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Abstract

In this paper, a pole assignmentproblem of lineartime invariantcontrol system by memory-
less output feedback is posed as a least squares poles assignmentproblem and analysed. The
coat functions are appropriately modified so M to obtain existenceof global minimumand con-
vergence of the correspondinggradientflow. This approachis also extended to accommodate the
output pole assignmentproblem with inaemitivity againatdisturbancesin system parameters.
The relation between the modified coat functions and the original pole assignmentis revealed.
The proposed approach ia compared with other existing approachesand illustratedby numerical
results.

1 Introduction

The pole placement problem of linear systems has been au important issue for decades. Compared
to the pole placement via state feedback or dynamic f~back, the same problem via output feedback
is more complex. Different approaches from linear system theory, combinatorics, complex function
theory and algebraic geometry are used to explore this problem and yet the results are not complete.
See the survey paper [3] for some details. There are some recent works concerning system pole

assignment by memory-less output feedback. For example, see [4], [5], [6], [7] and references cited
therein. For a linear time invariant control system with n states, m inputs and Joutputs, it is known
that a necessary condition under which system poles can be assigned freely by output feedback is
ml > n. This condition is sufhcient if the inequality is strictly satisfied. See [4] for details. These
approaches emphasize finding necessary and sufficient condition to the pole assignment problem by
memory-less out put feedback. Comput ation of the required feedback gain by these approaches is
formidable.

h [5], [6], another approach is introduced to consider this problem as a least squares optimisation
problem. There some cost functions were devised to force the closed-loop system poles as close to
the target system poles as possible in a least square sense. This approach has several advantages.
First, it converts the exact pole assignment problem into an optimisation problem which can be
solved numerically by many mature software packages. Second, Even though exact pole assignment
by output feedback may be not feasible, it can always provide a reasonable alternative which is
opt imal with respect to the least squares of the difference between system poles and target poles.
Third, it may exclude complex and profound mathematical computation on Grassmannian manifold,
which is not widely known to engineers. Furthermore, the corresponding eigenstructure is obtained
automatically if the pole assignment problem is exactly solved.

‘A partof thispaper was submitted to 1995 student paper contest of IEEEregion 10 by the first anthor and awarded
kt prize in the postgraduate category.
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However, the cost function used in [5] has no compact sublevel sets. In fact, some numerical
simulations have been conducted by us which shows that a trajectory of a negative gradient system
does not converge to an equilibrium point. To remove this drawback, [6] restricts system to be
symmetric so that the state transformat ion matrices belong to a compact manifold. Work remains
to be done to cope with the drawback in general case.

The sum of determinants of the return difference of the closed-loop system at all poles is used
as a cost function in [7]. This cost function is transformed on a Grassmannian manifold to a sum
of n items. Each item is a product of two fimctions. One is a positive function of a feedback gain
matrix and the target poles, and another is a determinant of a Hermitian projection matrix related
to target poles plus another constant matrix. Then, an auxiliary cost function is constructed by
replacing the posit ive functions with constant parameters. For this auxiliary cost function, sublevel
sets are compact and hence the existence of global minimum and convergence of gradient system are
guaranteed.

In this paper, a bound condition on state transformation matrix and its inverse matrix is imposed.
This condition is always satisfied in practical settings. In fact, if a global minimum exists, the

corresponding state transformation matrix and its inverse matrix can be bounded by some constant
real matrix. Solely on the bases or by further removing some redundancy, two type of modifications
are made to the cost function. The modified cost functions have the required properties such as the
existence of global minimum, convergence of gradient flow, etc. Furthermore, the exact solution if it
exists can also obtained as the global minimum of the modiikd cost functions.

For the pole assignment problem, another important issue is the robust property against param-
eter disturbance. Tens of papers are published to address the problem by static state feedback. See
[8] and [9]. One of the critical techniques is that the eigenvectors corresponding to each closed-loop
eigenvalue form a linear subspace and therefore can be easily parametrized. But this technique is
not available to the problem by memory-less output feedback. In this paper, the proposed approach
can also be adjusted to accommodate the robust pole assignment problem by memory-less output
feedback.

