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SUMMARY

Stable linear fractional transformations (SLFTS) resulting from a 2 x 2-block unit Z in the ring of stable
real rational proper matrices are considered in this paper. Several general properties are obtained, including
properties with respect to possible pole–zero cancellations and a generic McMillan degree relationship
between a transfer matrix and its image under an SLFT. The problem of representing a plant as an SLIT
of another plant such that the order of the original plant is exactly equal to the sums of the orders of the
SLFl_and of the new plant is solved. All such representations can be found by searching for all matching
pairs of stable invariant subspaces associated with the plant.

In relation to applications of SLFTS, it is shown that if two plants are related by an SLIT, then a one-to-
one correspondence between their two respective sets of all stabilizing controllers can be established via a
different SLFT.Also, it is shown how to decompose a standard H- control problem by means of SLIT into
two individual H- subproblems, the first involving a nominal plant model and the second involving
a certain frequency-shaped approximation error. An example is presented to illustrate the idea of
decomposing the complexity of an H- control problem.
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1. INTRODUCTION

Linear fractional transformations (LFTs), defined via a unit in the ring of stable proper rational

matrices denoted by RHm, have been found to arise frequently in systems theory, see, for
example, References 11, 13, 5, 9 and 17. As is well known, any particular stabilizing
compensator for a plant is an image of a suitable parameter Q in RHm by a fixed LFT defined
via a unit in RHm, and vice versa. By duality, any plant which is stabilized by a cotnpensator can
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also be viewed by an LFT as an image of a parameter S in RH.. In fact, any plant can be
expressed as a stable linear fractional transformation of a certain frequency-shaped mismatch
between the plant and its given model. Recently, Tay et al.’5 proposed a control scheme in which
the mismatch can be identified on-line from measurement data and illustrated that in a robust
controller design context there could be an advantage of identifying the mismatch instead of the
plant in respect of model reduction.

LFT’sdefined via a unit in the ring of polynomial matrices have been considered by Antoulas i
from the standpoint of realization. It is shown that every system can be decomposed into a
number of subsystems via a series of LITs subject to certain realization constraints. This
decomposition has two nice properties in respect of McMillan degree and Kronecker index.
However, since the LIT in Reference 1 is defined based on polynomial coprime factorization,
it may be difficult to apply the decomposition to a synthesis problem in spite of its attractive
properties. In addition, it is not clear whether the decomposition possesses any interesting
topological properties.

This paper is concerned with an LFT induced by a 2 x 2-block unit in RHm. Such a stable L~
(hereafter called an SLIT) is a transformation from one system to another and more precisely a
bijective mapping from RP onto itself. Though Rp k not a Hilbert space, it can be equipped with
the graph topology introduced by Vidyasagar. 17With this topology, it turns out that an SLIT is
continuous.

Our objective is to study some basic properties of an SLFT’ from a system point of view and
to explore application of SLFT in robust stabilization and H- controller design. For example, we
derive properties with respect to possible pole–zero cancellations and a generic McMillan
degree relationship between a transfer matrix and its image under an SLIT in the state-space
sense. If two plants are related by an SLFT, then a one-to-one correspondence between their two
respective sets of all stabilizing controllers is established via a different SLIT. This suggests a
two-step procedure of designing a stabilizing controller for a high-order plant expressed as a
stable linear fractional transformation of some frequency-shaped modelling error — one step
designing a stabilizing controller for the plant model and the other enhancing this controller to
cope with the high-order plant. An advantage of this method is avoiding directly designing a
high-order controller for some class of plants of high order. Another impol~ant application of
SLFI_ is in H- controller design. Specifically, a standard H- control problem can be
approximately decomposed by means of SLFT into two individual H“-subproblems, the first
involving a nominal plant model and the second involving a certain frequency-shaped
approximation error. This application is of pa]~icular significance when there exist unmodelled
dynamics or the order of a plant is so high that it might be infeasible to solve directly the
original problem. Moreover, the theory would support an approach when the first H- design is
off-line and the second ‘on-line’ based on some on-line identification. An example presented in
the paper shows that the idea of decomposing the complexity of an H- problem works very well
and that a satisfying H- controller of order much lower than the order of the true plant can be
designed by using a low-order balanced truncation approximation of the generalized frequency-
shaped modelling error.

The application of SLl% in breaking a design problem into two subproblems with less
complexity offers one an incentive to ask a question as to whether a plant can be minimally
represented as an SLFT of another plant in the sense that the complexity (order) of the
given plant is exactly the sum of the complexities of the SLFT and of the new plant. This
question is addressed in this paper and a complete answer is obtained in terms of stable invariant
subspaces.

The next section will be devoted to derivation of certain topological properties of SLFTS



STABLELINEAR FRACTIONAL TRANSFORMATIONS 103

which are of independent interest as well as being preliminary to later results. In Section 3, we
derive properties on pole–zero cancellation and McMillan degree via a state-space
representation of an SLIT. Meanwhile, the problem of minimal stable linear fractional
representations for a plant is considered and solved. In Section 4, we establish a one-to-one
correspondence between the two sets of stabilizing controllers associated respectively with two
plants related by an SLFT. An application of SLFTS in solving a standard H“ control problem is
also explored. Conclusions are drawn in Section 5.

