with zero mean and Gaussian density, i, ~
formulate the signal model and introduce an informatioN[0, o2 and E[wyy1|Fx VYVi] = 0, where), is the complete
state model. In Section IV, we introduce first the simplesiitration generated by, k& < 1.
case of the adaptive estimation task, namely, when the stat§Ve shall define the vector of parameterized probabil-
sequence is measured directly, and then apply the least squitsesiensities (or symbol probabilities) ab;, = (b (%)),
approach familiar in linear system identification. When thg,, br(i) 2 P(yx|Xx = ¢). In the special case as here
state sequence is not measured directly, the least sqQUg{Bgn . is i.i.d. and N[0, o2], we can write
approach leads to the ELS algorithms. Some convergence

be a discrete-time homogeneous, first-order Markov

results are presented. In Section V, we generalize the ELS bi() = 1 ex |:_(yk - 9’61)2} (2.5)
algorithms by introducing RPE recursion schemes, with new V2mo2 202,

search d|rect|ons_, and O.DE convergence results are presenteg\./e can also write that the initial state probability vector for
A new cost function, which is suggested by the least SQUaRS, Markov chainm — (m;) is denoted byr; = P(X, = ¢;).
approach, and tha posterioriweighted RPE scheme is alsoThe HMM is denoted\ ; (4, 8, 7, 02). ! !
presented. In Section VI, implementation considerations are)) Model Parameterizati Y
discussed, and simulation examples are given. Finally,

conclusions are presented in Section VII.

onFor simplicity, in this paper,
SORE shall be considering the problem of estimating unknown
state values, assuming knowledge 4f =, and ¢2, as in

II. PROBLEM FORMULATION communication channels with known coding. Letbe pa-

. . . . . rameterized by an unknown vect®so that the parameterized
In this section, we describe the HMM signal model in sta MM is denoted by

space form, discuss its parameterization, and reformulate it as
an information state model. AO) = (A, 6, 7, 02).
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B. Information State Model _ Proof [8]: Following the standard arguments, since
eXk|k—16 IS Measurable with respect@p Vs, 1, Efwyy1|Vi] =

Let ka P anka|k_1 ¢ denote the conditional filtered stat
' ’ 0 and F[My41|Mk] = 0, then

estimate and one-step-ahead state predictioN;oft timek,

gl\i/een measuremenf¥;, up until time £ and the parameter Eni|0, V1] = 9'Xk|k—1,e _ 9'Xk|k—1,e —o.
Xun o 2 E[X[Vh, 6 -
Kik,o = E[Xk[ D, 0] In summary, the parameterized predictor-based signal model
Xklk_l 0 2 E[Xw|Vi_1, 0] (2.6) foran HMM parametet and with states\,;_1, 4 is given by
Note thatXMk_l’g = AXk—l“c—l,@' Xk+1|k,0 :NkAB(yk7 Q)Xk“c—l,@
It is often convenient to work with an unnormalized condi- Ui IQ/XM’V—L@ Ty, (2.11)

tional estimates (or the so-called “forward” variableg);,,
and ay,—1, ¢, Which are defined agy o = (o, ¢(2)) for whereny is a (¢, Vi—1) martingale increment, andv;, =
/ O —1 . .
i, o(i) A P(Yy, Xi = ¢i|0) andagp1.o = Adg_1jp—1,6- (AB(yr, 0)Xpjp—1,0, 1) is a normalization factor. _
These unnormalized conditional estimates are computed usind/e NOW proceed to consider the problem of estimating

the “forward” recursion given a sequence of observatiohg.
Aptiik+1,6 = BUr+1, ) Aap, o I1l. L EAST SQUARES AND EXTENDED LEAST SQUARES
g1k, 0 = AB(yr, O)anpn—1,0 (2.7)

This section has two parts. In the first part, to introduce the
where B(yy, 8) = diag([bx(1), - - -, bp(N)]). problem, we consider the simplified adaptive estimation task
We can now write the conditional filter estimate and ondor the case wherX; is measured. The familiar least squares
step-ahead prediction from the unnormalized conditional eagorithm from linear system identification theory is presented,

timates as and the idempotent nature of indicator vectors is exploited.
. - The least squares cost is introduced, both in its original form
Xkjr,o = (nir, 0, 1) i, o and in an alternative form appropriate to the new least squares
Xklk—l,e = (Qrjr—1,6 l>_10ék|k—1e (2.8) recursion. Convergence results are presented.