2 Output Feedback Optimal Least Squares Pole assignment

Consider linear time invariant systems with output

i(t) = Az(t) + I?u(t) (1)

y(i) = Cz(t) (2)

where z(t), y(t), u(i) are system state, output and input with dimension n,/, m respectively, A, 1?, C

are constant matrices with appropriate dimensions. Without loss of generality, assume that B, C’
are of full column and row rank respectively. Given a set of n complex numbers in which those
pure complex numbers are in conjugate pairs, the pole assignment problem by memory-less output
feedback is to find a output feedback u = l’y such that the closed-loop system poles coincides with
the set of complex numbers.

2.1 Least squares pole

Given a real n x n matrix r,
feedback is posed as [5]:

assignment

the least squares optimal assignment problem by memory-less output

Problem 1 A pair (T, F), whine T is a state tmnsjormation matrix and F is a memory-less output

feedback gain matriz, is said to optimally (least squanm) assign the closed-loop system poles to those
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of the matn”z r if it minimises the follom”ng cost function:

J(Z’, F) :=[1 Z’(A + BFC)T-* – r 1[~ (3)

where the matri”z norm is Fmbeniow norm.

Problem 1 has already been analysed in [5]. All transformed closed-loop systems Z’(A+ BFC)Z’-l

form a smooth manifold which is an orbit of Lie group GL(n, R) x ~xl, where GL(n, 1?) is the general
linear group cent aining all nonsingular n x n matrix with matrix product operation. The group action
of R* x‘ is a matrix summation operation. With respect to the normal Riemarmkm metric [5] the
gradient is computed as

grad.J(T, F) = -([T(A + 13FC)Z’-1 - r, T-T(A + BFC)TT]T,

(4)BTTT(Z’(A + BFC)T-1 – ryr-TCT)

where T-T := (T-l )T. However, the cost function J(T, F) has no compact sublevel sets. It is easily

seen that
J(T, F) = J(AT, F)

for any nonzero constant real number ~, one can always construct a sequence in the sublevel set

S(E) := {(T, 1’) E GL(n, R) X Rmxl : J(T, F) < E},

say, (kTo, Fe), k = l? 27 . . . . for any (To, I’o) E S(E) that is not convergent. If the difference of eigen-
values IIT(A + BFC)T–l – I’ 11~is considered as a function of the triple (A(Z’, F), B(T, F), C(T, F))

which is the orbit of Lie group GL(n, R) x Rmx’. i.e.,

~(A, B,C) =11 A – 1711:.

Then, ~(A, II, C) does not have compact sublevel sets either, because

B(AT, F) = ATB ~ +W as A ~ +00.

Therefore, the technique used to prove Theorem 3.2 in Chapter 5 of [5] is not available to us here.
If we consider the negative gradient system of J(T, F) defined as

(T,F)= –gradJ(T, F), (5)

Only the following weak results hold

Lemma 1 Z’Othe system (5),
(l). any tmjectory has no finite escape time;

(.2). along any tmjectory of (5) the essential upper bound U(t) of gmdient norm on [0, m) converges
to zero, when ~(t) is given by

~(t) := {M E R :11gradJ(T(t), F(t)) 11~< M almost euerywhem in [t,w).}

Proof. Since the gradient vector is smooth, a trajectory of the negative gradient system exists at
least locally. Assume it exists in [0, t].Then,

II(~(~),F(t)) Il&=ll~’gradJ(T(s),F(s))ds 1[%

= –t
/
ot+ds =(J(T(0), F(0)) – .J(T(t), F(t)))t < J(T(0), F(0))t
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which establishes the claim (l).
By noticing that

J(T(t), ~(i)) = – ~t IIgradJ(T(s), l’(s)) 1[~ds

is decreasing and positive one obtains the claim (2). ❑

In fact, the numerical computation of some examples conducted by us shows that the gradient
along a trajectory may diverge. Fore detads of the computation results of one example, see Section
4. Thus it motivates us to propose modified approaches in the following subsection.

