3092

IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 42, NO. 11. NOVEMBER 1994

Deinterleaving Pulse Trains Using Discrete-Time
Stochastic Dynamic-Linear Models

John B. Moore, Fellow, IEEE, and Vikram Krishnamurthy, Member, IEEE

Abstract—Pulse trains from a number of different sources are
often received on the one communication channel. It is then of
interest to identify which pulses are from which source, based on
different source characteristics. This sorting task is termed dein-
terleaving. In this paper we next propose time-domain techniques
for deinterleaving pulse trains from a finite number of periodic
sources based on the time of arrival (TOA) and pulse energy,
if available, of the pulses received on the one communication
channel. We formulate the pulse train deinterleaving problem
as a stochastic discrete-time dynamic linear model (DLM), the
“discrete-time” variable & being associated with the kth received
puise. The time-varying parameters of the DLM depend on the se-
quence of active sources. The deinterleaving detection/estimation
task can then be done optimally via linear signal processing
using the Kalman filter (or recursive least squares when the
source periods are constant) and tree searching. The optimal
solution, however, is computationally infeasible for other than
small data lengths since the number of possible sequences grow
exponentially with data length. Here we propose and study two of
a number of possible suboptimal solutions: 1) Forward dynamic
programming with fixed look-ahead rather than total look-ahead
as required for the optimal scheme; 2) a probabilistic teacher
Kalman filtering for the detection/estimation task. In simulation
studies we show that when the number of sources is small, the
proposed suboptimal schemes yield near-optimal estimates even
in the presence of relatively large jitter noise. Also, issues of
robustness and generalizations of the approach to the case of
missing pulses, unknown source number, and non-Gaussian jitter
noise are addressed.

NOMENCLATURE
N Number of signal sources.
T, ¢ Period and phase of ith source.
tk Noise-free TOA of kth pulse.
Yk Observed TOA of kth pulse (2.2).
Ye =y yk
Sk =1 If ith source generated the kth
pulse.
X State of process; X = e; if
sk =1 (2.1).
X =X1.--, Xi
T Last time source % was active up
to and including arrival of kth
pulse (2.3).
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F(Xy),G(Xk),H(Xy) State space representation of

DLM (2.7).

DLM Dynamic linear model.

FDP Forward dynamic programming.
KF Kalman filter.

MAP Maximum a posteriori.

PT Probabilistic teacher.

RLS Recursive least squares.

TOA Time of arrival.

WGN White Gaussian noise.

1. INTRODUCTION

ULSE trains from a number of different sources are often

received on the one communication channel. 1t is then of
interest to identify which pulses are from which source, based
on the assumption that the different sources have different
characteristics. This sorting task is termed deinterleaving. It
has applications in radar detection and potential applications
in computer communications and neural systems. In this paper
we address, in the first instance, the problem of deinterleaving
time-interleaved pulse trains from a finite known number of
periodic sources. We assume that observations of the time of
arrival of the pulses are obtained in additive white Gaussian
noise without any information of the pulse amplitudes and
phases. The aim is to deinterleave the received signal, i.e.,
to detect which source is responsible for each received pulse.
From this it is trivial to estimate the periods and phases of
the periodic pulse-train sources, although the detection and
estimation tasks are intimately linked.

A number of suboptimal heuristic solutions have been
proposed for deinterleaving, e.g., histogramming [1], folding
[2]. These techniques work well when the jitter noise is small.
In addition they require prior information about the periods of
the sources to select appropriate initial conditions.

In this paper, we first formulate the pulse-train deinterleav-
ing problem as a stochastic discrete-time dynamic linear model
(DLM) (see pp. 212-215in [3], [4]). A DLM is a time-varying
linear system formulated in state space form with the state
matrix and observation matrix at each time instant belonging
to a finite set of possible values. In the deinterleaving case.
the discrete-time instants are not the pulse times of arrival but
rather integers indicating the pulses number. Thus the “time”
instant k& indicates the arrival of the kth pulse. Then the state
and observation matrices at each “time” instant &, termed here
pulse instant k, depend on which source is active to generate
the kth pulse. The state at each puise instant consists of the
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periods of the sources and the last arrival time for each of
the sources. If the pulses contain energy (e.g., amplitude)
information about the sources, this information can also be
incorporated in the state vector.

If the actual source sequence was known, e.g., when there
is only one periodic source, then optimal estimates of the
state of the DLM and hence the periods of the sources
can be obtained using a Kalman filter (KF) or using re-
cursive least-squares (RLS) parameter estimation when the
pulse periods are constant. However, in general, when there
is more than one source, because the actual source sequence
is not known, the optimal solution involves evaluating the
prediction-error cost of each source sequence and choosing
the sequence with the minimum cost. The number of possible
source sequences increases exponentially with the data length
and so this procedure is not computationally feasible for other
than short data segments with few sources (typically about
20 data points and three sources). Clearly, forward dynamic
programming, in its simplest form cannot be used effectively
to pick the optimal sequence because the costs at any stage of
the multistage decision process are dependent on the history
of the sequence (path).

In this paper we propose two suboptimal solutions to the
Jeinterleaving problem. These suboptimal solutions can be
viewed as tree-pruning algorithms that attempt to eliminate
low probability paths so as to achieve a computationally
feasible algorithm.

