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SUMMARY

In this paper the techniques of extended Kalman filtering (EKF) and hidden Markov mode! (HMM) signal
processing are combined to adaptively demodulate quadrature amplitude-modulated (QAM) signals in
noisy fading channels. This HMM approach is particularly suited to signals for which the message
symbols are not equally probable, as is the case with many types of coded signals. Our approach is to
formulate the QAM signal by a finite-discrete state process and represent the channel model by a
continuous state process. The mixed state model is then reformulated in terms of conditional information
states using HMM theory. This leads to models which are amenable to standard EKF or related
techniques. A sophisticated EKF scheme with an HMM subfilter is discussed, as well as more practical
schemes coupling discrete state HMM filters and continuous state Kalman filters. The case of white noise
is considered, as well as generalizations to cope with coloured noise. Simulation studies demonstrate the
improvement gained over standard schemes.
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1. INTRODUCTION

The problem of noisy fading channels can be the limiting factor in certain communications
systems, particularly with multipath, Raleigh fading situations arising from mobile receivers
or transmitters. Demodulation of signals under these noisy fading conditions requires adaptive
estimation of the transmission channel characteristics. Of course, traditional matched filters
(MFs), phase-locked loops (PLLs) and automatic gain controllers (AGCS) can be effective in
the digital case, but they are known to be far from optimal, particularly when dealing with
signals which do not have equally probable message symbols. Optimal schemes, on the other
hand, are inherently infinite-dimensional and are thus impractical. Also, they may not be
robust to modelling errors. The challenge is to devise suboptimal robust demodulation schemes
to cope with fading signals, particularly in the case where the message symbols are not equally
probable.

In tackling demodulation using recent techniques in stochastic and adaptive systems, it is
worth recalling the role of the Kalman filter (KF) and extended Kalman filter (EKF). The EKF
turns out to be a PLL in disguise. Examples of the use of the EKF are given in Reference 1
(target tracking (p. 53), frequency modulation (p. 200)). Schemes have recently been developed
for continuous phase-moduiated (CPM) signals in fading channels, 2 coupling Kalman filtering
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techniques with maximum likelihood sequence estimation. Our approach for quadrature
amplitude-modulated (QAM) signals is to use EKF techniques coupled with optimal hidden
Markov model (HMM) filtering. We also present more practical schemes coupling Kalman
filtering and HMM filtering.

The Kalman filter is the optimal linear filter for linear finite-dimensional stochastic systems.
The EKF is the KF when applied to non-linear systems and is also finite-dimensional. As with
the KF, the HMM filter is a finite-dimensional optimal filter where the HMM has states
belonging to a finite-discrete set. The term finite-discrete refers to the fact that the allowable
states are discrete and there is a finite number of them, To date, HMM filters have been widely
applied in areas such as speech processing and biological signal processing. 3’4 These
applications have involved off-line processing; however, the non-linear nature of the HMM
approach and the discrete state nature of the formulations seem to suggest application to
problems of digital communications. An important aspect of this paper is to apply on-line
processing to the HMM formulation.

A typical communications channel such as a mobile telephone channel can introduce
amplitude gain and phase shifts to the transmitted signal. The traditional signal model
formulation for modulated digital signals leads to a non-linear task for estimating the signal
and channel distortions. This is commonly performed using a matched filter (MF) for state
estimation and an analogue PLL operating in tandem with an AGC for channel estimation,
as discussed in Reference 5 (Chaps 5 and 6). Recent approaches to the fading problem for
QAM signals have involved the use of pilot symbol-aided schemes’ and alterations to the QAM
signal constellation. 7 These deal mainly with the transmitter in an effort to improve the bit
error rates (BERs). Our approach is to apply hidden Markov modelling to the signal to
incorporate symbol-to-symbol dependence and as such can be implemented in tandem with
the above techniques. It should, however, be pointed out that the HMM schemes do not
require any modification to the transmitter.

In this paper we couple KF/EKF techniques and HMM signal processing in an adaptive
HMM approach to estimate both the signal and the time-varying transmission channel
parameters on-line. We propose such adaptive HMM schemes for demodulation of QAM
signals with fading channels and in high noise. The HMM filter is ideal for signals which do
not have equally probable (or i .i.d. ) message symbols, as is the case with coded signals for
example. Coding techniques such as convolutional coding (Reference 8, p. 441) produce signals
which are not i.i. d. and as such display Markov properties. Also, recent investigations in trellis
coding (reported in Reference 9) seem to suggest that a similar situation arises for trellis-coded
signals. Actually, in the uncoded case of equally probable message symbols the HMM filter
with a maximum a priori estimate is in fact identical to the matched filter, which is known to
be optimal for non-fading i.i.d. digital signals.