2.2 Modified least squares pole assignment problems

k Subsection 2.I it is observed that there exists a redundancy in the cost function J(T, l’). i.e.,
J(T, l’) = J(XZ’, F). One may expect that by removing all redundancy in the cost function the local
minimum can be unique and hence the global minimum. However, it is already known that the
output feedback gain matrix which diem the closed-loop system pole assignment is not unique.
Example 5.2 in [3] shows that there are four output feedback gain matrices that assign the closed
system poles to the open-loop system poles. Furthermore, these output feedback gain matrices are
not proportional to each other.

If there is a global minimum of the cost function J(T, I’), the global minimum can always be
achieved by a state transformation matrix ~ which is of unit Frobenious norm and its inverse
norm is bounded by some constant positive real number M. Therefore it is reasonable to minimise
the cost function J(T, F) in a set that the state transformation matrices are of unit Frobenious
norm and the norm of their inverse matrices is bounded, or in a set that the norm of both state
transformation matrices and their inverse matrices is bounded. In the following, accordingly two
types of modification are made to the minimisation problem.

First consider the set of all state transformation matrices with unit Frobenious norm denoted as:

tfJi’ := {~ E GL(n, R) :11T IIF= 1}.

It is known [5] that the GL(n, 1?) x Rmxl is a orbit of itself considered as a Lie group by the
following Lie group action

@ : (GL(n, R) X l?mx’)X (GL(n, R) X R“’xJ)~ (GL(n, R) X R“’xJ)
((~, ~), (T, F)) w (~T, ~ + F)

This set is a smooth manifold with the manifold structure induced by Lie group action. Its tangent
space at (T, #’) can be calculated as

~(TF)(G~(% @ X R ‘x’) = {(XT, L): X E Rnxn, L E Rmx’}

UF is a subset of GL(n, R) and has the following properties.

Lemma 2 UF is a connected submanijold in GL(n, R). Its tangent space at T is calculated as

TT(UF) = {XT: X E Rnxn and tr(TTTX) = O}

Proof. First let us show UF is connected. For any two matrices T1, T2 6 UF c GL(n, R), there exists
a matrix X E Rnxn such that T2 = XT1. Given any ~, O< ~ <1, consider the following equation

(6)

4



Its solution is

p(~) = {–Mr(Z’~XTZ’l + T~XTl) + [4 + J2(tr2(T~XTTl + T~XZ’I))]1f2}/2 (7)

Since
tr(T~XTT’l + 7’~XTI) < 2[1[XZ’I IIFIIT1 [IF] = 2,

it follows that O < pl(~) s 1 where

p~(~) := –W(T~XTT1 + T~XTl) + [4 + A2(tr2(T~XTZ’1 + T’~XT1))]1J2}/2,

It is obvious that pl(~) is continuous and PI(1) = O,pi(0) = 1.Let

T(A) = (Ax+pl(A)I)Tlo

It is a continuous curve in Z.4Fthat connects 2’1 and Tz. Therefore, UF is connected.
Since d( II T 1[17)= d(ir(TTT)) is a c~tangent vector field which is nonzero everywhere, the

co-distribution spanned by d( II T 1[~) is l-dimensional. Therefore, UF is a (nz – I)-dimensional

submanifold of GL(n, l?).
The tangent space of UF at T is calculatedas

T~(Z4F) = {d(ll T IIF)}l = {XT: X E l?’’” and tr(TTTX) = O}.

The proof is complete. ❑

To obtain a better convergent property of cost function, a bound condition can be imposed on
IIT-l 112for the following reasons. First, it is already known that if IIT-l 112is large, the closed-loop
system poles are very sensitive to system parameter disturbance. The detail will be revealed in next
section or referred to [8] and [9]. Second, for any (T, F) that minimises the cost function, IIT-l 112

is always bounded by some appropriate constance. Then, the following problem can be proposed to
accommodate the system optimal pole assignment instead of Problem 1

ProbIem 2

minimise: ~(T, F) =11 T(A + BFc)T-1 – r II: (8)

subject to: T E UF, IIT-l 112< M, and F E Rmxl

Another type of problem can also be posed similarly, however, with redundancy.