2. TOPOLOGICAL PROPERTIES

In this section, we first give definitions and general properties of transformations of concern
and then derive additional topological properties important for dealing with robust controller
designs. The new properties are of independent interest, but also set the stage for later results.

A (right) stable linear fractional transformation (SLFT) 9t: RP + RP is defined as

G=9t(S)+(N+ VS)(M+ US)-’ (1)

via

[1
z=~u~z

NV
(2)

where RP denotes the set of proper rational matrices and Z is the set of all 2 x 2-block units
Z G RHm with the two diagonal block elements being an identity matrix at infinity and the (1 ,2)-
block element being strictly proper. The restriction Z G Z is imposed for simplicity of
presentation and for making (1) well-defined for all S E RP. If Z -1 is compatibly partitioned as

[1
z-l _ v -u—

-N M
(3)

then the transformation W can be expressed in dual folm

3(s) = (M+ So)-’(fv+ w) (4)

and the following Bezout identity holds

[-WH=[:W:I=’
(5)

Remark 2.1

Itcan be readily
the following LFT

with

established that the LIW 9 of the form (1) under (5) is a particular form of

9( S)=.11, +.112s(/-.122s2,’./2, (6)

(7)
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Conversely, any given LFT (6) with Jl, having a stable inverse can be rewritten in the form (1)
with

[ 1[.Z= Mu J;; -J;;J22

N v J,, J;; J,2 – J, ,J;:J221 (8)

LFTs of the form (6) with Ji, operators defined on a Hilbert space were dealt with by Redheffer
in Reference 12. It is easy to see that under (7), J is in RHm with Jzl a unit if M is a unit in RHm.

For our purposes, it is convenient to introduce a mapping ~ from Z to the set of all SLFTS by
defining

f(z) =% (9)

A product 9t1%Zof two SLIT’s %, and %Zis defined by

G= 949t2(S)=9’$(%2(S)) (lo)

Then it is straightforward to check that f (Zl )f(Z2) =f (Zl Z2) for Z], Zz E Z. By induction, one
can prove

f(z, )f(z,) . . .f(zn)=f(z, z, . . .Zn) (11)

where Zi=Z, i= l,..., n. Consequently, it follows that

~-’= f(z-’) (12)

These standard properties can be found in References 21, 6.
Before studying continuity of an SLIT, we first need to equip RP with a topological structure.

Given a GOE RP, let (NO,MO) be any right coprime factorization (r.c.f. ) of Go in RHm, i.e.
GO= NOM;’. Then the set

IKr(No,A40;E) ~ G = NM-’ :N, M e RHm, and
[::j] <,1 (13)

is called a basic neighborhood of GO for any E >0. It is known from Reference 17 that the
collection of sets of the form (13), denoted by X,, constitutes a base for a topology on RP, i.e.,
the so-called graph topology, which was first introduced and studied by Vidyasagar. In the same
vein, it can be shown that the collection of sets Ki of the following form, denoted by %1, is also
a base for a topology on RP:

Ki(No, fro; E)+{ G= fi-’N : N,ti ERHw, and IIIN–NO ~-~O]ll<&] (14)

where (MO,No) is a left coprime factorization (l.c. f. ) of Go. Moreover, the two bases 3’{,and Xl
generate the same topology of R,. The main properties of SLFTS are collected in the following.

Proposition 2.1

Adopt the notation as above, there hold

(1) ’91= f(Z) with Z G Z is a bijective and continuous map from R, onto itself in the graph
topology; so is its inverse.

(2) Given two units Z,, Zz G Z, f(Z1 ) =f(Zz ) if and only if there exists a scalar unit
a G RH. such that Z] = aZz.
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(3) Given an SLFT 9?.=~(Z) with

[1
Z=lwu

NV

being a unit in RHm, then for any G ● Q S K, (N, M; El) U K,(N, kf; E2) there exists a
S ● RHm such that G = ‘3?(S),where

“ = ll[/jlq,,and %= ;

[1v

(15)

Proof. See the Appendix. ❑

As a direct consequence of (1) of Proposition 2.1, the following result states that an SLFT
has the continuity-preserving property with respect to a parameter in a first-countable
topological space. Recall that a first-countable topological space is one in which each point has a
countable neighbourhood basis. 17

Corollary 2.1

Suppose A is a first-countable topological space. If S1, as a function of Amapping A into R,,
is continuous at L = A. in the graph topology, then so is Q?t(S1). Likewise, if GA, as a function of
I mapping A into R,, is continuous at A= 10 in the graph topology, so is 9?-1(Gl ).

Remark 2.2

If one would like to use 92(0)= NM -‘ to represent an estimate of G = 9?(S), then (3) of
Proposition 2.1 gives a quantitative description of how close G is to NM-‘ so that G can be
expressed as an SLFT of S E RH..

3. POLE–ZERO CANCELLATION, McMILLAN DEGREE AND MINIMAL
REPRESENTATION

In this section, on the basis of astate-space representation of an SLFT we first reveal where
pole–zero cancellations may occur for the state-space realization of an SLFT of a transfer
matrix. Next, a generic McMillan degree relation between a transfer matrix and its SLFl_ is
exhibited. Finally, we consider the problem of minimal representation of a plant as an SLFT of
another plant such that the order of the original plant equals the sum of the orders of the SLFT
and of the new plant. The necessary and sufficient conditions for solvability of such a problem
are derived in terms of (A, B )-stable invariant subspaces.