In this paper our technical approach is to work with the signal in a discrete set and associate
with this signaI a discrete state vector Xk. ~k is an indicator function for the signal and in
this case each of the allowable values of ~k represents one of the QAM signal constellation
points. Here xk belongs to a discrete set of unit vectors. The states xk are assumed to be first-
order Markov with known transition probability matrix A and state values Z. This is a
reasonable assumption given that the coding scheme is known. Associated with the channel are
time-varying parameters (gain, phase shift and noise colour) which are modelled as states Xk
in a continuous range xk 6 R“. The channel parameters arise from a known linear time-
invariant stochastic system. State space models are formulated involving a mixture of the states
xk and Xk and are termed mixed state modek. These are reformulated using HMM filtering
theory to achieve a non-linear representation with a state vector consisting of (Xk and Xk, where



ADAPTIVE DEMODULATION OF QAM SIGNALS 459

OXis an unnormalized information state representing a discrete state conditional probability
density for X/c. These reformulated models are termed conditional information state models.
Next the EKF algorithm or some derivative scheme can be applied for state estimation of this
innovations representation, thereby achieving both signal and channel estimation. The
resulting adaptive HMM algorithms appear either as coupled KF and HMM filters or as a more
sophisticated EKF with an HMM filter as a sub filter.

In addition to reformulating the QAM signal representation, we employ a non-standard
channel representation. Rather than work directly with a linear stochastic model for channel
gain and phase shift, with its intuitive appeal and considerable precedence, we propose to
formulate the channel in terms of a linear stochastic model with the state being the real and
imaginary components of the channel. Working in rectangular co-ordinates instead of polar
co-ordinates allows us to write the models in a familiar state space form driven by Gaussian
noise. This facilitates the application of the EKF scheme, which approaches optimality in the
low noise case. Unfortunately the rectangular co-ordinate representation introduces coupling
between the two noise sources in the model. This coupling is, however, well understood.

When the channels are time-invariant (non-fading), the EKF and derivative schemes
specialize to the recursive prediction error (RPE) approach for HMM identification and
estimation, the subject of our earlier work. 10There are quite solid theoretical foundations in
the RPE case, giving confidence of asymptotic optimalit y with quadratic convergence rates.
With known channels (i.e. in the asymptotic case) the HMM is known to achieve optimal
performance. When the channels are fading, however, we are in general within the context of
EKF theory, which is less developed. We do not therefore seek strong theoretical convergence
results here, save that we expect from known theory that in the low-noise case the EKF is near-
optimal after initial transients.

This paper is organized as follows. In Section 2 we formulate the QAM signal model in the
HMM framework. In Section 3 we present the HMM/EKF and HMM/KF adaptive algorithms.
Coloured noise is considered in Section 4. In Section 5 simulation examples are given which
demonstrate good tracking ability for fast-changing channels, Finally, our conclusions are
presented in Section 6.

2. QUADRATURE AMPLITUDE MODULATION (QAM)

Digital information grouped into fixed length bit strings is frequently represented by suitably
spaced points in the complex plane. Quadrature amplitude modulation (QAM) transmission
schemes are based on such a representation. In this section we first present the usual QAM
signal model and then propose a reformulation so as to apply hidden Markov model (HMM)
and extended Kalman filtering (EKF) methods.

2.1. Signal mode[

Let mk be a complex discrete time signal (k t ~+) where for each k

mk~z= {,?(’),.. ..Z( 2’)], Z(occ, NC ~+ (1)

We also define the vector

Z=z R+jzl=(z(’), ..,, z(2’))TE~2’ (2)

For digital transmission each element of Z is used to represent a string of IV bits. In the case
of QAM each of these complex elements z ‘i) is chosen so as to generate a rectangular grid of
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equally spaced points in the complex space C. A 16-state (IV= 4) QAM signal constellation is
illustrated in Figure 5. We now note that at any time k the message mk <Z is complex-valued
and can be represented in either polar or rectangular form, in obvious notation, as

mk=pk exp(j~k)=m~+jfni (3)

The real and imaginary components of mk can then be used to generate piecewise constant time
signals m(t) = mk for t= [t/c,tk+I),where tkarises from regular sampling. The messages are
then modulated and transmitted in quadrature as a QAM bandpass signal

s(t) =AC[m R(t)cos(2rft + 0) + m1(t)sin(27rft + 0)] (4)

where the carrier amplitude AC, frequency f and phase O are constant. This transmission
scheme is termed QAM because the signal is quadrature in nature, where the real and
imaginary components of the message are transmitted as two amplitudes which modtdate
quadrature and in-phase carriers.