Problem 3

minimise: ~(T, F) =11 T(A + BFC)T-1 – r II% (9)

subject to: T E GL(n, R), IIT 112< M, IIT-l 112< M, and F E Rmx’

Those are constrained optimisation problems. They can be converted into unconstrained optimi-
sation problems by introducing additional penalty items in the cost functions. i.e., the cost functions
can be defined as

J1(T, F) := ~(T, F) + p{l M– IIT-l [1~1–M+ IIT-l 11~}2 (lo)

and

.J2(T, F) := ~(T, F)+ M{l M– [1T 11$1–M+ IIT 11:}2

+P2{I M– IIT-l 11~1–M+ IIT-l 11#}2 (11)
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where p, M, ~ are tuning parameters. Frobenious norm is used here instead of two norm for two
reasons. One reason is that

IIT llz~ll T 11~< n [1T Ilz .

A similar inequality is also available for T-l. Another reason is that Frobenious norm is smooth,
easier to calculate, and in harmony with the first term in the cost functions.

Now the following lemma holds:

Lemma 3 The cost functions J;(T7 F), i = 1,2 have compact sublevel sets in UF~ Rmxl or GL(n, R)x
R*’l respectively. i.e., for any E >0, the sets

SI(E) := {(T, F) G UF X R*” : J1(T, F) < E}

and
&(E) := {(T, F) E GL(n, R) X R*” : J2(T, F) s c}

aw compact.

Proof. For any sequence {( T., F. )}~=1 in the sublevel set S1, since UF is bounded, it follows
that there exist a convergent subsequence of {T. }~=1. Without loss of generality, we assume

lim Tn=~.’ndoo

Since
IIT-l @ M + (:)1/’,

it is clear that V is the limit of Tn and invertible. Therefore,
M], lV1 >0, such that for any n > Nl,

IITn llF~ ~,, IIT;’ IIF< Ml.

Since for any m x Z matrix Y,

there exist two positive numbers

II Y 112<11 Y IIF< fi{m,z} IIy 112,

it follows that

IIR IIF< I@m, z} II(BTB)-l BTBFCCT(CCT)-l 11,~

min{rn, /} II(l? Tl?)-113T 11211CT(CCT)-l 11211T~l(T.(A + BFC)T~l – 17)Tn - A + Tn-ll’Tn 112

s ti{m, Z} II(BTB)-lBT 11211CT(CCT)-l 112{11T;l~I(T, F)T~ 112+ II T;lrT’ k + II A 112}(12)

Therefore, Fn is also bounded. Hence there exists a convergent subsequence of {Fn}~=l.

Now itfollows the continuity of Frobenious norm that if {( T., Fn)}~=l - (P, P),

(~,~) E &(E).

$hnikdy, one can proves that S2(E) is compact. ❑

By the compactness of sublevel sets, the existence of global minimum of the corresponding cost
function is guaranteed. In order to obtain the gradientof cost function ~1(T, F), we need to eqtip
the manifold UF x R*” with a proper Riemannian metric.

Given (T, F) E UF x R mx1, let c1 denote the following map:

UI : Rnxn ~ R

X + Cl(X)= tr(TTTX)
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For any X G R“x’, let

where
X“ E ker(al), Xl E [ker(crl)]~.

For (xIT, Fl), (x22’, J’z) E Tz@F) x R“’x’, the ~emannian C~ be de~ed =

< (xIT, Fl), (x2~, ~2) >:= W(WTW + w@72)

Now we have the following theorem.

Theorem 1 For the cost function J1 (T, F), the followa”ng results hold:

(1]. Its gmdient is calculated as

graW I(T,F)=(Pl([T(A + BFC)T-l – r, T-T(A + BFC)TT] – 2P(I M- [1T-l 11~1–

M+ IIT-* ll~)T-TT-l)T, BTTT[T(A + I?FC)T-l – r] T-TCT) (13)

whene [A, B] is the matrt”z Lie bmcket of any squaw matm”z A, B defined as

[A, B]= AB - BA.