) _ ) In the second part of this section, the assumption Mats
where (., .) is an inner product, and is the column vector measyred is relaxed, and the hocidea of ELS is introduced.
containing all ones. _ The two least squares algorithms are converted, via various

1) Parameterized Filtered Estimaté/Ve now seek to ex- assumptions, to a collection of ELS algorithms. Computational
press the observationg, in terms of the conditional filter 5ng convergence aspects are discussed. The importance of

estimate at timek. - _ studying these ELS algorithms is both as a motivation for
Lemma 2 [8]: The conditional measuremenys are given |ocally convergence RPE algorithms presented in Section IV
by and as suboptimal computationally efficient approximations to

Y = Q/Xk|k70 + these same RPE algorithms.

where A. Least Squares
ny = 0'[ Xy — Xk|k79] + wg. In this subsection, we consider signal model (2.4) given
) ) o ) in the previous section and the idealized estimation task to
The parameterized filtered estimat&g),, 4 are given by estimatef given a sequence of observatiokis and the state
5 o o sequenceXy, X, ---, Xj. Subsequently, we will consider
Xk o =NiB(yr, OAX, 15— L .
klk, 6 /’“A (ks O)AXy 11,0 the case wherX;, must be estimated frory;.
U =60 Xy k0 + (2.9) 1) Off Line: In a familiar approach, premultiplication of
_ . 1 o (2.4) by X; and some algebraic manipulation leads to the
}I;Z?c:?Nk = (Byr, )AXy—1ji-1,6, )7 is anormalization o i "o stimate forg (6x) based on¥: data points
2) Parameterized One-Step-Ahead Predictiofe now X k Loy
seek to express the observatiopsin terms of a prediction O = <Z XiX;> Z Xy (3.2)
based on the conditional filter estimates at tiine 1. i=1 i=1

Lemma 3 [8]: In the above notation, the measuremeypts

are given by where ) is an estimate off given k data points. The

. estimation error is
Y = 0" Xyjr—1,0 + 1k

k 1ok
where Op =0 — 0 = <Z XiXZ{) Z Xw; . (3.2)
=1

~ i=1
=0 X5 — Xijp—1, 0] +wi 2.10 . . -
"k R k=1, 6] 10 ( ) By exploiting the idempotent nature of indicator vectors,

andny, is a white (8, V1) martingale increment. the above estimates (3.1) and (3.2) can be written as scalar
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equations The result follows. The if direction of the second lemma
N result follows from noting thatimy, >F XDt 20
(J) [Z X(J)] Z Xi(j)yi implies thatn(k)? is finite. Hence
n(k)?
» koo koo Z w; <00,  w.p. 1l
69) = [Z Xf”] S xPwy,  forj=1,2- N
i=1 i=1 The first lemma result now also follows. O
3.3) 2) On Line: Simple manipulations of (3.1) give the recur-
sions

whered?, 690, and X denote thejth element off, by,
and X;, respectively. O = Or—1 + PruXi[yr — Xp0r—1] (3.6)
We are led to the following lemma.

Lemma 4:In the above notation, and withw; a mar- and
tingale increment with respect to the-algebra 7y _;, = Pt =P+ XX, (3.7)
{Xy, -+, Xi}, with F;_; as the complete filtration, in thator

E[wk|.7:k_1] = 0, then

N _ _ ! -1y
klim 6, exist a.s. (3.4) Py = Py = By 5[+ G P 7 X Py (3.8)
) e wheref, is an estimate of afterk data points. Manipulations
Moreover, for eacly in (3.3) show thatf;, minimizes a squares sum index, that is
k 17t k
hm 9(1) =fYas.— hm Z Xi(]) =0. (3.5 0, = arg min Z (y; — 0'X;)% (3.9
k—oo k—oo i1 [ 1

Proof: We proceed first to prove the second result byow, we note that nonllnear functions oXik are linear in
examining subsequences of the chain on which each stateXisas f(X;) = EZ L fle) Xy, x®, whereX denotes théth
active. Letn(k)’ denote the number of times statés active element ofX;,. The above recursion can be rewritten in an
up until timek, i.e.,n(k) = 3% X(J) and leta(i)’ denote alternative form as

the timek at which the statg is ac'uve for theith time. X X N X ‘
From (3.3), we defingt/ 2 Y% % xD1-1x0y,, O =01+ Preilys — b _yei] X (3.10)
which is a martingale adapted £, sinceE[W;, 11| Fr] = Wh. i=1

Note thatW; = E?z(’;)j (1/i)wa(s); by summing only over and
the subsequence with active then, it follows thatW,{ is 3 3 ;
bounded inL, for each; by Pt =P+ Zei@;‘X}E) (3.11)

. [ n(k)’ ' n(k)? '
HI = (Z 1w(>> (Z Ewa@)f)] > N

=t =1 P, = Pk—l_z Pk—lei[1+6;Pk—16i]_16/ipk—lX;EZ) (3.12)
n(k)? ' n(k)? i=1
=E Z g w0 | < B Z 2 <> and likewise, it can be shown th&j, minimizes the linear
L=t index
where we have used thdf[w,w;] = 0 Vi # ¢ and that ) kN ,
Elw;w;] < B for all 1. 0 = arg Irgn Z Z (yi — 9/6]')2Xi(]). (3.13)
For the only if direction of the second lemma result, note i=1 j=1
that under the lemma conditidims,_, . [EZ L X(J)] L=, Remarks:
we haven(k)! — oc ask — oo. Hence, by the martingale 1) The condition thaf(1/k) Ez . X(J)] I L0ask —
convergence [11], [12] o in Lemma 4 is an excitation condition. In addition,
hm WJ exist a.s. for eachj. it is possible to show, but is not done here, that the rate
koo of convergence to zero dif; is as1/k/2. See also
Using the Kronecker lemma [11], [13], we have Sternby [15].