2.2. Channel model

The QAM signal is passed through a channel which can cause amplitude and phase shifts,
as for example in fading channels owing to multiple transmission paths. The channel can be
modelled by a multiplicative disturbance g(t), resulting in a discrete time baseband disturbance

gk= )fk exp(j~k)=g~+jg~ (5)

which introduces time-varying gain and phase changes to the signal. The time variations in gk
are realistically assumed to be slow in comparison with the message rate.

Channel state — Cartesian co-ordinate representation. In this co-ordinate system we work
with the vector xk associated with the real and imaginary parts of gk:

(6)

Channel state —polar co-ordinate representation. An alternative to Cartesian co-ordinates in
the complex plane is the more traditional polar co-ordinate representation

()x; = ‘k

bk
(7)

As mentioned previously, the Cartesian co-ordinates allow the observations to be written in
a form which enables linear Kalman filtering to be applied, while the polar co-ordinates require
the non-linear suboptimal PLL for phase estimation. The practical benefits of each approach
are discussed later in Section 5.

Assumption on channel-fading characteristics. Consider that the dynamics of xk from (6)
are given by

Xk+l=FXk+Vk+l, Uk - MO, (&] (8)

for some known F (usually with }(F) <1, where Xindicates eigenvalues, to avoid unbounded
xk and typically with F= fZ for some scalar O< f < 1). In polar co-ordinates (7) a
corresponding model is

Xk+I = fxXk + vi+ I, where u~ is Rayleigh distributed [~X,u;]

@k+l‘f@@k+ u~+l,
(9)

where u~ is uniformly distributed over [0, 27r)

and typically O< fx < 1 and O< f~ < 1,
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For both channel models we assume that the variations associated with the magnitude of the
channel gain x and the phase shift @ are independent, with variances given by u; and u;
respectively. It follows from Reference 1 (p. 53) that the covariance matrix of the Cartesian
channel model noise vector vk is given by

For the remainder of this paper we will work with the Cartesian channel model, since it allows
us to write the system in the familiar state space form.

2.3. Observation model

The baseband output of the channel, corrupted by additive noise wk, is therefore given by

Yk = gkrnk + Wk (11)

Assume that wk< C has i.i.d. real and imaginary parts w} and w~ respectively with zero mean
and Gaussian, so that wE, w~ - NIO, u;].

In vector notation the observations have the form

(12)

2.4. State space signal model

Consider the following assumption

Assumption on message signal

on the message sequence.

mk is a first-order homogeneous Markov process (13)

Remark. This assumption enables us to consider the signal in a Markov framework and thus
allows Markov filtering techniques to be applied. It is a reasonable assumption on the signal,
given that error-correcting coding has been employed in transmission. Coding techniques such
as convolutional coding produce signals which do not have equally probable (or i.i.d. ) message
symbols and as such display Markov properties. Of course i.i.d. signals can be considered in
this framework too, since a Markov chain with a transition probability matrix which has all
elements the same gives rise to an i.i. d. process.

Let us define the vector xk to be an indicator function associated with mk. Thus the state
space of Xk, without loss of generality, can be identified with the set of unit vectors
S= [el, e2, ..., eZN},where e,=(O,..., 0,1, O,..., O)T< R2Nwith 1 in the ith position, so that

mk = ZTXk. (14)

where z is as defined above. Under assumption (13) the transition probabilityy matrix associated
with mk, in terms of Xk, is

A = (aij), 1< i, j < 2~, where aij = ~(xk+l = ej I ~k = ei)

so that

~[xk+l {Xk] =Xt Txk

where E [ o] denotes the expectation operator. Of course aij >0 and Z?! Ia,j = 1 for each
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i. We also denote (t%, I c ~+ ] the complete filtration generated by X, i.e. for any k C~+, c%k
is the complete u-field generated by Xk, f < k.