1) Forward dynamic programming (FDP) with fixed look-
ahead: As described above, FDP in its rudimentary form
cannot be used to obtain the optimal path sequence. We
propose a scheme that combines the optimal full tree-search
algorithm over a short segment (look-ahead interval) to reject
improbable paths and FDP to update the most likely sequences
and costs terminating at each source at each pulse arrival.
That is, over the look-ahead interval the KF prediction error
of all sequences is evaluated. For N sources with a look-
ahead of A the computational cost is O(N4%3). Typically,
for a small number of sources (N < 10), simulations show
that for satisfactory performance, the look-ahead required is
about 3, and so the computational cost is not excessive.
Of course, if the look-ahead interval is the length of the
observation sequence, then the algorithm is the optimal full
tree-search algorithm mentioned above. The tree-pruning al-
gorithms presented in [S5, ch. 2], are very similar to FDP with
look-ahead.

2) Probabilistic teacher (PT): PT algorithms have been
proposed for estimating DLM’s in [6], [10]. If the a pri-
ori probabilities of the sources (related to the periods) are
known exactly then the estimates of the periods using PT
asymptotically tend to the optimal estimates. In fact, as shown
in simulation studies for sequences of reasonable length, PT
using the correct a priori probabilities yields estimates of the
periods as good as the estimates when the true source sequence
is known. When the a priori probabilities are not known,
we compute a posteriori probabilities and use PT with these
probabilities to obtain state estimates of the DLLM. However,
PT using a posteriori probabilities is prone to error propagation
and is not robust to initial conditions.
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Finally in this paper, robustness issues are studied when
the assumptions on the models are relaxed. In particular, we
consider the following cases: Missing or supernumery (extra)
pulses; pulses with energy information. We propose modified
algorithms for dealing with these cases.

Simulation studies show that both suboptimal algorithms
yield useful estimates providing the initial state estimates are
chosen sufficiently close to the true values.

This paper is organized as follows: In Section II we for-
mulate the deinterleaving problem as a DLM and present the
optimal solution, which is computationally feasible only for
short data sequences. In Sections III and IV our two suboptimal
solutions using FDP with look-ahead and PT are described. In
Section V simulation examples are presented. In Section VI
issues of robustness, including the presence of missing and
supernumery pulses, are addressed.

II. PROBLEM FORMULATION

In this section, we first present the pulse-train signal model
in its simplest form. The estimation objectives for deinter-
leaving the pulse trains are then described in terms of this
model. We formulate the deinterleaving problem as a DLM
suitable for estimation by a KF. A parametrized DLM, which
is suitable for RLS estimation, is also given. If the pulses
contain energy information of the sources, we show that this
information can also be incorporated in the DLM. We show
how to evaluate the one-step prediction-error costs using a KF
or RLS estimator. Finally, the optimal solution, which involves
a full tree search and the prediction-error costs using either a
KF or RLS estimator, is given.

A. Signal Model

Consider N signal sources, each generating periodic pulse-
trains with period T%,i = 1.---, N. That is, T" is the period of
the uth source. We assume that the pulses contain no amplitude
or width information and consequently no information about
the pulse source. The pulses are then interleaved, i.e., summed
at the receiver in a single noisy communication channel. Let
¢* denote the time of arrival (TOA) at the receiver of the first
pulse from source ¢ in the absence of measurement noise. That
1S, ¢i is the phase of the ith source. Let {; denote the noise-
free TOA of the kth pulse at the receiver. Here k € It where
I* denotes the set of positive integers. Let s, = ¢ denote that
source 7 is active at pulse instant k. Thus s, € [1.---, N].
Let ¢;.i=1,---, N, be unit column vectors in R with 1 in
the 7th position. Let X, € {e1,---,ex} denote the state of
the process in that

Xpe=e¢ U sp=1. 2.1)
Example: Consider two periodic sources (N = 2) with
periods 7" = [11.17] and phases ¢’ = [3.4]. In Fig. 1 we show
the pulse trains from the two sources. The interleaved pulse
train is also shown. Fig. 2 shows the corresponding evolution
with pulse number of the sequence of active sources.
Let y; denote the observed TOA of the kth pulse at the

receiver. The observations y, are in fact ¢ contaminated by
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Fig. 1. Puise trains in absence of jitter.
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Fig. 2. Source sequencing.

additive jitter noise wy as follows

Yk = tr + Wk, wi ~ N[0,02)]. (2.2)

Here w; is zero-mean white Gaussian noise (WGN) with
known variance ¢2. Let Y) denote the sequence of obser-
vations till time k: Yy = (y1,---,yx). We assume that all
pulses are detected, i.c., there are no missing pulses. We also
assume that if [ pulses arrive simultaneously at the receiver,
these | pulses are detected and yr = Yr41 = <+ = Ykti-1-
This is a practical assumption if the pulses have energies that
are additive.

B. Deinterleaving Objects

1) Estimation: Obtain a sequential optimal (minimum mean-
square error) estimate of the source periods T' and phases ¢,
given the x-length observation sequence Y.

2) Detection: Detect the pulse-train sequence s given the
observation sequence Y;,1 < k < « and thereby deinterleave
the pulse train. Equivalently, obtain an optimal, say maxi-
mum a posteriori (MAP), estimate of X denoted X,LVIAP €

{er,-.en).

C. Formulation as Dynamic Linear Model

We now formulate the deinterleaving problem as a DLM
suitable for estimation by a KF.

Let X, denote the sequence (X;.---,X,). There are N*®
possible source sequences. Let S}.---, SN" denote all these
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possible source sequences, termed paths, of length k. So
SP = (s),---, %) with p € [L.N"] and X} = e; if sh =1,

Let 7; denote the last time source ¢ wasactive up to and
including the arrival of the kth pulse. (We initialize 7; by
setting it to ¢" until source ¢ becomes active). We can express
7,k € I by the following dynamical equation

1

; 7} + T, if k + lth pulse is due to source i

Ths otherwise
i =¢". (2.3)
Define the RN vectors
Tllcz(Tl/cv"'sT}iv)a T,:(Tl,"'.TN),
¢ =(¢ -, 9N) (2.4)
We can write (2.3) as
Tht1 =Tk + diag (Xp41)T
Tn=¢
Lk ZT{CXk 2.5)
where for any RY vector z = (z1.---.zn). diag(z) =

diag (z1,-++,2n) and T, 7, are defined in (2.4).
Define the “state vector” xj as

we(0) =()

Then z) can be expressed in standard state-space form as the
following DLM

Tkt1 =F(Xk+1).’L‘k + G(Xk)vk,vk ~ N[O,Q]
Yk :H’(Xk)l'k + Wi, Wi ~ N[O,R].