(k) 2) To reduce the number of calculations, (3.7) and (3.11)

lim Z — a.s. for eachy. can be replaced by a stochastic approximation given by
k=0 (k) Pt = kE[X, X)) = k diag E[X])
Hence, by rewriting as a summation ovgrwe have where E[X;] is a vector of thea priori probabilities of
. being in each statef’[X;] is given by the normalized
kli_IEO (k)7 Z Xow; = kli_IEO 9,9) =0 a.s. for eacly. eigenvector ofA corresponding to the eigenvalue of
i=1 value one.
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We now proceed to consider the case when the stafkewise, from (3.10), we construct the ELS recursion

sequence is unknown. N

é‘Ié‘_ —‘rI:)A A C; ‘—é/‘_ e;| (3.19
B. Extended Least Squares o=+ B0, 2 [yk ol } (319

=1

This subsection considers the estimation task when the staték—l — Ak—_ll + Ak|k—1 ey (3.20)
sequence is not known and is presented in a manner parallel(y?g T
the previous section. To produce estimates when the state N
sequence is unknown, tiael hocidea of extended least squares  p, = p, | — Z Pi_ieidi Py
is to use estimates of states in lieu of actual stafgsin a Py
least squares implementation; see [18]. ) 1 ()

In linear estimation, it is usual to use one-step-ahead predic- ) [1 + GiP’“—lei} Xklk—l, Gu_t’ (321)

tions of the states so that the observation noise remains white, R R
at least when the predictions are optimal in a least squafégte that for (3.20) and (3.21), ify is diagonal, thens
sense. However, in our case, the one-step-ahead predicti¢k be diagonal for allk. Hence, (3.20) and (3.21) can be
of Markov chains can be far from optimal, particularly whe@Xplicitly written as scalar equations
the active state changes. This property of HMM highlights 1 a1 o (i)
that there are differences between standard linear estimation Dijk =Pi k-1 ""ka—l,é,\,_1
theory and the HMM parameter estimation problem. InitiallyQr
in this section, we proceed by using one-step-ahead predictions I pi?,k—l o (4)
to ensure that the observation noise remains white, but this Pik =Pi k=177 + Pig_1 ME=1,6i
requirement is relaxed toward the end of this section. .
LEtXMk—l,ék_l denote the conditional filter estimate basedhere P, = diag[p1. %, - -, Di. &, -, PN, &])-
on observations and model estimates, i.e., From a computational point of view, the diagonal nature of
R A R P, in (3.19) means that the (3.19)—(3.21) is computationally
Xiphet, 64y = EXR|Vi—1, O] more attractive for obtaining thestimates then (3.16)—(3.18)
. A s ) because it is of ordeN rather thaniV2 in complexity.
where ©;_; = {61, ---, 6h_1} and the recursion below is However, (3.16)—(3.18) are not completely satisfactory be-
used to generate the one-step-ahead predictions cause the estimates produced are biased. To see this, we now
. P examine the convergence properties of (3.16)—(3.18) for the
X = MeAB (i, 00) X, 07, (314) " idealized case when

(3.22)

k+1|k, &
1) Off Line: Using thead hocidea of replacing states by X X - % — EX Ve .. 6 323
one-step-ahead predictions, the extended least squares version = */*=1 ©x-1 Hi=1,6 = BV, 6] (3:23)

of the off-line least squares algorithms (3.3) is Lemma 5: Consider the ELS scheme (3.19)—(3.21) in the
idealized case, when (3.23) holds. Thenjkas: oo

k 1oy
4 _ () o (J) )
O = [Z Xi|i—1,ék_1] Z Xz‘|i—1,ék_1yZ k

i=1 i=1 by, — Py Xj-1.0X |0 as.
forj=1,2 -, N (3.15) A ; =104
where 6, is the estimate off on k points of data and —>I:’kﬁ’,j_19 a.s. (3.24)

Xi|i—1,ék_1 = E[Xz|yk7 ék—l]- i L. ~

No convergence analysis is attempted here for the off-lifdoreover, in the case of excitation such thgt — 0 as1/k
ELS algorithm. ask — oo, then for (3.16)—(3.18)

2) On Line: From the least squares recursion (3.6)—(3.8), e A BHlg
substituting one-step-ahead predictions gives the recursions O =B 0 — 0 as. (3.25)

N 5o 5 A Proof. Simple manipulations from (3.19) give
O =01+ D Xypor o | U = Xppor 00 Ok §

k
(3.16) 9k = I:)k Z Xﬂj_l’gX]/' 0 + I:)k Z Xj|j_179wj
J=1 J=1

A

px—1 _ px—1 >
P =R+ Xk|k—1,é;_lX;/€|k_17@Z_l (3.17) / /
or (3.26)
N and now
Pi=F_1- Z Pl;k—lXMk_l,éz_l k -1 k
i=1 1 N 1 -
-1 E Z Xj|j—l,0 E Z Xj|j_179w]' — 0 a.s. (327)
. |:1 +X;Vlk_lzéz_IP’:(_lelk_lféZ_l j=1 j=1
X Py (3.18) since each element of the second term can be shown to go to
‘_1- .