Lemma 1

The dynamics of xk are given by the state equation

xk+l=/t Txk+&fk+l (15)

where kfk+, is an (A, .$k) martingale increment in that E[A4k+ 1 I @k]= O.

Proof”

~[kfk+, I ,~k]‘~[xk+l –i’iTX/(lX/c, A] ‘~[xk+l lxk, A] –fiTXk=o ■

As noted previously, in the case of quadrature modulated signals the states represented by
xk are each characterized by a complex value Z(i) corresponding to the unit vector ei ES.
These are termed the state values of the Markov chain.

The observation process from (12) for the Cartesian channel model can be expressed in terms
of the state xk as

()(Y: =(Z’)’xk

Yi (Z’ )Txk ‘Ww)+(:)

or equivalently, with the appropriate definition of h (. ), as

(16)

Yk = ~(xk)xk + W’k, Wk - N[(), Rk] (17)

Note that E[w~+, I ,qkv ?/k] = Oand E[wj+ 1I ?%V ?/k] = O, where ?4 is the u-field generated
by Yk, k < /. We also define yk ~ (yO .. . Yk). It is usual to assume that WF and wi are
independent so that the covariance matrix associated with the measurement noise vector wk has
the form

[1& = ‘iR o

0 ah
(18)

It is now readily seen that

E[~k+l [ .~kv ~k] =0 (19)

In order to demonstrate the attractiveness of the Cartesian channel model, we now use the
properties of the indicator function xk to express the observations (17) in a linear form with
respect to xk and Xk:

Yk = h(x/OXk + Wk

= [h(q)xk, h(ez)xk, . . ..h(E?2N)Xk]xk + Wk

(20)=HT[Z2N@xk]xk+w’k

where I#T = [h(eI), .. .. h (eZ”)] and ‘@‘ denotes a Kronecker product. The observations (20)
are now in a form which is bilinear in xk and Xk.

We shall define the vector of parametrized probability densities (which we will loosely call
symbol probabilities) as bk = (bk (i)) for bk (i) 9 P [Yk \Xk = ei, xk ], where

1
bk(i) = —

(

(YF - [(ZR)TeigE - (Z’)Tf?ig~] ]2 _ (YL - [( Z1)Tf2igF + (ZR)Tf?igk] ] 2
z exp –

27row 20?’ 2(J: )

(21)
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Because w} and w! are white, the independence property E [yk IXk. I = ei, @k-z, %k- I] =
E[yk IXk. I = ei ] holds and is essential for formulating the problem as an HMM,
remembering, however, that it is an HMM which is parametrized by the fading channel model
parameter Xk.

To summarize, we now have the following lemma.

Lemma 2

Under assumption (13) and (8) the QAM signal model (1)–(11 ) has the following state space
representations in terms of the 2 ~-dimensional finite-discrete state message indicator function
xk :

E ’22)
with xk the continuous state associated with the fading channel characteristics. ■

The system is now in a bilinear form with respect to Xk and Xk.

Remarks

1. If xk is known, then the model specializes to an HMM denoted A= (A, Z, ~, u;, Xk),
where ~ = (~i ), defined from ~i = P(X1 = ei ), is the initial state probability vector for
the Markov chain.

2. If xk is known, then the model specializes to a linear state space model.
3. By way of comparison, for the polar co-ordinate channel representation (7) the

observation process can only be expressed in terms of a linear operator on the channel
gain with a non-linear operator on the phase. Thus if Xk and @k, or Xk and ~k, are
known, then the model specializes to a linear state space model, but not if Xk and xk
are known and @’kis unknown.

4. In Figure 6 we present the output constellation, with signal-to-noise ratio SNR = 6 dB,
from a channel with sinusoidal characteristics given by

x(t) = 1 + 0.5 sin(37rt/1000), @(t) = o“757r cos(Io7rf/looo)

The plots show 1000 data points at each of the constellation points for times k = 200 and
450 and give an indication of how the channel affects the QAM signal constellation.

2.5. Conditional information state signal model

Let ~k 1.? denote the conditional filtered state estimate of xk at time k given the channel
parameters ~k = {X(J,. . .. xk ), i.e.