Let the SLFT ~ be given as in (1) with Z a unit in RHm of the following state-space
realization
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[+1A,, B~
s=

C~ D~

satisfying that A ~ (Dll + D1jD$)” exists. Since

substituting into (1) yields

I A - (B, + B2Ds)AC1 B2C$ - (Bl + B2D~)AD,2cs I (BI + B2%)A 1

G = W(S)= I -B~AC, As - B@D12Cs B~A

1

(17)

-(D~l + DzzD~)ACl + Cz -(Dzl + D2zD#D12C~ + Dz2Cs (D2, + D22DS)A

Proposition 3.1

Given the SLFT !?R(S).Let rP and r, denote the sets of poles and of zeros of the state-space
realization (16) of Z, respectively. Let XCand ZOdenote the sets of uncontrollable modes and of
unobservable modes of the state-space realization (17), respectively. If the state-space
realization S is minimal and such that A (D,, + D]~D~)-‘ exists, then there holds

ZCc rP and 20 c rZ (18)

Proof.. See the Appendix. ❑

In order to facilitate expositions in the sequel, we need the following definition.

Definition 3.1

Suppose the validity of a
space. If there exists a finite

property depends on a vector x in an n-dimensional Euclidean
system of polynomial equations in n-indeterminates such that at

least a polynomial is nonzero and the propeti~ is true f~r all x which are not a zero of the system
of equations, then the property is said to hold generically with respect to x,

Quite obviously, if the property is generically true with respect to x, then the set of all x for
which the property holds is open and dense.

Corollary 3.1

With the same notation and hypotheses as in Proposition 3.1,

(i) The state-space realization (17) of 3(S) is stabilizable and detectable with XCn ZO= 0
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(ii) Let cl(. ) denote the McMillan degree and m the number of columns of Ill. Assume that
(A, C,) is observable. If

[

AI-A B1 B2 O
rank

c, D,, o D,*
1

= d(Z) + m, VA e C (19)

then there holds

6(G)= c3(Z)+ d(S) (20)

generically with respect to minimal state-space realizations (As, B~, c’s, D~) of S.

Proof. (i) is a direct consequence of Proposition 3.1 since both Z and Z-1 are stable. To prove
(ii), set ‘?+ rC U ro. It is apparent from Proposition 3.1 that (20) holds if the realization (17)
does not contain any point in T as its mode. Write the state matrix of the realizations (17) in the
form

[

A – (Bl + B2D~)AC1 B2C~ – (Bl + BzD~)AD12C3

–B~AC, Al – B~AD1zC~ 1
[ 0’2‘1+[-5:lwtl[A:’‘A:’’csl_A -B, AC, -BIAD C—

o

It is easy to see that the observability of (A, Cl) implies that of

([A – B, AC, -BlAD12C~ 1[AC, –AD, ZCS

o () ‘ o I 1)
It will be shown that the pair

([A -B, AC, -B1AD12C~1[ 1)–Bz O

0 0 ‘ 0/

(21)

(22)

(23)

is controllable generically with respect to (Cs, D~). In fact, the pair (23) is controllable if and
only if

rank[~l - A + B, AC, B, AD1, C~ B2] = d(G), VA e C (24)

which is equivalent to

[

AI-A -Bz O -Bl
rank

c, O D12Cs D,, +D,2D~
1

=d(G)+m, VLEIC (25)

under the constraint that D,, + D, ~Ds is invertible. Note that this constraint is satisfied
generically for D~. Making use of Lemma A. 1 in the Appendix together with the assumption
(19) yields that (25) holds generically with respect to (C,, D, ). Thus from Reference 4, the left-
hand side in (22), regarded as a closed-loop state matrix under a static output feedback, has no
eigenvalues contained in T generically for (As, B~, Cs, Ds ). •1

The following lemma is needed in the sequel.
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Lemma 3.1

Given a plant G CR,).A 2 x 2-block matrix

satisfies

(i) Z CZ (ii) G =NM-l

if and only if there exists a minimal realization

[+1
AB
CD8

of G together with a stabilizing state feedback gain
that

J

(iii) c3(G)= d(z) (26)

F and a stabilizing output injection H such

H--]A+BF B –H
Z=FIO

C+DFD I
(27)

Proof. The ‘if’ part is well known. Now it is assumed that the block matrix Z satisfies (26) and
has the following minimal realization

[t--l
A B, B2

Z= C,IO

C2DI

(28)

Then, A and A - B, C, – B2C2 + BZDC, are stable. Setting

A=/i-B, Cl, B= B,, C= C2– DC,, F= C,, H=–B? (29)

one can easily check that

[+1
AB
CD

is a minimal realization of G, that F is a stabilizing state feedback gain and H a stabilizing outpu[
injection, and that (27) holds.

Remark 3.1

For Z given in (27), the conditions for (2) generically to hold amounts to the minimalit y of
the system (F, A, H).