(2.6)

Q.7

Here v;, is an independent white-Gaussian noise process with
variance Q = 02,R = 0%, X, = ¢; if pulse k is due to

source ¢, and
_ In OnxN
F(Xp41) = <diag(Xk+1) In >
H (Xg) =(01xn Xi). G(Xg) = 0anx1. (2.8)

In (2.8), Oprxn denotes a matrix of dimension A x N with
elements zero and I is the identity matrix with dimension
N x N. For a given source sequence {Xj}, Kalman filtering
(smoothing) can be used to estimate (ry) as we shall
describe in Section II-E.

A related useful model formulation is (2.7) with

T T
Iy = 10 . r1=| ¢ 2.9)
Tk — ¢ 0
Iy Onxy Onxw
F(zYk+]) = OIVX]\' [A\' 0[\'X1\'
diag (Xp41)  In In
H(Xy) =(01xn Xp Xi)
G(Xx) =03nx1- (2.10)

For a given sequence. KF estimates of 7.¢. and 7 can be
obtained using this model.
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1} Models with Pulse Energy Information: 1f the pulses
contain energy (e.g., amplitude) information of the source
thatgenerated them, then the above DLM can be augmented
to include this information as follows: Let a; denote the
amplitude of pulses generated from the ith source. Define
« = (a1.---,an). Each observation now is a vector yy
consisting of WGN noise-corrupted measurements of the
TOA and pulse amplitude. Thus the DLM can be expressed
as (2.7 with = (T7,7.a") . G(Xk) = O3nx1

) IN ONxN 0N><N
F(Xp41) = | diag (Xk+1)  In Onxw
Onx N Onvxn  In
. 0 ; X 0
H/ X — Ix N k 1xN 211
(Xp41) <01><N O1xnv  Xj @1

where R is diagonal.
For the rest of the paper we shall tackle that harder problem
where pulse amplitude and width information are not available.

2) Stochastic Sources: It is also possible to consider more
general DLM’s in (2.7) when G(X},)vi, # 0. The driving noise
¢y allows modeling of sources that are active at random time
nstants or have randomly varying amplitudes. For example,
i model allows for time-varying or stochastically varying
periodic sources by replacing Iy in the (1, 1) block of
F(Xk+1) in (2.8) with ol for some scalar o > 0 and setting
G(X1) #0and 02 # 0. If @ > 1 then the periods are larger,
if & = 1 the periods remain constant, and if o < 1 the periods
get smaller.

D. Parameterized Dynamics Linear Model

We now present an alternative formulation of the deinter-
leaving problem as aparameterized DLM suitable for estima-
tion via RLS.

It is possible to re-express the DLM (2.7), (2.8) as follows

zkt1 = zx + diag (Xg41)

yr = Xp(zk I)('Z) + wi (2.12)

where zj, 2 vk _, diag (X;). So for a given source sequence
Xk, (2.12) can be expressed as

Yk = M(Xe)8 + vk (2.13)
where ni(Xx) = Xi(zx [I) is path dependent and corre-
sponds to the familiar regression vector. Also § = (1" ¢')".
The measurements v, are linear in the unknown parameter 6.
Thus recursive least squares (RLS) can be used to estimate the
parameter 6 in (2.13) for a given source sequence {Xj}; see

Section II-E. The RLS algorithm is independent of the noise

2

variance o;,.

E. Path-Dependent Estimators

We now show how to estimate the DLM states and
parameters using either a KF or RLS for a given source
sequence (path).
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1} Kalman Filter Estimator: For a source sequence X} =
S?, denoted as path p, let FY,G%, and H} denote the asso-
ciated DLM matrices in (2.7). Given the noisy observations
Y., let

Thoqpp = Elees Ve, S5

EZ+1|k :E{(ilik+1 - $k+11k)(1'k+1 — 1";\~+l\k‘5£} (2.14)

be the predicted state estimate and the predicted state-
covariance estimate at time k + 1 given the path p. Notice that
the covariance estimate is independent of the observations.
Denote the one-step output prediction error at time k +
1 given the path p as eg41. The KF for the DLM (2.7)
conditioned on the path p and observations Y is as follows

y4 P P PP
Tk = Frp1Teo1 T Kiei

’ -1
Shaie = Fip (2£|k—1 — X1 H [Hlf Do HE+ R}
CHIS, ) FEaGRQGE
I3 _1
Kp = Frsy,  HE(HYSE,  HY+R)
oy =y — HY 2l k€[l k] (2.15)

initialized with a priori estimates x’{w and E’;w.

2) Recursive Least Squares Estimator: Let nif (see 2.13)
denote the “regression” vector associated with the path p. Let
¢% and PP, denote, respectively, the RLS parameter estimate
of # and the covariance matrix based on path p. Thus

P = E{(6] - 6)(6} — 6|57} (2.16)
which is independent of the observations Y.