Let us define ~ to be the column vector containing all ones and the ‘forward’ variable w 1w
is such that the ith element 0!/(1J(i) ~ P( yk, Xk = ei I c%k). Observe that ~k 1M can be
expressed in terms of ~k 1.1 by
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Here CYk1,z is conveniently computed using the ‘forward’ recursion3

Qk+ll .$”=B(yk+l, Xk+l)ATcikl./ (25)

where B(y~+l, Xk+l)=diag(bk+ l(l), . .. . bk+1(2~)) and bk(i) is as defined in (21).
We use the term ‘information state’ for CYk1.Z since it provides information about the state

Xk. We now seek to express the observations yk in terms of the unnormalized conditional
information state ak I .2.

Lemma 3

The conditional measurements yk 1.~ are defined by

ykl.4’= ~T[Z2v@ xk]<~k- 11.?’> ~)-lAT~k-ll.#’+~kl.l’ (26)

where W 1,1 is as defined in (25) and nk I w iS an (%, %.1 ) martingale increment. In
addition, the covariance matrix of the conditional noise term nk 1.z-is given by

R. = cr~I+ HT[z2”@xk] (~~1 ./ ‘~kl .wf~l .z) [h”8xk] ‘H (27)

where ~P is the matrix which has diagonal elements which are the elements of ~k.

Proof. Following standard arguments, since CYk1.Z is measurable with respect to ( .%k, Wk ],
~[WE+I I :~k] =(), ~[Wj+I I :~k] ‘o and E[A’’fk+l I ~k] ‘o, then

~[nkl.41 %c, ?/k-l] = ~[~T[12v ~xk]~k+w’k

l)-lATuk-ll.#l=%k, ~k-1]–HT[Z2N @Xk](ak- 11./_

=ffT[12~ @xk] (AT~k-ll.# –(ak_il .Z; ~)-lATak-ll.z)=o

Also,

[[
R.= E[n~l ~k, f~k-1] =E wk+HTIIN @xk.

=E[w~l ~~, :~k-1]

( )1

tiTci/(.l 2
‘k–(CY-@

[ i

i%Ta!k-l)( )fiTck!k-l‘[12N8X,

+ E HT[12V @xk] Xk– ~ak_l,l) Xk –
(C2k-l, !)

%k, ~k-1 1
]THl(%ik,%k-1

1

——0;1+ HTIIz’ @Xk]E[(xk ‘~kl ,J”)(xk ‘h .#’)T I ~k, ~k-1] [12” @xk] ‘H

= u;I+HTIIj~ ~xk](~~l ,l-~kl ,//~11 .?) [12” @Xk] ‘H ■

In summary we have the following lemma.

Lemma 4

The state space representation (22) can be reformulated to give the following conditional

information state signal models with states (I%1.~:

ak+i\.r =B(Yk+l, Xk+l)AT~kl .x’

Xk+l = FXk~ ok

Yklw=HT[z2N @xk](~k- ll.z’,l)-lAT~k - 11.w+nklx

(28)
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Remarks

1.

2.

When F = Z and u = O, then xk is constant. Under these conditions the problem of
channel state estimation reduces to one of parameter identification, and recursive
prediction error techniques can be used as in Reference 10. However, an EKF or some
derivative scheme is required for parameter tracking when xk is not constant, as in
Section 3.
By way of comparison, in the reformulated information state signal model for the polar
coordinate channel representation (for which the observations are non-linear in terms of
the channel phase parameter) it makes sense to consider the case where ok is restricted
to a discrete set, or approximated as such, and is assumed to be Markov with indicator
function Xt 6 (el, e2, .. .]. Then a conditional filtered estimate of Xl can be generated by
the same means as used for the conditional filtered estimate of Xk, (24). The
reformulated information state signal model for the polar channel model case is now
given, in obvious notation, by

ak+l=Bp(.Yk+,, Xk+,, at+l)ATwc

af+l=B”(~k+ l, Xk+l, cik+l)(Ao)Taf
(29)

Xk+l=fx%k+ui

Yk=~~((~k- l,l)-lAT~k- l)(Xk)~~((~t- l,~)-l(A@)T~~- l)+~k

where Z-1$= [hp(el) . . . hp(ezN)] , H; = [h$(el) . .. ho(e~a)] , and

hP(” ) = (2P, . )exp(j(z7,“ )), ho(”) =exp(j(.z+, “)) (30)

Here z+ is the vector containing the discrete values of 0, ZPand ZT are vectors containing
the magnitudes and phases respectively of the QAM signal constellation, L+ is the
number of discrete values of d and Xt EW= (cl, . ... eL@ ) is the indicator function
associated with ok so that when @k= Z}i), Xf = ei.