(ii) of Corollaly 3.1 tells us that given an SLFT Z satisfying certain properties, the order of the
image of a plant via this SLFT generically equals the sum of the orders of the plant and of Z.
For a high-order plant G, it is often convenient to work first with its model GOand then with the
frequency-shaped modelling error S. For example, as will be seen in the next section, the task of
designing a stabilizing controller for G can be accomplished by finding two respective
stabilizing controllers for the model and the modelling error S. This method could divide a
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complex design problem into two or more simpler problems. Needless to say, the choice of
model is important to success of the method in terms of efficiency and computational reduction.
The acceptable choice should be one resulting in S which has a lower order or can be
approximated by a model of low order. Obviously, the really ideal case is where the
complexity of S is the plant’s complexity minus the model’s complexity. This prompts a
question as to whether there exists a model for a given plant such that the order of the plant is
the sum of the orders of the model and of the frequency-shaped modelling error, and how
such a model can be constructed if it exists. To address this issue, we need to consider a
minimal stable linear fractional representation, or MSLFR, for a plant, whose definition is given
below.

Definition 3.2

A plant G is said to have an MSLFR if there exists an SLFT Z E Z and another plant ,S~ Rp

such that G = ~(Z)(S) and

c5(Z), d(S) >0 and d(G)= d(Z)+ d(S) (30)

S will be called a pre-image of G.

It turns out that the problem of the existence of an MSLFR for a given plant is closely related to
the problem of the existence of minimal factorization of a transfer function. The latter problem
has been addressed and solved (see, for example, References 2 and 3). Recall that the
factorization R = RI Rj is said to be minimal if d(R)= C5(R1) + d (Rz ) where R, RI, R2 are square
rational matrices. Also, recall from Reference 18 that @ is a stable invariant subspace of a pair
(A, B) if there exists F such that (A+ BF)@ C O and A + BF is stable. The following result is
used in the proof of the main result in this section.

Lemma 3.2ZS3

Consider an n x n invertible transfer function matrix G given by a minimal realization:

[+1
G=tiB

CD
(31)

Then there exists a minimal factorization for G iff there exist independent subspaces Xl and Xz
such that

(i) AX, c X, (ii) (A - BD-’C)X2 C X, (iii) X, @X2=X (32)

where X denotes the state space.

Theorem 3.1

A given plant G E RP with a minimal realization (31) has an MSLFR if and only if there exist
two stable invariant subspaces Xl and Xz associated with (A, B) and (A’, C ‘), respectively, such
that

X,( f)x+=x (33)

where X denotes the state space of the realization (31).
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Proof. Necessity: assume that there exists a nontrivial unit

Z.= [1M. U.

No VO

and a plant S E RP such that

G = (NO+ VOS)(MO+ UOS)-’ and cJ(G) = d(ZO) + d(S) (34)

Since one can associate S with a unit

z, =MM, Us

N, V,

where N,M,:’ is an r.c.f. of S and d(Z1 ) = d(S), it is seen that G has the following r.c.f.

G = (NOM, + VON,)(MOM, + LION, )-’ (35)

Define

(36)

Since c3(Z)< C5(ZO)+ 6(Z, ) = d(G) and 6(Z)> d(G), it follows that Z satisfies (26) and

a(z) = C3(zo)+ C5(z,) (37)

Therefore, Z = ZOZ1is a minimal factorization of Z. By Lemma 3.1, there exists a minimal
realization

[+1
d%
%D

of G, a stabilizing state feedback gain F and a stabilizing output injection H such that

[t] (38)

is a minimal realization of Z. By Lemma 3.2, there exist subspaces Xl and Xl such that

(i) (s4+QBF)Y, C Y, (ii) (s4+ H%)YZ C Yz (iii) Y, @Yz= X (39)

Evidently, (i) in the above implies that Y, is a stable invariant subspace of (d, ‘3) while
(ii) implies that Y+ is that of (d’,% ‘). Since (s4, S9,%, D) and (A, B, C, D) are minimal
realizations of G, there exists a similarity transformation T such that

&= T-l AT, %= T- ’B, %=CT

Let Xl = TYl and X2 = (T-‘) ‘Y:. Then it is not hard to see that Xl and X2 are two stable invariant
subspaces Xl and Xz associated with (A, B) and (A’, C’), respectively, and satisfies (33).

Sufficiency: choose F and H such that A + BF and A + HC are stable, and that

(i) (A+ BF)XI C X1 (ii) (Ar+ C’H’)XJ C X2 (iii) Xl fEIX~=X (40)
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This implies by Lemma 3.2 that the Z with the minimal realization (27) has a minimal
factorization, say Z = Z, 22 where Zi E Rp. Since Z is a unit and there is no pole–zero
cancellation between its two factors 21 and 22, 21 and Zz are units in RHm. Furthermore, there is
no loss of generality in assuming that Zi G Z, i = 1,2. Letting S e Nzkfj] leads to G = ~(Zl )(S),
which implies

d(G) < 6(2,)+ d(S)< d(Z, ) + C3(Z2)

From the minimality of the factorization Z= 21Zz and the above inequalities, it follows that
d(G) = d(Z1 ) + 6(S). In this way, the proof of the theorem is completed. •1

In fact, the above result can be generalized as follows.

Theorem 3.2

Given a plant G E RP with a minimal realization (31). There exist a series of SLl%
2,,22,.. ., Z~and S such that

G =~(Zl )~(Z2) . . . ~(Z~)(S) and d(G)= ~ d(zi) + d(s) (41)
1=1

if and only if there exist (k – 1) pairs of stable invariant subspaces Xi and Yi associated with
(A, B) and (A’, C’), respectively, nested as follows:

{O]cx, c... CX~_l CX and {O}CY, C... CY~_l CX (42)

and such that

X,@ Y~=X, i=l, . . ..k (43)

where X denotes the state space.