klk=1,0%_, zero using martingale convergence results and the Kronecker
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Lemma, as in the proof of Lemma 4. In addition, observe th& A Posteriori Extended Least Squares

k It is the nature of HMM'’s that the one-step-ahead predic-
P, Z /{ﬁj—l ol <1 (3.28) tions of the state can be far from optimal, particularly when
=1 ' the active state changes.
Hence, here we consider a ELS algorithm based on filtered
since0 < X2 < X < 1. Clearly, (3.25)—(3.27) vield the first estimates rather than one-step-ahead predictions. Consider a
half of (3.24) as claimed. modified version of the (3.19)—(3.21) scheme.
Now, observe that sinc&[X; — X;;_1, 6|1, 6] = 0,

S N
then likewise 0, = 61 + Pkalk,ék_l Z € [yk — eg_lez} (3.32)
k R . . i=1
I:)k Z Xj|j_179(Xj - lej—l,@)/ — 0 a.s. (329) Pk b= Pk_ll + |k, ©p_1? (333)
j=1 or
N
to yield the second half of (3.24). Py =DPyp1 - ZPk—leieliPk—l
Now, from (3.16) and (3.19), simple manipulations lead to i=} 1
) -[1+e;Pk_lei] &0 o (3.34)
br =P; X1 0y;
hoOR ; A=t o5 Remarks:
— Prplh, (3.30) 1) The recursion (3.32)—(3.34) is computationally efficient
=y Ok .

because?; ! can be forced to be diagonal.
and the result (3.25) follows from (3.26) under the excitation 2) Unlike the recursions (3.19)-(3.21), the recursion

assumption thaP; — 0 so that|| P} P;!|| is bounded above, (3.32)—(3.34) produces consistent results in simulations;
and P;f E?:l Xj|j_179w]' — 0 a.s. ask — oo. | see Section V.
Remarks: This ELS recursion is the most attractive of the algorithms

1) The lemma result (3.25) holds without the excitatioﬁrese”_teq in thi; section; however, no martingale convergence
condition on P, which incidentally assures a conver2nalysis is available for the (3.32)~(3.34) scheme at present
gence rate of /k'/2, but more advanced theory such a§ince the error terrlek—_XMk) is not a mar_tlngale_lncremept.
in [15] is required. Rather than proceed with a further analysis of m!msterlorl

2) Lemma 5 demonstrates that the scheme (3_19)_(3_ﬁ58 scheme, we proceed to look at RPE algorithms that are
leads to biased estimates, whereas the schefidly more complicated but have a more complete theory.
(3.16)—(3.18) does not. Hence, because both schemes
are of similar complexity, it seems that the scheme IV. RECURSIVE PREDICTION ALGORITHMS

(3.16)—(3.18) should be used in preference. See theThere exists mature theory for recursive estimation or
simulations section for a demonstration of the bias. identification of continuous discrete-time models based on
3) The complete ELS convergence analysis of (3.16)—(3.1k minimization of the prediction error costs; see [9]. This
when (3.23) does not hold is virtually identical to thatheory provides asymptotic quadratic convergent algorithms
given in [16] and is not repeated here. Suffice it tgadmittedly local) for linear and nonlinear models.
say, a key sufficient condition for (3.23)—(3.25) to hold |n this section, we proceed by applying this mature theory
asymptotically is that a certain passivity condition holdsn order to obtain asymptotic convergence algorithms that
that is, the system driven b X, and with output generalize the ELS schemes of the last section. First, we
$6, X% + 0’ X, must be strictly passive (hete= 6 — 6 reintroduce the two cost functions from the least squares
and X = X — X). This system in the HMM case discussion to replace the usual prediction error cost. These
is nonlinear and is sample path dependent; therefommst functions are our criteria for estimation &fWe present
further explorations along this line seems pointless. the RPE algorithm that minimizes each of these cost functions.
4) Consider a hybrid version of (3.16)—(3.18) Following from this, we present an RPE algorithm corre-
sponding to the attractiva posterioriextended least squares
o, algorithm (3.32)—(3.34).