Also,

Bp(yk+l,xk+l,at+l)=diag(b~+ l(l), ....~i+l(2N))
for

b~+l(i) S bp(-Yk+ l,ei, xk+l, d+l),

where

b:(i) = ~ exp
(

- wk - h(ei)(Jfk)~Jd’12
21row 21si )

and

B@(yk+l, ak+l, xk+l)=diag(bi+ l(l), .. .. bt+l(L@))

for

b~+l(i) ~ b“(~k+l, ei, Cxk+l, Xk+l),

where

M’(i) = & exp
(

- ~k ‘~hk(Xk)&(ei)]2
2(7; )

(31)

(32)

The key property which facilitates estimator construction is that now, with the discrete
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state assumption on @in this polar co-ordinate system for the channel, the measurements
are trilinear in Xk, x and X~. However, as was shown before, in the case of the Cartesian
representation of the channel, (28), the discrete state assumption on @is not necessary
to achieve linearity in the measurements.

3. ADAPTIVE HMM ALGORITHMS

Two adaptive HMM schemes are presented here. The first is referred to as the HMM/EKF
scheme and is a full non-linear scheme for the information state signal model (28) with the
augmented vector (CYk,xk)T. The second scheme is referred to as the HMM/KF scheme and
consists of a simplification assumption which results in a KF for channel estimation, coupled
with an HMM filter for signal state estimation.

Adaptive HMM algorithm with EKF

Let ~k = (Cik, Xk )T. Then (28) can be written as

xk+l=fk(~k )+gk(~k)uk—

Yk = hk(~k) + nk
(33)

where the non-linear functions are given by

‘k(~k)=r(x?:Tak)o ‘k(zk)=h(ukk-’)xkgk (~k ) =

Given that the non-linearities are smooth functions, they can be expanded in Taylor series
about the conditional means ~k1k and -&lk-1. With an assumption that higher-order terms—
can be ignored, as will be the–case when ,fk1~ is close to ~k, (33) can be written as—

where

Fk = afkld~k, Gk = 8gk/8&k, Hk = 8hk/&k, uk =fk(~k/k) – Fk&k~k and Zk = (jk\k _ 1) – HI~klk -1.
The EKF equations for (33) are the KF equations for (34), now summarized:

jklk=<k lk-l+Kk [yk–hk(jklk - 1)] (35)

$k+llk=fk(~klk) (36)

Kk=~kl& ]hk(H:~klk- iHk+~k)-l (37)

~klk=~klk- l–~klk-lHk(H:~klk - lHk+~k)-lH~~klk-l (38)

~k+ llk=Fk~klkFt + GkQkGt (39)

where (37) gives the Kalman gain and (38) and (39) are the Riccati equations. Figure 1 shows
a block diagram for this adaptive HMM scheme when switch 1 is closed and switch 2 is in the
top position. If switch 1 were in the open position, then the HMM/KF scheme given below
would result. Further assumptions could be made for simplification if the maximum a priori
estimate of CYkwere used, indicated by having switch 2 in the lower position. This approach
would be similar to using the matched filter, where only the most likely message symbol is used
and not the full information state.
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Figure 1. EKF/HMM scheme for adaptive HMM filter

Remarks

1. This HMM/EKF scheme suffers from the fact that through (35) the update for ~k requires
a further projection to ensure positivity of each element. This adds undesired non-
linearities to the model and provides further incentive to consider the HMM/KF scheme
presented below, where this problem does not arise.

2. The filter here is in fact a smoothed fiber in the sense that fk(~k) is actuallY fk+ 1(~k)
owing to the dependence of B (Xk) on yk +1. This again provides incentive to consider
the HMM/KF scheme presented–below, where this problem does not arise.

HMM/KF schemes for adaptive HA41vljilter

This scheme can be viewed as a derivative of the HMM/EKF scheme above by setting the
Kalman gain term associated with the &!kupdate to zero. The rationale for this is that in the
case where the channel parameters are constant, this term in fact does go to zero
asymptotically. Indeed, setting it to zero under constant parameter conditions results in the
HMM/RPE scheme of Reference 10 for which there are strong theoretical foundations. If the
channel is only slowly varying, then it is expected that the components of the Kalman gain
associated with the ~k update will be asymptotically small. There is then a temptation and
some rationale to neglect these terms for the simplicity of the resulting scheme which we now
describe in more detail. The resulting scheme can be viewed as a coupled conditional HMM
filter together with a conditional Kalman filter as follows.