Proof.. The proof is omitted. ❑

Corollary 3.2

With the same assumption and notation as in Theorem 3.1, if (A, 1?) and (A’, C’) have a
common stable invariant subspace, then G has an MSLFR.

Remark 3.2

The proof of Theorem 3.1 apparently provides a two-step procedure to construct an MSLFR.
The first step is to find a pair of stable invariant subspaces X, and X, of (A, 1?) and (A 1, C’),
respectively, which satisfy (33). In the S1S0 case, this reduces to finding a nontrivial stable
invariant subspace of (A, B) since (A, B) and (A’, C‘) have the same set of stable invariant
subspaces. An iterative algorithm to compute the supremal (A, B)-stable invariant subspace
contained in a subspace is given in Reference 18. The second step involves constructing a
minimal factorization of a unit in Z. For algorithms to perform a minimal factorization of a
rational matrix, see, for example, Reference 3.
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4. STABILIZATION AND H--OPTIMIZATION

In this section we first describe how the set of all stabilizing controllers for a plant will change
when the plant is transformed by an SLIT. It turns out that another SLIT can be induced from
the original SLFT to establish a one-to-one correspondence between two respective sets of all
stabilizing controllers associated with the plant and its image. Next, we show how a standard
H- cminimization problem for a plant can be approximately broken into two individual
subproblems associated respectively with two models of lower order.

As usual, a plant transfer matrix G E RP is said to be stabilized by a controller C c RP iff

[1
H(G, C) ~ _; ‘lG ‘1 (44)

exists and belongs to RHm. The set of all the stabilizing controllers for G is denoted by S(G).
Now assume that GI is in Rp for all Ain a first-countable topological space A. Then according to
Vidyasagar, 17GI is defined to be robustly stabilized by a controller C E RP at 1 = 10 if there
exists a neighbourhood N of AOsuch that C E S(G1 ), VA E N, and moreover, H(G1, C) is
continuous as a map from A to RP at A. in the graph topology. It is known again from Reference
17 that C ~ RP robustly stabilizes G1 at 1 = AOiff C E S(Glo) and Gl is continuous at d = AOin
the graph topology.

Given a transfer matrix G E RP of the form

G = ~(Z)(S) (45)

where S is a transfer matrix in RP, Z c Z is of the form (2), and ~ is the mapping from Z to the
set of SLITS, as defined in Section 2. For the given Z, we introduce three associated matrices
ri(Z), i= 1,2,3, defined by

(46)

(47)

(48)

It will be seen in the proof of the next result that given a closed-loop system, the transfer
function of the new closed-loop system resulting from a suitable transformation on the plant
and the controller can be related to the original transfer function in terms of the above-defined
matrices. Quite obviously, rl (Z) and rz (Z) are two units in RHm while r~ (Z) belongs to RHM.
In addition, rl (Z) is in Z iff the (2, 1) block element of Z vanishes at infinity. It is also useful to
introduce an induced SLIT 9?”of% by defining

9*= ~(r, (z)) (49)

Then !?RFis well-defined whenever rl (Z) is in Z. One can easily check that (9?-‘ )“ = (%”) -‘.
Before stating a simple one-to-one correspondence between S(G) and S(S) via the induced

SLFT 3“, we indicate that S(G) is an open subset of RP in the graph topology for any given
G c Rp. By duality, the set of plants which are stabilizable by a given controller is also open in
R,.
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Proposition 4.1

Consider two transfer matrices G and S related by G = 9t(S) = j’(Z)(S). Assume Z,
rl (Z) E Z. Then C = 9*(Q) is a continuous bijective mapping from S(S) onto S(G) in the
graph topology.

Proof. Since by (1) of Proposition 2.1, ~(Z) is continuous and bijective from RP onto itself in
the graph topology for any Z E Z, it suffices to show that C = 3’(Q) is in S(G) iff Q is in S(S).
To do this, first note that

C=9?”(Q) =( U+ MQ)(V+NQ)-’ (50)

If H(S, Q) exists, a simple calculation leads to

H(G, C)= r, (Z)H(S, Q)rz(Z) + r~(Z) (51)

By considering !J?-1 = j(Z - 1), one similarly has that if H(G, C) exists, then

H(S, Q)=rl(Z-’)H(G, C)r, (Z-’) +I’J(Z-’) (52)

In view of the fact that both r, (Z) and r2 (Z) are unimodular in RHm, itfollows from (51) and
(52) that H(G, C) exists and belongs to RHm iff so does H(S, Q). ❑

Corollary 4.1

With the same assumptions and notation as in Proposition 4.1, further, assume that
Gl = 91(Sl ) where GA and SI depend on A in a first-countable topological space. Then, C
robustly stabilizes Gl at A= AOiff Q = (9t”) -1(C) robustly stabilizes SAat A= A..

In view of the property (11), the above two results can be easily generalized as follows.

Corollary 4.2

Let a plant transfer matrix Go be represented in the following recursive form

Gj=(Ni+ V,G,+l)(Mi +UiG, +,)-’, i= O,l,. ... l-l (53)

where

Zi=Hff eZ and rl(Zi)c Z, i=O, l ,...,1-1
!1

(54)

They any controller COE S(Go) can be recursively parameterized by

C,=(U, +M,Cj+] )( Vj+N,C,+l )-’, i= O,l,... ,l-l (55)

with C. G S(G. ). Moreover, if it is further assumed that G,, i = O, 1, . , n – 1, depend on 1 in
a first-countable topological space, then Co robustly stabilizes Go at 1 = 10 iff Cn robustly
stabilizes G. at A= AO.