PI is the projection opemtor fmm R’xn to [ker(ol )]1. It can be calculated by the folloun”ng formula:

tr(Z’TTX)

‘ec(P’(x)) = IITTT l]: ‘ec(TTT)

(14)

(2). Equilibrium point set &l is

& = {(T, F) : P1([T(A + BFC)T-l – I’, T-T(A + BFC)TT] – 2p(l M– IIT-l 11$1–

M+ IIT-l l[~)T-TT-l)T = O, BTTT[T(A + BFC)T-l – I’]T-TCT = O}.

(3). The negative grndient system isdejined as

(T,F)= –wM I(TY).

Along its tmjectory starting fmm any point (To, Fo) E UF x R mx1, the cost function decreases stra”ctly

at any non-equilibrt”um paint.
(4). Along any tmjectory, the gmdient ccmveryes to a zem matrk
(5), Any tmjectory converges to a connected subset of &l.

The proof is standard. Therefore, it is omitted.
Remark If (Tl, F] ) exactly assigns system poles, then, there exists a positive number M’ >0

such that for any M ? M*, J1(T, F) z J1(T1, Fl) = O. In fact, one can choose M* =11T1–* l& . ❑

Similarly, let the Riemannian metric of GL(n, R) x R’”” be defined as:

< (XIT, Fl), (X2T, Fz) >:= W((X1)TX2)+ 2tr(F~F2)

We have the following theorem:
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Theorem 2 For the cost function Jz(T, F), the folloun”ng results hold:

(l). Its gmdient is calculated as

9adJ2 I(T,F)=(([T(A + l?FC)T-l – I’, T-T(A+ BFC)TT] + ZP1(I ~– [1T Ii;/ +

IIT [k -WTTT - ZP2(] ~- [1T-’ Il;l + [1T-l II; +M)T-TT-l)T,

BTTT(T(A + BJV)T-l – I’)T-TCT) (15)

(2). Equilibrium point set t2 is

&z = {(T, ~) : ([T(A+ BFC)T-l – I’, T-T(A+ BFC)TT] + 2PI(1 ~– IIT 1[%[+

IIT !!%-WTTT - 2P2(I ~- IIT-’ II;l + IIT-l II; +M)T-TT-l) = O,

BTTT(T(A + BFC)T-l – I’)T-TCT = O}.

(3). The negative gmdient system is defined as

(i, ~)= -graU2 I(Tz).

Along its tmjectory starting fmm any point (To, Fo) E GL(n, R) x Rmxl, the cost function decreases

strictly at any non-equilibrt”um point.

(~). Along any tmjectory, the gmdient converges to a zero matriz.
(5). Any tmjectory conve~es to a connected subset of &2.

Remarks These two cost functions J1(T, F) andJz(T, F) may not have the same equilibrium
point. However, it can be shown by simple computation that
(l). if (T1,F1) = argmin J~, then,fi{2 S .J2(T1,FI) $@en ~ 21.

(’2).if (T2, F2) = argmin Jz, then, min JI < J1(T2, F2) where J1 is the same as JI but parameter M
is chosen as 214. ❑

3 Robust Output Feedback Poles Assignment

H system parameters are not precisely known or subject to disturbances, the closed-loop system
sensitivity should be take into consideration in system pole assignment problem. This is the so-
called robust pole assignment problem. There are many papers devoted to address this problem in
a state feedback cent ext. For example, we [8] and [9]. In the state feedback settings, eigenvect ors
of the closed-loop system matrix form some linear subspace [8]. On the basis many algorithms can
be designed to minimise the two norm or other norm of the state transformation matrix, which
is a matrix consisting of the closed-loop eigenvectors. If only output fwdback can be used, those
eigenvectors no longer form linezmspaces. Therefore, techniques as used in [8] and [9] are not available
to the robust output feedback pole assignment problem. In this section, two optimisation problems
will be proposed in the same way as in section 2 to handle the problem by output feedback.