The HMM estimator for the signal information state CYkconditioned on the channel estimate
sequence {,fk) is given by

. ,..uk+llii =B(yk+l, Xk)ATakljk_l (40)

xkl&,=(uklfk-,,_l)-lcYklfk_, (41)

The Kalman filter equations for the channel parameter xk conditioned on the indicator state
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eSt~I_IIakS fk are

iklk=ikl k-l+ ~k(~k–~:iklk - 1) (42)

i/r+ llk=Ffklk (43)

Kk=~k]k- lHk(H:~klk -l~k+~k)-l (44)

~klk=~klk- ]–~klk- l(~:~klk-l~k +Rk)-l~:~k{k-l (45)

(46)~k+i\k=F~klkFT+Qk

where

H:= i3(HT[& @xk]~k)/~xk (47)

R is the covariance matrix of the noise on the observations w given in (18), Q is the covariance
matrix of v given in (10) and E is the covariance matrix of the channel parameter estimate f
(x is defined in (6)). Figure 2 shows the scheme in block form.

A further suboptimal KF/HMM scheme can be generated by using the state space signal
model (22) and estimating the KF conditioned on a maximum a priori probability estimate
XFAP. Here

~,$ = 6’(HT[ZZV@ xk]fpAp)/dxk

Figure 3 shows this scheme in block form. In fact, hybrid versions can be derived
the small-valued, i.e. low-probability, elements of ~k to zero and renormalizing.

W state estimate

‘k

conditioned on fik

Figure 2, EKF/HMM adaptive HMM scheme

MAP operator

‘k

conditioned on ~~~

(48)

by setting

Figure 3. KF/HMM adaptive HMM scheme with MAP approximation
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4. COLOURED NOISE CASE

In the coloured noise case it is reasonable to work with the following signal model involving
a moving average of white noise:

yk=h(”)xk +Wk+clWk.l +o. -+ CnWk. n (49)

The task of estimating the noise coefficients ci, is now carried out by augmenting the state
vector Xkby a vector x~= (wk–1, wk–z, .. .)T. We give an example for the case n = 3. The state
Vt?CtOr X: iS the VeCtOrOf nOiSe VdUeS, X: = (Wk -1, Wk -2, Wk _ 3 )T, and the VeCtOrOf nOiSe
coefficients is O= (cl, c2, C3)T.

()~k= [h(”) OT] ‘k + Wk
x;

(50)

(51)

The ascribed estimation task can now be solved with an EKF or derivative KF where the state
vector is now the augmented vector (w, Xk,x:). If Ois unknown, it can be adaptively estimated
using standard RPE/EKF ideas.

5. IMPLEMENTATION CONSIDERATIONS AND SIMULATIONS

In this section we present results which demonstrate the ability of the adaptive KF/HMM
scheme to demodulate QAM signals in noisy fading channels. For comparisons we use the
standard MF/AGC/ PLL scheme which is diagrammatically represented in Figure 4 (similar to
the LMS algorithm presented in Reference 12). The signal we consider is a 16-state QAM signal
(Figures 5 and 6) with a strong dependence from one message symbol to the next (as is the case

‘k

conditioned on X

conditioned on Xk , ‘k

Figure 4. MF/AGC/PLL standard scheme
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with some convolutional codes or if oversampling were to be used). The channel characteristics
are given by a Iowpass-filtered (LPF) white Gaussian noise stochastic process. The variance of
the Gaussian process is 1 for amplitude variations and 5 for phase variations. The bandwidth
of the LPF is WCtimes the bit rate (W. is different in each example). An example of a real-
valued channel is shown in Figure 7 for WC= O. 1. These variations are very fast in the case
of FAX and modem applications but are more reasonable in applications involving mobile
communications and indoor communication channels. 13’14