Remark 4.1

The recursive fractional representation (53) of the plant Go often arises owing to successive
identification for G;, i = O, . . . . n – 1. Corollary 4.2 suggests that a multi-controller strategy
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could be proposed for a plant with a recursive fractional representation. This together with
internal stability properties is investigated in Reference 20.

We now turn to consider the basic block diagram depicted in Figure 1, where G is the
generalized plant of the form

G= [1Cl, G12

G21 G22

and C is the controller. The standard H- control problem

(56)

for Figure 1 is to find a controller C to
minimize the H--norm of the transfer function from w to z

%(G, C)= Gll + Glz C(l– G22C)-1G21 (57)

under the constraint that C stabilizes G. In practice, if a low-order model G~2of G22 is already
available, then one may first try to solve the H- optimal control problem for the nominal
generalized plant

[1Gll Gkz
GO~

Gzl G;z
(58)

As will be noted, in certain situations II9J(G0, Co) II- is actually the minimal achievable H- norm
of the closed-loop transfer function associated with the plant. However, when the obtained
‘optimal’ controller COis applied to the true generalized plant G, a totally unsatisfactory closed-
loop H- performance may result if G~z is not a good enough approximate to G2Z.The question
we are interested in is how to further design an additional controller solely based on some
modelling error between GZ2and G~2so that the H--norm of the transfer function from w to z
can be brought as close to that of ~ (GO, CO)as possible.

To this end, let NM-1 and UV-’ be stable coprime factorization of G~2and CO,respectively,
with the Bezout identity (5) being satisfied. Then, G2~ can be represented as a stable linear
fractional transformation of some transfer function S, i.e.,

G,, = (N+ VS)(M+ US)-’ (59)

Here, S is actually a frequency-shaped mismatch between Gzz and G~2. Now consider an
augmented controller arrangement shown in Figure 2, where .10is the augmented controller of
COin the form

MJo= co‘-’
v-l _v-lN

. z

(60)

:

Figure 1. Basic block diagram,



STABLE LINEAR FRACTIONAL TRANSFORMATIONS 115

“, .

G

. Y

Jo

r s

Q

Figure 2. Augmented block diagram.

and Q is the additional controller. Obviously, such an arrangement is reduced to the standard one
in Figure 1 if Q is set to zero. Also note that S is the transfer function from s to r and thus
should be identifiable under reasonable conditions. In view of this, we will assume that S is
known.

The following main result of this section shows that minimizing the difference between the
transfer function from w to z and the ‘ideal’ transfer function 9 (GO, CO) by means of the
additional controller Q selection approximates to a standard H- controller design task.
Moreover, this design is purely based on the frequency-shape modelling error S.

Theorem 4.1

Consider the augmented block diagram in Figure 2 together with (56) and (58)– (60). Assume
that G, ~ and Gzl are stable. Let T,., denote the transfer function from w to z. Define a

independent of S as

[1 .
a = IIG12[U Ml 11- $ G21 (61)

Then there holds

IITV, - %(GOCO)II-< allZ(P, Q)ll_ (62)

where P is a generalized error model defined by

P=[;:%]=[[::l[:l][1 s] s
(63)

Proof. First note that the transfer function from y to u is simply the image of Q by the SLFT
corresponding to rl (Z), namely,

C(Q)= (U+ MQ)(V+NQ)-’ (64)

Making use of the relation (51) yields

[1 [-1C(Q)[l - G22C(Q)I-’ = [0 m, (Zxf(s, Q)q (a + r3(al [ = [u MMS! Q)g - UM
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from which it follows that

TW,= WC, C(Q)) = Cl , + G12C(Q)[Z- G22C(Q)]-1G2,

{ [1 ]=Gll + G12 [U MIH(S, Q) ~ - Uti G21 (65)

Setting S and Q to zero in the above immediately gives

%(GO,Co) = Gli + G12Mi7G2~ (66)

Hence, one has

[-1
~.,–%(GO,CO)= G12[U Ml[H(S, Q) – l] ~ G21

This apparently implies (62) upon noticing that %(P, Q)= H(.S, Q) -I.

(67)

❑

Remark 4.2

Although the generalized plant and its model may have the almost same optimal achievable
Hm performance in some cases, the fact that a controller COminimizes II$Z(GO, C) IImdoes not
necessarily imply that it also minimizes II%(G, C) Ilm.Rather, if the Co is applied to the true
plant G, the resulting closed-loop H- performance could be very poor, as will be demonstrated
in the coming example.

In the light of Theorem 4.1, a multistage procedure for designing a suboptimal H- controller
could be suggested as follows.

Step 1
Step 2
Step 3

Step 4

Step 5

Get a low-order nominal model G~2for GZ2.
Design an optimal H- controller Co for the nominal generalized plant Go.
Get an estimate So of the stable linear fractional transformation S = (-N+ fiG,, )
x(~–UGzz)-l where M- ‘N and ~-] ~ are I.e.f.s of G~l and Co, respectively.
Design an optimal H- controller Q for the generalized plant P. associated with So via
(63).
If the single-loop diagram in Figure 1 is adopted, generate the SLIT C = (U+ MQ)
x (V+ NQ) -‘ which is the desired suboptimal H- controller; if the two-loop diagram in
Figure 2 is adopted, augment the generalized controller Y. resulting from Co by the
additional controller Q.