Denote the one-step output prediction error at time k +
1 given the path p as egy;. The RLS estimator for the
parameterized DLM (2.12) conditioned on the path p and
observations Y, is given by

_ 2
Oy =05+ P{ 1M1k

— P J'p oppop -1
P1f+1 =P — Pl I+ m Py Tet1)

k+1 -1

ani + P

t=2
P — P
Crs1 = Yk+1 — n£+19k’

‘P p'p_
. nk+1Pk =

kell,--.x] (217

initialized with a priori estimates 6] and P{. In a Bayesian
context, we have from Sternby [8] that if P,f — 0as bk — ox.
then 67 — 6 a.s. with (6] — )/ (6} —6) = O(I}). see also [9].
The parameterized DLM (2.12) gives us useful insight into the
persistence of excitation conditions on X required for RLS
parameter estimation: For £¥_, ;7; to have full rank we need
at least two pulses from each source. Useful suboptimal but
asymptotically optimal estimation can be achieved by working
with block-diagonal versions of Sh_ o mems.

3) Remarks: a) The RLS estimator cannot be used to esti-
mate stochastic sources or sources with time-varying periods
without introducing forgetting factors or working with the
appropriate KF formulation.



3096

b) If the measurement jitter is modeled as colored noise
using an augmented model, then an augmented KF can be
applied. If the colored-noise model has unknown parameters
then an extended Kalman filter (EKF) (see [7], pp. 296-301)
would have to be used instead of the KF. In the least-squares
case, an extended least-squares (ELS) scheme (see [7], pp.
279-286) could be used instead of RLS.

F. Prediction Error Cost for a Sequence

The noise sample-path dependent KF or RLS one-
step prediction-error cost of the path p denoted as JP is
calculated as

Jr=>"(eh)? (2.18)
k=1
where ¢p is defined in (2.15) for the KF estimator

and in (2.17) for the RLS estimator. Also E{JF} =
oy (H'(Xe) I3y HX) + R).

Of course, in the case (2.7), (2.8), the costs J} and E{J?}
are identical to those associated with the RLS parameter
estimation of the model (2.13).

G. Optimal Scheme

Given a sequence of observations Y., evaluate sample-
path one-step prediction-error costs of all N* possible source
sequences (paths) S? p =1,-.-, N". Pick the optimal (MAP)
path p* as

p" = arg mpin J? (2.19)
where J? is defined in (2.18). Thu§ we have the optimal
sequence S? with {XMAT} = (X7 1.

Of course the KF on path p* yields filtered estimates of
thestate and hence of T. By running a Kalman smoother on
the path p* we can then evaluate E{x;]Y,, S2"} and so obtain
fixed-interval smoothed estimates of the source periods T and
source phases ¢.

Similarly. the RLS estimator on path p*
estimates of the periods and phases.

yields optimal

H. Computational Cost

1) Kalman Filter: Because of the structure of Fi , and
H?, the computational cost for implementing (2.15) can be
reduced from the usual cost of 0(N3) to O(N?). This is
because computing Z“ lH”H” Zilk | requires O(N?)
multiplications: all the other computations in (2.15) require
additions. So the total computational cost if O(N**2), which
makes a full-tree search impractical for large N or .

2) RLS Estimator: The computational cost for implement-
ing (2.17) at each instant & is O(N?). So the total cost for a
full tree search is O(N"*+2).

1. Estimation of a Single Source

In the special case when N = 1. the actual source se-
quence is known: X; = e¢;.Vh. Then the KF (2.15) or
least-squares estimator (2.17) with pp = | yields optimal filtered
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estimates of the source period. Also, by using a fixed-interval
Kalman smoother, smoothed estimates of the phase can be
obtained. We illustrate the estimation of a single source in
simulation studies.

III. FORWARD DYNAMIC PROGRAMMING WITH LOOK-AHEAD

In this section we present our first suboptimal solution to
the deinterleaving problem. It combines the optimal full-tree
search algorithm proposed in Section II-D over short segments
A at each pulse £ and then use FDP to maintain the best NV
paths (in terms of prediction-error costs) prior to and including
pulse & where each path terminates at a different source. We
choose to work with the KF prediction errors. However, the
RLS prediction errors can also be used. Similar schemes have
also been used for tree pruning in [5].

Let rj denote the KF prediction-error cost of the best
sequence (i.e., the sequence with minimum error cost among
all sequences) ending in source ¢ at time & based on a A look-
ahead. Similarly ‘T;clk—l’ E;clk_l denotes the KF predicted state
and state covariance, respectively, at time k based on the best
sequence ending in source ¢ at time & with a A look-ahead.

SR S i—1 ... N
Initialize: Set 2110 L7 = 0.0 fori=1..-- N
Iterations: Given Ek|k-1v"’;§|k—1’ Thor cp}c..’i =1.---.N.
Step 1. A look ahead to eliminate unlike sequences: For
p=11to N>*!, evaluate prediction-error costs Ji | ,, y for

each A + 1 length sequence s} .---.sh_ .. Here
k+A
S ksa = Z (e)? (3.1
t=k+1
and is computed based on the observations yi. - . yr4A.

Partition these costs into N2 subsets according to whether
sp =1,84,, =j.i=1-- Nj=1.--,N.Letc,; be the
minimum cost in each partition.

Step 2. Forward dvnamic programming: Using the N2 best
costs ¢;; to Step 1, we obtain via FDP the best sequence ending
in source j at time A+ 1 foreach j.j =1L.---. N

i zlniin(:;j + 7y i,j €[1.---.N]

Orp1 = argmiin Cij + Th- (3.2)
Here, cpi 41 denotes the active source at time A& of the best

sequence ending in source j at time k + 1.