1

A

Gt Pk /
O = O+ PeXypy o1 Uk — Xk|k—1,é,{_

(3-31) A, Prediction Error Cost Functions

with (3.20) and (3.21) holding. We do not study (3.31) First, we present the RPE schemes corresponding to the

further here. computational efficient one-step-ahead prediction-based ELS
5) To further reduce the number of calculations requiregthemes in (3.19)—(3.21) and (3.31).

to estimatet, (3.20) can be replaced by an stochastic Consider the error cost functions

approximation given by k

. Vi(6) & L =X, A )2 4.1
Pt = KB,y 6, ] = bdiagBLG]). KO = 2 P 6 @
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and Proof: The ODE’s associated with (4.3) and (4.4) for
_ A kXN 2 ol) fixed k under (4.5) and (4.6) are
Vi) = 3> > (-t Xl 6., 42
i=2 j=1 d

0 k) =R Y7, k) f(0(r, k), k)
The following RPE recursion minimizes locally the index in dT
(4.1) (see Lemma 6) and generalizes the ELS recursion (3.31) d—TR(T, k) =G(0(r, k), k), Ro(k)>6I. (4.7)

gt — i Pt .
O =01+ sz/’klel_l Now, Lyapunov functions for (4.7) under (4.5) and (4.6) are

Pt =PIl + AN (4.3) A A
- W(r, k) = E[(yr — 0 Xpji—1,0)°]
where or
N
A d 5 - (5
Vrie1,6]_, = 25 = X1 6, o0 lo=dy_, W(r, k) =E lek —e’e»QX,Ef;Z_l,e] (4.8)
]:

and Whereﬁ,I_1 is an approximation for the second derivative

of Vi(#). From (3.14) so that
L o] = MeABwn, 0D Xy of - Ao AW (k) db.
k+1lk,©] klk—1,0]_, dTW(T’ k) 2 e
The RPE recursion that minimizes locally the index (4.2) (see =—f'(0(r, k), /f)RT—l(k)f(g(T7 k), k). (4.9)

Lemma 6) and generalizes the ELS recursion (3.19)—(3.21) is
Thus, W (r, k) converges for alk and 7 — oo, and 6(r, k)

O = s + Pitipp1 o, converges to the sd|E[f(0, k)] = 0}.
pk—l - Ak—_ll + /{»klk_l S0y (4.4) Applying _the ODE th_eo_ry of Ljung [9], th_e various regu-
’ larity conditions are satisfied here, and the first result claimed
s (G ; . follows.
where, with(*) denoting theith element ofr Observe from (4.9) that ifR,(k) is of the orderl/k,
o) ) %0 s — é(;) ] as under suitab!e excitation, t_hg”rqe(f, k), k) converges to
klk—1, 041 klk—1, 041 k=1 zero asl/k'/2. Since, asymptotically, the stochastic difference
N 4X© ' equation behaves as the ODE, then rates of convergence
> W [ — ) ]2 translate across under the scaling of the theory.
i=1 o=b,_, This leads to the convergence rate result of the lemma.

O

Convergence of both these RPE algorithms can be esRemarks:
tablished by a conventional ODE analysis [9]. Since the 1) The RPE schemes are mildly more sophisticated than the

state estimateé?ili_lyéi_1 andX;, , o, are of necessity ad hocone-step-ahead prediction-based ELS schemes of
bounded, a projection into a stability domain as required in  the previous section. For this reason, we have kept the
[8] is implicit here. same ELS notation to assist in seeing the similarities

Actually, the ODE analysis requires that the filter generating  and differences.
Xz‘li—l,éz-_l be exponentially stable. This exponential stability, 2) For a RPE version of (3.16), see [8].
in the sense that initial conditions are forgotten exponentially,3) The (4.3) and (4.4) do not result from standard RPE
is established in [17] for thé&/ = 2 case and is known to hold theory. The search direction has been changed so that
more generally under reasonable conditions not spelt out here. Pk—1 is diagonal, but the scheme still provides quadratic
To demonstrate convergence of (4.3) and (4.4), let us first  convergence.

define for (4.3) and (4.4), respectively, and arbitréry 4) A complete and precise theory on convergence rates is
not given in the above results because it is beyond the

f(0, k) = E[Ypjperin—1,0] OF Elsgn—1,6]  (4.5) scope of this paper.
and 5) To reduce the number of calculations, the second half

(4.6) of (4.3) and (4.4) can be replaced by an stochastic

G(0, k) = E[Xyjp—1,6]- approximation given by

The following lemma now holds

Lemma 6: The recursions (4.3) and (4.4) will converge a.s. Pt = RE[X,. X;] = kdiag E[X4]).
to the setD. = {0] lim—oo £[f(6, k‘)] = 0}; moreover,
under the excitation conditio®}, (or P)) — 0 as1/k, then Convergence can still be proven with a slight modifica-

convergence of), (or 4}) is at the ratel /k/2. tion of Lemma 6.
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B. A Posteriori Weighted RPE Scheme V. IMPLEMENTATION CONSIDERATIONS

To generalize the ELS algorithm based on filtered estimates AND SIMULATIONS RESULTS

(3.32)—(3.34) rather than one-step-ahead predictions, we conThis section has two parts. In the first part, issues concerning
sider RPE schemes based on filtered estimates. To do isgplementation of algorithms for estimatir®gare presented.