Remark 4.3

The above design method seems particularly useful and effective in the case where S is
unstable and/or large in H@-norm. Although the order of the SLFT S may be high, using its
estimate of fairly low order can often result in a satisfactory performance, as shown in the
following example. The order of the overall suboptimal controller using the procedure is the
sum of the orders of GOand So, which tends to be less than the order of the true plant P.

Remark 4.4

By Proposition 4.1, the designed controller stabilizes the original system if and only if S is
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stabilized by Q which is stabilizing SO.Therefore, if there is no modelling error between S and
SO, then the closed-loop stability is guaranteed. Using (3) of Proposition 2.1, one can easily
derive a quantitative measure of how small the modelling error is between S and ,SOso that Q
can stabilize not only SO but also S. Details about stabilization of the multiple controller
structure can be found in Reference 20.

Remark 4.5

It is worth pointing out some differences between the multistage approach proposed here and
the separation approach in Reference 5 to the H- control problem. First, the separation approach
is used to reduce a general output feedback problem to an equivalent output estimation problem
with a plant of the same order, while the multistage approach is aimed at decomposing an H“
problem into two subproblems, each of which is associated with a lower-order plant and thus
can be more easily solved using the separation plinciple, In passing, we would like to mention
that there is a great incentive to break a complex problem into smaller pieces from a software
engineering viewpoint. Second, the separation approach can lead to an optimal H- controller
whereas the other usually yields a suboptimal controller. Therefore, if the order of the original
plant is low enough, there is no advantage in using the multistage approach. Last, owing to its
nature, the multistage approach could have potential applications in the context of successive
identification and control in the presence of uncertain dynamics in the plant.

Finally, we present an example to illustrate the proposed design method for the standard H“
control problem.

Consider the true generalized plant

where

[Gll G12 G211= . : _[-s+3 S2-9S-18 S2+4S+1] (68)
s“+3s+2

and

G22=

0.0 1.00.0 0.0 0.0 0.0
-2.0 -3.0 0.4 7.2 0.0 0.0
0.0 0.0-5.3 -9.7 2.2 -1.0
0.0 0.0 -5.3-14.0 4.8 -2.4

-2.7 -2.7-2.3-43.0 0.0 1.0
-3.6 -3.6-3.0-10.0-30.0 -20.0

-1.5 -5.0 -3.0 2.5 -2.0 0.0

We choose the model G~zof Gzl as follows

0.0
–1.0

0.0
0.0
6.0
8.0

-
0

(69)

(70)
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The resulting modelling error G2Z– G~2is depicted in Figure 3. Then for the nominal plant

[1G,, G,2
Go=

Gzl dz

an optimal H“ controller is found to be

The magnitude plot of !Y(GO,CO) is depicted in Figure 4 where II%(GO,CO)IIappears to be less
than 2.7. (In fact, II9(G0, C) IIis always greater than 2.6 for any stabilizing C.) When this CO,
which turns out to stabilize G, is applied to G, the H--norm of the closed-loop transfer function
T,,, reaches above 30 (see Figure 5) although its achievable minimum is the same as
II!2$(G0,CO)11,i.e., 2.7 or so. This is because of unmodelled dynamics.

To design the additional controller Q, we choose an SLFT

[1v -0
-N Itl

based on GO and
generated. But, we

CO. Thereby the frequency-shaped modelling error
only use its second-order balanced-truncation model

1.s

1-

0.5 -

0 -

45 -

-1
0510152025 3035404550

Figure 3. Magnitude plot of G22– G~2

3

2.5 -

2

1.5

1 -

0.5 -

s
to

of order 10 can be
form the generalized

01 1
0510152025 3035404550

Figure 4. Magnitude plot of %(GO,C,,)
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30 ,
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20

15 -

10 -

5 -

0
0510152025 3035404550

Figure 5. Magnitude plot of T,,: associated with CO
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1
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Figure 6. Magnitude plot of T,,,:associated with C(Q)

error model P via (63). Then an optimal H“ controller Q for P is given by

Q=[~E:3;:l~[::~:l] (72)

Construct the controller C(Q) = (U+ MQ)(V + NQ) -‘ which is of order 4 and evidently
stabilizes G, and apply it to G. Not unexpectedly, the H--norm of T,u, is dramatically reduced to
4.7 or so; see Figure 6.

5. CONCLUSIONS

We have considered a stable linear fractional transformation mapping RP to itself. Some
properties of the transformation on pole–zero cancellation and McMillan degree have been
obtained by virtue of its state-space representation. A one-to-one correspondence between the
two sets of stabilizing controllers respectively for two plants related by an SLFT has been
established. However, the main contributions of this paper are the following. First, we have
derived the necessary and sufficient conditions for the existence of a minimal stable linear
fractional representation for a given plant in terms of stable invariant subspaces. This result
answers the question as to when there exists a model for a given plant such that the complexity
of the plant may be distributed precisely on the model and the resulting frequency-shaped
modelling error. If such a model exists, a stabilization problem for the plant can be broken into
the problem of stabilizing successively two models whose orders add up to the order of the
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original plant. Second, it has been shown that a standard H- control problem can be sectioned
into two individual subproblems via an SLFT. On the basis of this, a new multistage method of
designing a suboptimal H- controller is proposed and its effectiveness has been demonstrated by
an example.