Let (A, B, C) denote the nominal system parameters and (AA, All, AC) denote parameter dis-
turbances. Then,

IIT(A + BFC)T-l – T(A + AA + (B + AB)F(C + AC))T-l 112

=11T{AA + ABFC + BFAC + ABFAC}T-’ 112

q T lIFIIT-l I]F {11AA 112+ II~ 112(11AB 11211C 112+ IIB 11211AC 112+ IIAB 11211AC 112)}

Therefore, the ob~tive of insensitivity to parameter disturbance and pole assignment can be jointly
accommodated in the minimisation problem of the following cost functions:

J,l(T, F) = lq [1T(A + BFC)T-l – r 11~+kzIIT-l I[; +k~ IIF II: (16)
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where (T, F) E UF X R m x1, and kl, k2, k3 > 0 are tuning parameters and

where T E GL(n, R) and F E Rmxl.

The following results can be obtained by the same techniques in Section 2.

Lemma 4 Cost junctions J,;, i = 1,2 have compact sublevel sets. Themfom, the global minima of

cost functions can be reached in any non-empty sublevel sets.

Theorem 3 For cost function J,;, i = 1,2, the fol~~”ng results hold:
(l). Their gmdients with respect to the corresponding Riemannian metrics am calculated as

gradJ,l I(T,F)= (73(kl[T(A + BFC)T-l – r, T-T(A + ~FQTT] – W-TT-lP’,

l?TTTIT(A + BFC)Z’-l – I’]T-TCT + k3F) (18)

gradJr2 [(T,F)= (kl[T(A + BFC)T-l – r, T-T(A + BFC)TT] + kzTTT – ksT-TT-l)T,

klBTTTIT(A + BFC)T-l – I’]T-TCT + k4F) (19)

(2). Equiiibtium point set f,l and G2 am

&.l = {(T, F) : Pl(kl[T(A + BFC)T-* – I’, T-T(A + BFC)TT] – kzT-T

ST-l) = O, [T(A + BFC)T-l – I’]T-T + kaF = O}.

&,2 = {(T, F) : kl[T(A + BFC)T-l – r, T-T(A + BFC)TT] + kzTTT – kaT-TT-l) = O,

klBTTTIT(A + BFC)T-l – I’]T-TCT + kqF = O}.

(3). The negative gmdient systems am defined as

(i’,i)= -walk I(TO

(T,f)= -wadJ~z l(~,q .

Along their tmjectories starting fmrn any point (To, Fo) E U~ x Rmxl or (To, Fo) E GL(n, R) x Rmxl,

the cost functions decrease stn”ctly at any non-equilibrt”umpoint.

(4). Along any tmjectow, the gmdients wnveqes to a zem matriz.
(5). Any tmjectory of gmdient system of J,i conveyes to a connected subset of &,i, i = 1,2.

To justi& these results, we have the following lemma.

Lemma s If the system poks can be ezactly assigned by output feedback, then, by fixa”ng tuning
~mmeter9 k2, ka in J,l or k2, k3, k4 in Jrz and letting kl * +00, the giobtd minimal point has

a subsequence that convenjes to a point (~, r) which minimises the cost functions while ezactly

assignment system poles.

Proof. If k2, ka are fixed, the cost function J,l(l’, F) is nondecreasing with respect to kl. For any
(~, ~) that exactly assigns system poles,

Jrl(T, F) ~ Cl := k2 IIT-l 11~+ II~ 11~
T@4F~R” xi

holds for any positive kl, k2, ka. Let {k~}~l be any sequence that tends to irdlnite, and the corre-

sponding global minimal points of Jrl (T, F) be denoted as (T;, F;). For any i >0, (T;, F;) belongs to
the sublevel set

S;(C1) := {(T, F) E UF X Rmx’ : Jrl(T, F) < Cl}
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Since
S;(Cl) ~ S;-~(Cl) ~ S1(C1),

from the compactness of SI (Cl) it follows that there exist a convergent subsequence of (Ti, ~i).
Without 10SSOfgenerality, assume that (Ti, I’i) + (Z’*, ~) E SI(CI). By Jrl(Ti, ~) < Cl for any
z > 1 we know that

lim [1Ti(A + BFiC)T~l – r 11~= O.
idcg

The optimality of (T*, P) follows by noticing that (~, ~) cau be any point which exactly assigns
system poles.