consider the cost function The discussion is general in nature and, in fact, applies to any
N :)f the algofritEm:f,f plrdesented in this paper and others in the
- Aq _ge 2% iterature of this field.
Vi) = 3 z_; et (i = ¥'ci) Xilizéi—l (4.10) In the second part, simulation studies of the various al-
s gorithms present in this paper are presented. We attempt to
which gives the update equations given by demonstrate the various properties of these algorithms that
have been highlighted in the previous sections. The highlighted
0, =6, +Pk"?k|k s properties include convergence, convergence rates, bias, gnd
p-l_p-l 4 p T 4.11) the |.mportance of the issues introduced in the first part of this
k k=1 " Tkl Ok ' section.
with x(® the sth element ofx defined from A. Implementation Considerations
D) __x® [ _ ] The following were considered when implementing the
"klk, 61 Kk, 61 R T Ykt schemes presented in the preceding chapters.
N gx©) 1) Transients: One reason for studying both ELS and RPE
+Z __KklkOx—2,6 [y — éz(le]Q schemes in the same paper is that it appears to be a good
=1 dg® X approach to use them in combination in an actual implemen-
#=0— (4.12) tation. The extra gradient terms used in the RPE schemes do
not help during the transient period, where the dominant error
is due to initialization rather then the noise; however, these
and terms do aid convergence subsequently. Thus, itis a reasonable
- - - practice to use an ELS scheme initially and change to an RPE
Xk, 00 = NuByr, O)AXy 13216, (4.13) scheme once the transient has decayed significantly.

2) Step SequenceStep-size adjustments can be made for
improved transient performance for iterative schemes, and
Sndeed, £, = (1/k)R;* can be replaced byy & ! for
arbitrary -, satisfying 72, v = 00, >_re; v < oo, and

Lemma 7: The recursion (4.11) will converge a.s. to th

setDc = {8|limy—-c E[f(8, k)] = 0}; moreover, under the

. . . A /‘T
excitation %oqd|t|orPk (or Fy) — 0asl/k, then convergence y,o opE analysis still applies. Further details are omitted here:
of 0 (or 6}) is at the ratel /k'/2. see Ljung [9].

Proof: The proof is the same as for Lemma 6 with 3) Markov State Errors:The time-varying variance of the
f(8, k) = Elryr, o] and G(6, k) = E[Axx,e] and using the state estimate, which is given by
Lyapunov function

A A

N X :E[(Xk - Xk|k—1,ék_1)(Xk - Xk|k—1,ék_1)/]
/

W(r k) =E|Y" (e —0e;)* X4} |- = Xn-1,60m0 ~ K-, 60K pp-r,0,, 20 G
J=1

can be used in the recursive equations to “discount” time

O instants for which the Markov state is known with less

Remarks: certainty. If the variance of the state estimate is denoted

1) The cost function (4.10) is the sum of the predicteai,gs)2 = ¢} %0, then the modified update equation, according
error of being in each state, weighted by the estimatéa standard Kalman filter theory, becomes
probability of being in each state, which from (2.6) is R R 1
Xk, 6- Pl=P1 + —F
2) The similarity of form between (4.11) and (3.32) suggest o +o3l)
that the recursions (3.32) are valid at least as approx- R
imations for (4.11), for which convergence has beei addition, in (3.19), (4.3), and (4.4) is replaced by
shown. {1/[02 + a,ﬁ?l]}ﬁk. Corresponding modifications apply to
3) Again, to reduce the number of calculations, the se€3.16), (3.17), and (3.31).
ond half of (4.11) can be replaced by an stochastic 4) Parameter Estimation ErrorsSimilarly, the variance of

Xklk—l,ék_l' (5.2)

approximation given by the parameter estimates approximated/hycan be used to
. . modify the variance used in (2.5) to estimate the Markov
Pt = kE[X X,] = kdiag E[X,]) states.

and the convergence proof holds. o’ = 52 4 X1 P X (5.3)
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Actually, in practice, it makes sense to limit the magnitude 4
of additive term tos2 to, say,o2 because of the approxima-
tions involved. That is

o™ = 62 4+ min{o2, X P X} (5.4)

5) Polyak Acceleration:The increased step size and aver- T~ —
aging used by Collings [8] is suggested by Polyak [14] as 8810-2. R Les x X
technique to speed convergence. The Polyak increased st§) T IR
size has been found, in some cases, to aid convergence frop:n LS (3.3) . \\
poor initial estimates and in high noise. i L e ELS (3.15) N

6) Time-Varying Tracking:lt is possible to modify the es- ™ |x RPE of [6] ;
timation schemes presented in this paper to allowing tracking -- ELS (3.32)
of time-varying parameters by introducing a forgetting factor; ELS (3.31)

see Ljung [9]. A forgetting factok is introduced by modifying 1075
10

the second equations of (4.3) or (4.11) or the corresponding TIME, k
ELS schemes to give

10°

Fig. 1. Empirical comparison of proposed schemes under assumption (3.23).

—1 H5—1 | D
=AP + A6, (5.5)

where typicallyp < 1.
This modification was also found to improve convergence
in very high noise simulations.