ACKNOWLEDGEMENTS

This work was in part supported by Boeing (BCAC) and DSTO Australia.

APPENDIX

Proof of Proposition 2.1

(1) The proof is quite standard and omitted.
(2) Clearly, it suffices to show that given a Z G Z, QJt= f(Z) is an identity mapping, i.e., 9(S)= S,

VS G Rp iff Z. is of the form Z = zI, where z is a scalar unit in RHe. Sufficiency is obvious on noting that
under Z = ZI then N = U =O and M = V = zI. As for necessity, since W(S) = S for all S E Rp, taking S = O
yields N = O. Consequently, ‘W(S)= S is equivalent to

VS - SM = SUS (73)

We now establish that (73) holds for all S G R, only if U = Oand V = M = ZI for some scalar unit z E RH..
First of all, U must be equal to zero. Otherwise, there is no loss of generality in assuming

[

u= diag(ul,..., ur) O

0 0 1

where ul, ..., u, are the invariant factors of U. Compatibly, partition M, V into

and in particular, choose

[1s= aIO
00

with a E Rp. Then (73) implies

a(V1l –Ml])= azdiag( u,,... , U, 1

Quite evidently, the above relation cannot hold for all scalar cr G Rp. This contradiction shows U = O. In
this way, (73) becomes VS – SM = O, or equivalently, (1@ V – M’ @1)S = O. Since this holds for all
S E Rp, one can see that 18 V – M’ 81 = O, from which it follows that V = M = ZI for some scalar
z E RHm.Further, z must be a unit since Z is a unit.

(3) Let G be in K,(N, M; t,). Then there exist r.c.f. (Nl, M, ) and I.c.f. (fil, N, ) of G in RHa such that

1[ 1NI-N

h’1,-kf < “

Since

~M, - UNI = I+- ~(M, -M) - U(N, -N)

(7.4) yields that V141- UN, is a unit in RHm,which in turn implies that

(74)

s~(ftkv, -fWf,)(W, -UNI)-’ERH.
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It can be further verified that (M+ US)-‘ e>is$ and S satisfies 9(S)= G. Using a similar argument, one
can reach the same conclusion for G ~ Ki(N, M; Cz) as for G ~ K,(N, M; El). •1

Proof of Proposition 3.1

Let A. c XC.Then there exists a nonzero vector x’ = [x’] X’z] such that

[

l.] - A + (BI + B2DJAC1 -B2C~ + (B, + B2DJAD12C’~ (B, + B2DJA = ~
[x; x;]

B~AC1 l.l -As + B~AD12C~ B~A
1

which is evidently equivalent to

[

/101-A -B2C~ B, +B2D~
[x; x;] ~

l.l -As B~ 1=0 (75)

This implies that x’, (,101– A) = O. Noting x #O, one can claim that x, # O because, otherwise, (75) would
result in X’2[aOl – As B~] = O, which is contradictory to the assumption that (As, Bs) is controllable. In
this way, it follows that A. is an eigenvalue of A. On the other hand, if A. is an uncontrollable mode
of multiplicity k, i.e., there exist k linear] y independent vectors x} = [Xril X’,z], i=l, . . ..k. the
above reasoning tells us that xi,, . . . , Xkl are linearly independent eigenvectors of A associated with 4.
Hence, it is concluded that X, C rP. To prove that ZO C r,, we need to note that the inverse of

T + D22– (D2, + D22D$)AD12exists as the (2, 2)-block element of the block matrix

[ 1Dll +D12D~ D12 “

D21 i- D22D~ D22

Thus, the polynomial matrix

I

~1 - A + (Bl + BID~)ACl –B2C$ + (Bl + B2D~)ADlZCS

B~AC1 M -As + B.#D12C~

I

(76)

-(D21 + D2zD~)ACl + Cz -(Dzl + Dz2D~)AD12C~+ D22C~

is equivalent to

I

Al -A + (Bl + B2D~)AC1 + [B2 - (Bl + B2D~)AD12]T-’ o

B~ACl N -As + B~AD12C~

T-’ [C2– (D21+D22D~)AC11 c~ i
which turns out to equal

A1-A+[B1 B2]R:ml 0
B~AC1 M -As i- BxAD12C~ (77)

T-i[C2 – (Dzl + Dz2D~)AC11 c~

In view of the equivalence between (76) and (77), and the fact that r, consists of eigenvalues of the
matrix

one can prove Z. C rz using the same argument as for XCC rp.



122 W.-Y. YAN AND J. B. MOORE

Lemma A.1”

Suppose {D(s), M(s), N(s) ] are m x n, ni x p and m x q polynomial matrices, with rank
D(s) > m – p – Ewhere c is some nonnegative integer. Then for almost all q x p constant matrices K,

rank[D(s) M(s)+ N(s)K] > m - C, V.s= C (78)

if and only if both of the following conditions hold for ail s E C:

(a) rank [D(s) M(s) N(s)] 2 m - t
(b) rank D(s)> m-p- t

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.
11.

12.
13.

14.

15.

16.

17.
18.
19,

20.

21.
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