Step 3. Kaiman filter update: For j = 1.---. N run the
following N Kalman filters in parallel
T = Fle)opi !y + Kl — H'(edy gy

21‘+1/k =F(e;) (E:)‘“ - E;h*l H(gp, 1) [H(;,oi,Jrl )/E;ﬁf_‘l
. -1 . )
. H(gﬁi+l)+R] H’(wi._’_l)zklk;_l

1>F'((",)
+ Glply )QC (9] )

K = Fle) Sk H >{H<@-,:+l>/z;f;:1

Crs
991\+1 } (3.3)
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Actually, 7, F1lk and ¥ 41k are computed during Step 1, we
present Step 3 for clarity.

Step 4. Set k to k + 1 and repeat beginning at Step 1 until
E=+x—1.1k=x-1, then ¢* = arg min, rfc.

1) Backtracking: Start with X} = e;.. For k = K —
Lo, LI XE  =e,i €L, -+, N]then X = e%H.Thus
Xik=1-,K is the estimated sequence of active sources.

Again the KF estimate at time « from the optimal path X}
vields filtered estimates of 7. Also a fixed-interval Kalman
smoother on path X} yields smoothed estimates of z; and
hence T, ¢.

2) Computation Complexity: For a look-ahead of A, we
need to run Kalman filters on N2+1 sequences at each pulse
instant. Now the computational requirement for each sequence
is AO(N?) (see Section II-E). So the total complexity at each
pulse instant is AO(N213),

Choice of A: We are unable to give a comprehensive de-
sign rule for selecting A. However, in simulations studies we
show that choosing 3 < A < 5 usually yields satisfactory
estimates. It may be possible to use a similar analysis to that
in [5] to compute the probability of losing a source in terms
of A.

1V. PROBABILISTIC TEACHER

Our second suboptimal scheme assumes that the sources
are active at independent random time instants. Of course,
if the sources are known to be periodic, then the prob-
ability of the source being active is proportional to its
pulse frequency.

The probabilistic teacher (PT) makes a random decision as
to which source is active at each time instant as follows: Let
X be the estimated active source at time k using the PT. Also
let X’k denote the sequence of past decisions X 1,7, X x from
the PT based on the observations Y;. Then with yi4i. the
PT decides which source is active at time k + 1 by selecting
one source at random according to the a posteriori probability
density of the sources at time k + 1.

Even though the decision as to which source is active is
made at random, on the average the density function used
in the estimation is the same as the correct density for
learning the values of the parameters [6]. This means that
the PT scheme is statistically the same as learning without
a teacher. Convergence of the PT scheme is proved in [6]
under mild conditions. The main condition for convergence
is that the possibility of reaching the correct value start-
ing from the initial prior distribution of parameters is not
ruled out.

We now present the PT approach to deinterleaving in detail:
Let 7 denote the a priori probability vector of the sources:
= = P(X} = ¢;). Let ## denote our estimate of .

Assumption: The sources are independent, ie., P(Xiy =
(fi]Xk-—l) = P(Xk = Cl‘) = ;.

Then, given a sequence of observations Y, the PT performs
deinterleaving as follows:

Initialize: Set Yo, Z1)0.
Iterations: Given Ypgjk_1, Tkik—1-
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Step 1. Supervised learning:

1) Compute the a posteriori probability density f(Xi4+1 =
e]v|yk+1,Yk,_/\A.’k),j = 1.---.N. We do this as follows: from
Bayes rule

F(Xka1 = €;]yn+1, Vi, Xi)

Fyrs1|Xes1 = €, Vi, X)) f(Xig1 = e;|Yi, Xi)
N

> Flyesn| Xisn = € Yi, Xi) f( X1 = ei|Yi, Xi)

=1

4.1

Let us now evaluate the terms on the RHS of (4.1). Begause
the sources are assumed independent, f(Xx41 = €;{Yk, Xk )A=
f(Xk41 = €j) = #;. The density f(yx+1/Xe+1 = €5, Ye, k)
is very difficult to calculate due to the time-varying nature
of the DLM. So we approximate this density by a Gaussian
density that has the same first two moments [10] to obtain

f(yk+1|Xk+l = ejvykv‘xl\’k) ~ N[H(ej)z£+1[kvﬂi+1]a

7
V.= H(e;) Y H(e;)+ R (42)
k+1ik

Here Ii—f—llk and ZiH,j =1,.--, N are computed using the
KF equations as

e = Flej)The-1 + Ki(yx — H'(Xi)2kik-1)
1 =F(ej)(2k|k—1 — Sepe—1 H(Xi)
: [H/(Xk)zkik—lH(Xk) +R]_1
‘ H'(Xk)zklk—1>F'(€j)
+ G(X)QG (Xk)
K =F(ej)2k|k—1H(Xk)[H'(Xk)2k|k—1

. -1
-H(Xk)+R} . 4.3)
2) Set Xk+1 = e; for a randomly chosen j] €
[1,---, N], according to the a posteriori density f(Xi4: =

e;|yk+1, Ye, Xk)- )

Step 2. Kalman filter update: For Xy1 = e;, the PT state

and covariance updates are
Th+1lk = $i+1|k7 Ltk = >:7c+1|k (4.4)
where xi+l|k and E;c+llk are computed in (4.3).

Step 3. Set k to k + 1 and repeat beginning at Step 1. until
k=rx-1

1) Computational Complexity: Because z +10d
1,---,N is required to be computed, the computational
complexity is O(N?) at each instant k. Thus, compared to the
FDP with look-ahead, the PT scheme is particularly attractive
when there are 2 large number of sources.

2) Known a priori Probabilities: 1f the relative frequen-
cies of the periodic sources are accurately known (with the
actual frequencies and periods not known) then the a priori
probabilities 7 can be accurately computed from these relative
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Fig. 3. Period estimate of single source in medium and large jitter noise.