B. Simulations 3
Z

We present results of simulation examples using computel-
generated finite discrete state Markov chains. The res
presented in the following simulation plots were found to b&
representative examples of hundreds of simulation runs. \&e
concentrated our efforts on the new algorithms that appear .|
interesting. For example, the most frequently tested algorithms
are (3.16), (3.31), (3.32), and (4.11). The least frequently tested
algorithms are (3.6) and (3.19).

1) Convergence UsingA’Mk_l,g: A two-state Markov 1oL - .
chain embedded in white Gaussian noise (WGN) was '° " TIME, k 10
generated with parameter valueg = 0.85, a;; = (Al — ;) a2 C dealized. in th { (323 ]
for i 7& . 6= [37 6]’, o = 0.5. The state sequenoﬁkm_l,e ig. 2. Convergence to idealized, in the sense of (3.23), state estimates.

was estimated [i.e., assuming knowledgefpfo that (3.23)

holds], and the state valuéswere estimated fronk,_; ¢- 3) Bias of Estimation:To verify Remark 2 made in Section
Each of the following schemes were examined: [lI-B, that a bias is indeed introduced by (3.19), a two-
* least squares algorithm (3.6) witki;, known; state Markov chain embedded in WGN was generated with
« original ELS algorithm (3.16) usingA(Mk_l,@; parameter values;; = 0.75, a;; = (1 — ay) for ¢ # 7,
* RPE from [6] usingXMk_l,e; ¢ = [3, 6], ando,, = 1. The state values were estimated using
« a posterioriELS algorithm (3.32) ”Si”g{(km_l,e; (3.16) and (3.19) anpl noting that the state estimalgg_, o
« hybrid ELS algorithm (3.31) usingsz_1. ¢- were used. The estimated parameters from the scheme were

/ 0 / ;
Fig. 1 shows an empirical comparison of the rates of convee gi&ﬁéégt?; (; 813(;]) ngjﬁéze;(j[Zlb?zsg d76] - The estimates

gence. This figure shows the convergence of various sche
4) Convergence Rate ComparisoA two-state Markov

to one of the parameters. We conclude that when usmﬁ bedded i 4 with |
Xklk—l , estimates that ouO(V) schemes converge at ap- ain embedded in WGN was generated with parameter values
’ a;; = 0.70, a;; = (1—ay;) for i # 4, 8 = 2, 4]’, ando,, = 1.

proximately the same rate as the eX|st[ﬁgN2) scheme.
2) Comparison of¢ with Xk|k 157 A two-state The state values were estimated using the following schemes:
klk—164_

Markov chain embedded in WGN was generate from which * least squares algorithm (3.6) withi, known;

Xk|k 6, and XW 1,¢ were estimated using (3.32). Fig. 2 * original ELS algorithm (3.16) usmg(klk 16,1
shows the difference between the estimates over time. We cone RPE of [8] us'nnglk—l, Eu_yi

clude from this simulation that asymptotically, (3.23) holds. , 5 posteriori ELS algorithm (3.32) usinggklk_l .

Note that the average over 100 points was used in this figure . s
to reduce the amount of information. * RPE algorithm (4.11) usingt,_; 6, -
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10 10
—-WITH APPROX.
@ c — WITHOUT APPROX.
o S
Ew“— E
pd
o &
= =107k
<
107 | —LS (3.3) ’ NG =
U)1O N
L || ELS (3.15) Q.
x RPE of [6] Y 107
-- ELS (3.32) AN Yo
—-RPE (4.11) ’
1075 . 0L
" TIME, k ° 10 TIME. k 10
Fig. 3. Empirical comparison of proposed schemes. Fig. 5. Effect of stochastic approximation on convergence.
" 7) Fast Markov Chains:A three-state Markov chain em-
bedded in WGN was generated with parameter valyes=
x 0.65, a;; = (1 — a;)/(2) for i # 4,6 = [0,1,2,3],
c | and ¢, = 1. The state values were estimated using the
w' recursive schemes [ELSMé (3.32) recursion] and [RPE1
5 2 (4.3) recursion]. The ELSM has been found to converge
';: to the correct values, whereas the RPE1 scheme was not.
E . This simulation demonstrates that the RPE1 recursions do not
ﬂw —ELS (3.32) " g estimate low inertia Markov chains well. In this simulation
""" RPE [6] : and others involving fast Markov chains, the ELSM recursions
were found to perform better then the RPE1 recursions. Here,
a; = 0.65 implies short times in each state.
e e o This is a significant result. The (3.32) recursion is the
TIME, k only recursion we have studied that can handle fast chains
Fig. 4. Empirical comparison of the ELS scheme (3.32) and the RPE scheﬁ]f;ecnvely' These fast chains are known to appear often in

of [6]. actually applications such as the demodulation of coded QAM
signals, which is under study in a companion paper.