The proof of the result corresponding to J,2 follows in exactly the same way. ❑

4 Numerical Examples

h the previous two sections, several cost functions and their gradient formulas are given to optimally
assign system poles. A bound condition is imposed on the state transformation matrix and its inverse
matrix to obtain a convergence property of cost function. If a cost index term related to a robustness
against system parameter disturbances is introduced, the bound condition is not required to obtain
the convergence of gradient flow. In this section, the proposed method is illustrated for the system
that is considered in Example 5.2 in [3].

Consider Example 5.2 in [3]. where

A=

12 –1 2 1 1
131231

–1 1 2 3–1 1
321–3–1–2

,B= 9

[100000)
\

–1 –3 –2 –1 1 –3
–2–1 1 3 2 1

10
01
00
00
00
00

( )C=oloooo.
001000

In order to show the convergence property of gradient system, the optimal solution is obtained by

directly calculating numerical solutions to these negative gradient systems. We use 0DE45 command
in Matlab to compute numerical solutions of several gradient systems.
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Figure 1. The computation results of gradient system of J(T, F)
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In Figure 1, the function /og(log(J(T, F)) and Iog( IIgradJ [l;) are plotted versus time t. The
cost function is seen to be decreasing. However, one may observe that the algorithm is not stable
and the norm of the gradient does not converge to zero.

In Figure 2 and Figure 3, the gradient systems for indexes J1 and JZ are computed. The costs
/og(log(J1)), gradJ1, log(log(Jz)), ~d gradJZ are plotted versus i. ~ these figure% not O~Y cost

functions are shown to be decreasing along the tra~tories of gradient systems, but also Frobenious
norms of gradients are shown to be converging to zero “exponent idly”.
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Figure 2. The computation results of gradient system of J1 (Z”,F)
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Figure 3. The computation results of gradient system of JZ(T, F)

H system is large, say, n states, m inputs and / outputs, the dimension of the gradient system is
(nz + ml). Therefore, for large systems, it is computationally expensive to solve the group of ordinary
differential equations. Newton method involves computation of the inversion of Hessian which is also
comput ationally expensive if the number of variables is large. Besides, the Hessian is not always
invertible. One can use a truncated Newton method, a conjugate gradient method or a gradient
method to keep comput ation and memory at each itcrate low. These computational methods are
addressed by many standard books. For example, see [10]. Details are not explicitly addressed in
this paper.
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5 Conclusion

h this paper, several cost functions for optimally assign the closed-loop system poles in a least
squares sense were constructed by penalizing a state transformation matrix and its inverse matrix
to be bounded or a state transformation matrix and its inverse matrix, and an output feedback
gain matrix to be small. Gradient with respect to two types of Riemannian metric were given and
convergence property of gradient systems and existence of global minima were obtained. Numerical
example were also given to illustrate the effectiveness of the proposed approach.

Compared to existing works such as [6], [5], [7], the proposed approach is attractive in the
following aspects. First, systems considered here are not restricted to a subclass of linear time
invariant control system such as the class of symmetric systems. Second, the existence of global
minimum and convergence of gradient system tra~tory are guaranteed. Thirdj cost functions
constructed are closely related to original pole assignment problem. III fact, if an exact solution
of output pole assignment problem is feasible, it can be approximated by the methods proposed in
this paper. Fourth, insensitivity issues against system parameter disturbances can also be cast in
the same fkame work.

It is worth noting that only local minima are achieved here. Some computation methods can be
applied to search for global minimum. But these methods are usually expensive in computation. It
needs further research to find an economical method to search for a global optimal solution.
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