Two main points can be gained from the foIlowing examples. The first is that under these
non-equally probable message symbol conditions the HMM filter is a major improvement over
the MF. The second point is that the Cartesian and polar co-ordinate systems can each have
their advantages, depending on the channel conditions. Computationally the MF is of course
less taxing, but for mobile communications under the conditions (16-QAM, 1902 kBs - 1,
$ = 1800 MHz, car traveling at 100 km h-’ and with one channel update every 120 samples)
the processing power required for the HMM/KF approach is only 10 MFlops, which is
reasonable with current DSP technology. Therefore the approach presented in this paper is
computationally feasible and is seen to outperform the traditional scheme for the case of non-
equally probable messages while being identical to the traditional scheme in the equally
probable message case.
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Example 1

In this example we demonstrate the ability of the HMM/KF adaptive algorithm to
demodulate a 16-QAM signal in the presence of a real-valued stochastic channel. The signal
parameter values are aii= 0“95, (Z(i))R = fO” O1976 t 0.03952, (z(i)) I = fO.01976 f
0“03952. The results for this example are displayed in Figure 8, where signals of length 50000
data points have been used to generate bit error rate (BER) values. The simulations assume
that 90° phase-invariant coding is used. A comparison is given with the conventional
MF/AGC/PLL system (of course the PLL is not required since the channel is real-valued). It
can be seen that our HMM/KF scheme provides distinct advantages over the traditional
scheme. As noted before, the case of WC= 001 is one of severe fading and it is seen that even
under such conditions the HMM/KF scheme performs well.

Example 2

In this example we demonstrate that the HMM approach is identical to the MF approach
in the case of equally probable message signals. The discrepancies which can be seen between

1 I
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Figure 7. Stochastic channel gain, WC= O. 1
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Figure 8. BER versus SNR for real-valued channels
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the two schemes in the results of Figure 9 are due to our Cartesian approach compared with
the polar approach of the traditional scheme. It seems that under these channel conditions in
the high-SNR case the polar scheme is better than the Cartesian approach. Such a comparison
is the subject of the next two examples.

Example 3

In this example we demonstrate the ability of the HMM/KF adaptive algorithm to
demodulate a 16-QAM signal in the presence of T complex-valued stochastic channel. The
signal characteristics are the same as for Example 1. The results for this example are displayed
in Figure 10. It can be seen again that our approach has significantly better performance than

10°

0MF/AOC/PIL

~
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B

10”3

10-’
5 10 15 20 25
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Figure 9. BER versus SNR for complex-valued channels with equally probable message symbols

10°
● HMM/ KF

o MF/AGC/PLL

x HMM/AGC/PU

f .2
~lo
ko
.=
m

103

.4
10~ 10 20 25

SNR!B

Figure 10. BER versus SNR for complex-valued channels



ADAPTIVE DEMODULATION OF QAM SIGNALS 473

10°
--- .3..6

* WIKP
“---- ”.. ‘

oMF/AGC/PLL

10”’ x HMh4)AGC/PLL

~
g ,..2

?0
.%
m,..3

104
5 10 15– 20 25

SNRdB
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the traditional scheme involving the MF. Here we also present the results of our adaptive
HMM approach when formulated in the polar representation. For this case we have
implemented an AGC/PLL scheme for the channel parameter. It can be seen that under these
conditions the non-linearities in the PLL approach are not detrimental and in fact the
HMM/AGC/PLL approach performs better than the HMM/KF scheme.

Example 4

In this example we investigate the relative benefits of the Cartesian channel parametrization
versus the polar representation. The signal characteristics are the same as for Example 1 and
the results are displayed in Figure 11. In the previous example the channel phase shift varied
more slowly than in this example. It can be seen that under the more stringent conditions
presented here, the non-linearities in the PLL approach are detrimental and the HMM/KF
approach performs better than the HMM/AGC/PLL scheme.

From these examples it can be easily seen that the HMM approach is more suited than the
MF for signals with non-equally probable message symbols. Also, depending on the channel
characteristics, the Cartesian co-ordinate representation can provide improvements over the
traditional polar representation. Such improvements are most apparent under conditions of
rapidly varying phase where the non-linearities associated with the PLL are detrimental to
performance.

6. CONCLUSIONS

In this paper we have derived adaptive HMM on-line state and parameter estimation schemes
for QAM signals in fading communications channels. A key element of our approach, which
appears to be quite powerful, is to work with mixed finite-discrete and continuous range state
models. These are reformulated via HMM filtering theory as conditional information state
models. The resulting adaptive algorithms blend EKF and HMM techniques. They are based
on optimal techniques but are inevitably suboptimal. Simulation studies are presented which
show the ability to effectively track time-varying channel parameters for QAM signals.
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