Fig. 3 shows an empirical comparison of the rates of con-8) A Six-State ExampleA six-state Markov chain embed-

vergence. This figure shows the convergence of these schefifed I WGN was generated with parameter vakms:/ 0.95,

to one of the parameters. We conclude that@() schemes % = (1 — @i)/(2) for @ # j, 6 = [1, 2,3, 4,5, 6], and

converge at approximately the same rates. Ow = _1. The_ state values were estimated using the RPE1
5) Comparison with Existing the RPE Schemetwo-state €cursions. Elg. 6 shows thg parameter convergence of the

Markov chain embedded in WGN was generated with paranf@PE1 recursions. Note that in these simulations, the Polyak

ter valuesz;; = 0.75, a;; = (1—ay) fori # j, 6 = [2, 4], and increased step size is used to allow convergence from poor

0w = 1. The state values were estimated from the chain usifititial estimates.

(3.32) and theD(N?) RPE scheme presented in [8]. Fig. 4 9) High Noise: A two-state Markov chain embedded in

shows an empirical comparison of the rates of convergen®éGN was generated with parameter valugs= 0.9, a;; =

to one of the state values. This figure shows that similét — ai;) for ¢ # j, 6 = [-1, 1, and o, = 40. The states

rates of convergence are achieved by our new schemes wi¢re estimated using two methods. First, Fig. 7 shows the

computational requirements @(N) and the existing RPE convergence of parameters using the increased step sequence

scheme [8] with requirement9(N?). 1/+/n and averaging over 1000 points. Second, Fig. 8 shows
6) Stochastic ApproximationA two-state Markov chain the convergence of parameters using a scheme modified to

embedded in WGN was generated with parameter valuggck time-varying parameters with a forgetting factor=

ai; = 0.80, a;; = (1 —ay) for ¢« # 5, 6 = [2,4], and 0.995. Both figures shows that it is possible to estimate state

0w = 1. The state values were estimated from the chau@lues in very nigh noise environments.

using (3.32) with and without the approximation described in 10) Variance Corrections:From (5.2) and (5.3), we can see

Remark 5. Fig. 5 shows that convergence of the scheme what the correction factors are only going to have an effect

not adversely affected by the approximation. when not dominated by? . These variance correction factors
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Fig. 8. Parameter convergence in very high noise using forgetting factors.
Fig. 6. Parameter convergence of a six-state chain example.
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TIME, k

Fg. 7. Pa?rametfe’ Cog"ergencgoig very high noise using Polyak acceleratigng] |n addition to this, several of the implementation issues
Averaging is performed over 1 oints. . . . ' . .
gng s p P raised in the previous subsection were examined.

_ A highlight of the simulation results was that the
only improve the performance of these schemes during |n|t|@§_32)_(3_34) scheme has been found to provide good

transients or in low noise situations. _ convergence performance in situations involving high noise
For example, a two-state Markov chain embedded in WG q/or fast Markov chains that exposed the limitations of the
was generated with parameter values = 0.85, ai; = previous algorithms [8].

(1 —ay) fori # 4,0 = [2,4], ande,, = 0.00001. The

states were estimated using the scheme in (3.32) both with and

without the variance correction factors given by (5.2) and (5.3). VI. CONCLUSIONS

It has been found that the scheme without correction factors;, ihis paper, we have proposed new on-line parameter es-

will not converge, yvhereas the scheme using the Cc,)rre(ft'f?ﬁation schemes for HMM's based on extended least squares
factors 'doejs; See ,F'g' 9. In low measurement noise Sm_Jat'OQﬁd recursive prediction error methods. The transition proba-

the estimation noise dominates the measurements noise, gijflas petween states are assumed known, but the state values
it must be included to achieve reasonable results. In higleen which the noise-free measurements switch are learned

measurement noise situations, the relative contribution of tn'Ftime These new schemes exploit the idempotent property
estimation noise is negligible and need not be considered. of the signal model states, noting that care must be taken

for the ELS schemes to avoid bias. We present simulation
studies of the schemes in a variety of conditions, highlight
A variety of schemes presented in this paper were demdhe similarity and the difference between the performance
strated, at least in simulations, to provide competitive convest these schemes, and compare them with the existing RPE
gence performance in comparison with previous work presestheme for parameter estimation. The algorithms presented

C. Summary
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have computational complexit¢)(V) yet perform as well [16] R. KumarandJ. B. Moore, “Convergence of adaptive minimum variance
asympto“ca”y as earller Schemes propose@QNQ) algorithms via Welghtlng coefficient selectionEEE Trans. Automat.
Th teriori ELS d teriori ighted RPE Contr., vol. AC-27, Feb. 1982. ) ]
€ a posteriorl EL> and a posteriori weighte [17] R. K. Boel, J. B. Moore, and S. Dey, “Geometric convergence of filters
scheme, which exploit filtered state estimates rather than for hidden Markov models,” irProc. CDC, New Orleans, LA, Dec.
o : ; 1995, pp. 69-74.
pl’ed_ICtI(?n estimates, appear 1o b_e _the most atiractive fﬁg] T. Soderstrom and P. Stoic8ystem Identification. Englewood Cliffs,
application purposes. Theseposteriori schemes have been NJ: Prentice-Hall, 1988.
also found to be consistent and, thus, attractive in signaling
environments that include low-inertia HMM's that could not

be handled well by earlier algorithms [8].
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