Parameters: N = 1.7 = 11, ¢ = 50. Noise variances: o2, = 9and 1 x 10%.
Initial estimate: .1"1/0 =(1.1).S; = 10° x I,

frequencies. Simulations show that in such a case, instead of

using the a posteriori probabilities in Step 1, one can use the

a priori probability estimate 7 to get excellent estimates of T'.
J 7 4 — .

Of course, zk_Hlkﬁand Ekﬂlklj =1,---. N do not have to be

K41k
the computational requirement is O(/N?) at each pulse instant.

Thus, if the statistics of the sample path (the source prob-
abilities) are known, the periods can be estimated despite the

fact that the actual source sequence is unknown.

computed, only z7 1k and are required in Step 2. So

V. SIMULATION EXAMPLES

We first consider the simplest case of a single periodic
pulse train in jitter noise. Then the performance of the two
suboptimal schemes proposed in Sections Il and IV, i.e., FDP
with look-ahead and PT are studied.

A. Estimation of a Single Source

We illustrate the optimal performance of the scheme in
Section II-F for estimating the period of a single periodic
pulse train in jitter noise.

To a computer-generated periodic pulse train 7 = 11,
¢ = 50 was added jitter noise with variances o2, = 9 and
10*, respectively. The estimation scheme was initialized with
hjp = (1.1),E,)p = 10° x I,. Fig. 3 shows the evolution of
the KF period estimate given by :441)x(1). Notice that when
o, = 3, the period estimates converge to the true value in
less than 30 pulse instants. When the jitter noise is extremely
large (0, = 100), the estimates are close to the true values
after 80 pulse instants. After 100 pulse instants, the period
estimate is 11.04.

Discussion: Besides being of independent interest, the sin-
gle source example illustrates that for general interleaved pulse
trains, if the source sequence is known, then the pulse trains
can be estimated optimally using a KF.
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Fig. 5. Average error probabilities.

B. FDP with Look-Ahead

1) Error Probabilities: Here, the same interleaved pulse
train as in the example of Section II is used: 77 = [11,17],
¢’ = [3,4]. Initial estimates were chosen as z}, =
(10,22,1,2),E1)0 = Iy, (ie., the 4 x didentity matrix). For
various jitter-noise variances o2 € [0.1,3], we ran the FDP
with look-ahead A = 1,---.5.

Let us define the error probability of a source ¢ as

pi— number of undetected pulses from source : 5.1)
e number of pulses from source ¢ ' ’

Fig. 4 shows how P! and P? depend on o2 and A. For
A = 1, i.e., FDP with no look-ahead, Source 2 s never
tracked. All pulses are detected as due to Source |. Therefore,
for A =1,P! ~0and P? = 1.

For A = 2 the algorithm tracks both sources for low jitter
noise, 02 < 0.5. For larger o2, Source 2 is not tracked and
all pulses are detected as due to Source 1, i.e., P! =~ 0 and
P? =~ 1.

For A = 3,4,5,---, both sources are tracked with no
noticeable improvement in performance for A > 3. As
expected P!, P? increase with 2.

Fig. 5 summarizes the information in Fig. 4 by showing the
average error probabilities, 3(P}! + PZ).

2) Estimation of Two Sources: An interleaved pulse train
with jitter noise was generated with parameters N = 2.
o2 = 9.0.7" = (11.80).¢' = (3.4). Initial estimates were
chosen as J?lllo = (60.96.2.1). X1}y = I5. & was taken as 3.
Fig. 6 shows the evolution of the KF estimates of 7! and T2,
which are given by w414 (1) and g4 4(2). respectively.

Notice from Fig. 6 that despite o2 being relatively large.
accurate estimates of 7 and T are obtained after about 300
pulse instants.
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Fig. 6. Evolution of period estimates using FDP with look-ahead. Param-
eterss N = 2,02 = 9.0,.7 = (11.80).¢' = (3.4). Initial estimate:
.1"]/0 = (60.96.2,1). .
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! Evolution of period estimates using FDP with look-ahead. Parame-
crst N = 3,02 = 9.0.7' = (11.30.80).¢' = (3.4.6). Initial estimate:
1o = (39.40.90.3.4.2).

3) Estimation of Three Sources: An interleaved pulse train
with jitter noise was generated with parameters N = 3,02 =
9.0, 7" = (11,30,80),¢’ = (3,4,6). Initial esitmates were
chosen as “/uo = (39,40,90,3,4,2),Z,)0 = Is. Fig. 7 shows
the evolution of the KF estimates of 71,72, T3. Again af-
ter about 300 pulse instants the estimates approach to the
true values.

4) Estimation of Eight Sources: An interleaved pulse train
with jitter noise was generated with parameters N =
o o= 1.T" = (11.19.39.53.83,113,139,160),¢' =

3.4.6,7,4.10,3.1). Initial estimates were chosen as z’llo =
(7.14,38.49.83.113.140.160.3.4,6,7,4,10.3,1), 5y =
102 x I6. Fig. 8 shows the evolution of the period estimates.
Also shown are the estimates of 75 defined in (2.4). Notice
that all eight sources are successfully tracked.

Discussion: 1) Choice of look-ahead A: In general we
found that for larger o2, to successfully track the sources. it is

160

140+ 1

120+ 1

Pulse number k

(a)

(b)

Fig. 8. [Estimation of eight sources using FDP with look-ahead. Parameters:
N =8.02 = 1.7 =(11.19.39.53.83,113.139.160).0' = (3.4.6.7.
4.10.3.1). Initial estimate: 1"1/0 =(7.14.38.49.83.113.140.160.3.4.6.

7.4.10.3.1).31/0 = 102 x Iig.

necessary to choose a larger look-ahead A. Also, the greater
the separation of the periods, the smaller the A necessary to
track the sources.

2) Effect of initial conditions: Extensive simulation studies
show that the smaller periods are less sensitive to initial
conditions. For example, in the two-source-estimation example
above, if the initial estimate of T? is larger than 100 (i.e..
20 from the true value) then Source 2 is not tracked. In
comparison, initial estimates of Source 1 could be taken up to
70 and the sources still tracked. We found that for o2 < 25,
both sources were accurately estimated.

3) Threshold effect: Simulations shows that the FDP algo-
rithm with look-ahead exhibits a threshold effect in that for
A < A,, the estimates are poor and for A > A,, the estimates
appear invariant of A and so are optimal, or at least virtually
optimal. Notice from Fig. 4 and Fig. 5 that for A > A,;, = 3,
the source-error probabilities do not improve. Also the period
estimates do not get any better. Thus in Fig. 4 and Fig. 5, the
estimates for A > 3 are “optimal.”
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Fig. 9. Evolution of period estimates using PTwith known a priori proba-
bilities. Parameters:N = 3,02, = 36.0.7" = (11.30.80).0’ = (3,4.6).
Initial estimate: .1"1/0 = (1.1.1,1,1.1).

C. Probabilistic Teacher

The performance of the PT algorithms proposed in Section
IV are now illustrated.

1} Known a posteriori Probabilities: Here we consider
the case where the probabilities of the sources, i.e.,m;,1 =
1,---,N are known accurately. We show that in such a
case using the a priori probabilities instead of a posteriori
probabilities still results in satisfactory period estimates of
the sources.

2) Estimation of Three Sources: The same 3-source
interleaved pulse train as in the three source example
in Section V-A was used. We added large jitter noise to
this chain, o2 = 36.

Assume that a priori probabilities w;, ie., T;/5; T i are
known. The PT algorithm was used with these known a priori
probabilities instead of computing a posteriori probabilities.
Initial estimates were taken as: 1'/1|0 =(1,1,1,1,1,1), Xy =
Ig. Fig. 9 shows the evolution of the period esitmates. Notice
that despite the fact that the jitter noise is large and the initial
conditions are far away from the true values, after 3000 pulse
instants the estimates are close to the true values.

3) Estimation of Five Sources: An interleaved pulse train
with jitter noise was generated with parameters N = 5,02 =
64.0,7" = (11,19,39,83,120),¢' = (3,4,6,7,4). Initial
estimates were: 2}, = (1.1,1,1,1,1,1,1,1,1), Xy, = [;0.
Fig. 10 shows the evolution of the period estimates.

Discussion: In general, the estimate of the larger periods
converged slowly. This is because there are fewer data points
from the sources with larger periods than that of the frequent
sources. We found the PT algorithm using known a priori
probabilities to be extremely robust to initial conditions, jitter
noise, and missing pulses.

4) A posteriori Probabilities: The same 3-source interleaved
pulse train as in the three-source example in Section V-A was
used. Jitter noise with o2 = 1 was added to this pulse train.

We used the PT algorithm with a posteriori probabilities
on these data. We incorrectly assumed that N = 4. The

Pulse number k

x104

Fig. 10. Evolution of period estimates using PT with known a priori
probabilities. Parameters: N = 5.02 = 64.07 = (11.19.39.83.120),

w

o' = (3.4.6.7.4). Initial estimate: .r’l/o =(1.1.1,1.1.1.1.1.1.1).

100

15 20 25 30 35 40 45 50
Pulse number k
Fig. 11. Evolution of period estimates using PT with a posteriori probabih-

ties. Parameters:N' = 3.02, = 1.0.T' = (11.30.80).0' = (3.4.6). Initial
estimate: X' = 4.0 = (LLLLLLLILE o = 10°x Lo = 1/4.

initial parameters were x;) 9 = (1,1,1,1.1.1,1.1). Yo =
108 x Iy, m; = 1/4 (so no a priori information was used).

Fig. 11 shows the evolution of the period estimates. Notice
that the estimates of two of the sources converge to 22, i.e., a
multiple of the period of the first source. The estimates of the
other two sources converge to the true values.

We found in general though that the PT scheme with a
posteriori probabilities is not robust to initial conditions. For
initial conditions far away from the true parameter values.
the Gaussian approximation for the a posteriori density is not
adequate and the scheme may not necessarily recover.

VI. ROBUSTNESS ISSUES

In Section II-A we assumed that all transmitted pulses
are detected at the receiver without error. We now con-
sider the case where if [ pulses arrive simultaneously at
the receiver, they are detected as a single pulse ;. (in-
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Fig. 12. State estimates using FDP in presence of missing pulses. Param-
eters: .\ o2 = 1.0.T" = (11.30).0' = (3.4). Initial estimate:
J"]/O = 3.4). %y, = 108 x I,.

stead of being detected as [ pulses as in Section II-A). We
cive suitable modifications to the FDP algorithm with look-
shead to cope with this example of missing pulses. We also
snow that similar modifications can be used to deal with
the case of supernumery (extra) pulses. Finally, simulation
examples are presented to illustrate the performance of the
FDP with look-ahead and PT schemes in the presence of
missing pulses.

A. FDP with Look-Ahead for Missing Pulses

Recall in the FDP with look-ahead algorithm given in Sec-
tion III, JP +1.k+A is computed in Step 1 from the observation
sequence Y. -+, Yr+a, see (3.1). To cope with the possibility
of missing pulses we essentially compare the prediction errors
assuming there was no missing pulse with that assuming
tnere is a missing pulse. Consequently Step 1 and Step 4 are
modified as follows:

Modified Step 1: For p = 1 to NA+1 evaluate prediction
eITOr COStS

Jis1k+a based on observation sequence
{yk, Y41, Yr42. Yera} (6.1

— .
Jk+1k+a Dbased on observation sequence

{ykeyk7yk+lf"'7yk+A—1} (62)

for each A+ 1 length sequence s7,---, s}, . Notice that
Ji+1.k4a are computed based on the assumption that there
are no missing pulses at time k. Also Tl:+1,k+A is computed
:n the assumption that there is a missing pulse at time k.

Partition the costs J{_; ., \ into N?subsets according to if
sh=i.sf  =ji=1- Nj=1.N Letc bethe
minimum cost in each partition.

Similarly partition the 7i+1'k+_«‘ costs into the same N2
subsets and let cz(.?) denote the minimum cost in each partition.
Based on the prediction errors, J (no missing pulse) and J (one
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missing pulse) we make a decision whether there is a missing
pulse at time k as follows:

Compare the minimum elements in cf-}) andcf?).

5]1.) < min; ; cg), decidethat there is no missing
pulse. Set ¢;; = cgjl-),‘v’z',j.

Otherwise, it is decided that there is a missing pulse at time
k. Set cij = ¢ Vi, j.

Modified Step 4: If it was decided in Step 1 that there
was no missing pulse at time k, then set k to k + 1 and
repeat beginning at Step 1. Otherwise go to Step 1 without
incrementing k.

If min; ; ¢

1) Supernumery Pulses: To cope with the possibility of
supernumery (extra) pulses, the above procedure is slightly
modified:

Step 1: Replace (6.2) with 7i+1,k+A based on observation
sequence {Yk+1,Yk+2, " s Yk+a+1}. This is computed based
on the assumption that there is an extra pulse at time k.

Step 4: If it was decided in Step 1 that there was no extra
pulse at time k then set k£ to k + 1 and repeat beginning at
Step 1. Otherwise, go to Step 1 and set k to k + 2.

2) Simulation Example: Here we compare the perfor-
mance of the standard FDP look-ahead scheme with that
proposed above in the presence of missing pulses. We
generated a noisy interleaved pulse train with parameters
N = 2,062 = 1.0,T" = (11,30),¢' = (3.4). Also,
if more than one pulse arrives simultaneously at the
receiver, it is assumed that only that pulse is received
at the particular pulse instant and that the other pulses
are missed.

We ran both the standard FDP with look-ahead and the
modified scheme proposed above on these data. We choose
A = 3. Initial estimates used were x/uo = (4,27.3,4). 340 =
108 x I;. Fig. 12 shows the evaluation of 7, where 7y
is defined in (2.4). Notice that the standard scheme loses
track of the second source after 12 pulses. The modified
scheme satisfactorily tracks both sources. Also. the period
estimates converged to 10.01 and 29.98, which are close to
the true values.

B. Probabilistic Teacher for Missing Pulses

The PT scheme proposed in Section IV using known a priori
probabilities of the sources is extremely robust to missing
pulses. Recall that PT is based on the assumption that the
source are random and so there is no necessity of the source
being periodic. Consequently, missing pulses do not affect the
performance of the PT scheme.

A noisy interleaved pulse train was generated with param-
eterss N = 3,02 = 36.0,7 = (11.30.80).¢' = (3.4.6).
Also, if more than one pulse arrives simultaneously at the
receiver, it is assumed that only that pulse is received at
the particular pulse instant. The PT algorithm with known a
priori probabilities was run on the data with initial estimates:
x’1|0 = (1.1.1,1.1,1), 819 = 10° x Jg. Fig. 13 shows the
evolution of the period estimates. Notice that the PT scheme
1s extremely robust to missing pulses.
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Fig. 13. Period estimates using PT with known a priori
probabilities in presence of  missing pulses. Parameters:
N = 302 36.0.7 = (11.30.80).0' = (3.4.6). Initial

estimate: ¢} ;o = (1.1.1.1.1.1). S, /g = 10° x I,

C. Other Robustness Issues

1) Filtered pulses: In some practical examples, the received
signal from each source can be modeled as the response
of a linear system to a periodic pulse train. If this linear
system for each source is stable and minimum phase, then
preprocessing by an inverse filter could be used to reconstruct
the pulse train. Otherwise, approximate reconstruction and
pulse-detection techniques could be used.

2) Non-Gaussian noise: The KF is the minimum-variance
filter and so will still yield useful results when the jitter noise
is non-Gaussian.

3) Change in the number of sources: A source dropout
is said to occur if a source stops generating pulses. In the
FDP algorithm with look-ahead, source dropout can be
detected since this leads to ramping prediction errors. If the
prediction errors exceed a particular threshold, then detection
theory can be used to obtain the probability of a detected
dropout. Also, below the threshold, detection theory gives
us a probability of missed dropout. The algorithm could
be reset once a dropout is detected. That is. the associated
state covariance could be increased.

If a new source suddenly were to become active, again this
could be detected using prediction errors and detection theory
and the algorithm reset to include an additional source.

D. Other Approaches

We have addressed two suboptimal techniques for estimat-
ing DLM’s. Other techniques such as probabilistic editor,
quasi-Bayes schemes ([3], pp. 214-215) are also used for esti-
mating DLM’s and may yield useful results in deinterleaving.
If the source sequence is modeled as a N-state Markov chain,
the observations can be formulated as a dynamic linear system
driven by the Markov chain. It may be possible to use results
from the theory of hidden-Markov-model estimation to achieve
deinterleaving. This is one current area of research.
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VII. CONCLUSION

We have formulated the pulse train deinterleaving problem
as a discrete-time stochastic dynamic linear model (DLM). The
DLM allows the derivation of an optimal solution via standard
techniques, although this is computationally expensive. We
then proposed two suboptimal solutions that yield useful
results. Simulations show that these suboptimal schemes are
virtually optimal when the initial estimates of the periods and
phases are reasonably close to the true values.
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