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DYNAMICAL SYSTEMS THAT COMPUTE BALANCED
REALIZATIONS AND THE SINGULAR VALUE DECOMPOSITION*

U. HELMKEt, J. B. MOORE$, AND J. E. PERKINSt

Abstract. The tasksof findingbalancedrealizationsinsystemstheoryandthe singularvaluede-
composition (SVD) of matrix theory are accomplishedby findingthe limitingsolutionsof differential
equations. Severalalternativesets of equations and their convergencepropertiesare investigated.
The dynamical systems for these tasks generate flows on the space of realizationsthat leave the
transferfunctions invariant. They are termed isodynamicalffows. lsodynamical flows are general-
izationsof isospectralflows on matrices. These flowsevolveon the actual system matricesand thus
remove the need for considering coordinate transformation matrices. The methods are motivated
by the power of parallel processing and the ability of a differentialequations approach to tackle
time-varyingor adaptive tasks.
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1. Introduction. In current practice, the problems of finding a balanced real-

ization for a linear control system, as well as achieving an SVD of a matrix are solved
using algebraic matrix manipulations, implement ed in standard computer programs.
Balanced realizations are a useful tool in systems theory to increase numerical ro-
bustness, and they allow a sensible model order reduction to be performed. This
operation has been widely studied [10], [11] and computation met hods have been de-
scribed. Certainly, these methods are widely used, reliable, and well understood. On
the other hand, recent advances in neural network theory and associative memories
have shown that gradient-type algorithms can lead to effective and fast methods for
algebraic tasks such as principle component analysis. This latter task is equivalent to
the SVD. It follows that gradient flows can be an effective tool for SVD, although the
full possibilities and limitations of this approach are not yet fully clear.

Brockett [1], again motivated by the renewed interest in neural networks, paral-
lel processing, and analog computing, has also shown that other linear algebra and
combinatorial problems can be solved in terms of the limiting solutions of ordinary
differential equations (ODES) that are gradient flows on orthogonal matrices. In [2] a
systematic approach to balanced realizations of linear systems was developed, which
treats balanced realizations as, the global minima of objective functions, defined on
the set of all realizations of a given transfer function. Aspects of this work are gener-
alized in [3] for the task of finding an SVD using gradient flows on unitary matrices.
In an earlier paper [4], it is shown how certain types of balancing problems can be
solved using gradient flows on positive definite matrices with an exponential rate of
convergence. Such algorithms are possibly suitable for application to time-varying
systems [5].

In this paper, a systematic attempt is made to construct and analyze dynami-

cal systems that are capable of achieving balancing or the SVD. Based on the cost
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function approach developed in [2], we propose several different gradient flows that
solve the problem of finding a balanced realization, given an initial system realiza-
tion. Each of these equations has an exponential rate of convergence and we compare
their respective rates. It is envisaged that for particular applications there will be one

gradient flow that will give a better convergence rate than other algorithms. First
we review the linear and quadratic gradient flows of [4] that evolve on P = T’T >0,
where T is the state space transformation matrix that gives the balanced realiza-

tion. The next solution method we consider are differential equations that evolve on
the actual transformation matrix T. This solution method is of interest because it
circumvents the need to find T given P = T’T.

Next we propose alternative ODES that solve the balanced realization problem.
These differential equations, termed isodynamical flows, evolve on the actual system
matrices (A, B, C) rather than having the intermediate step of transformation ma-
trices. They have the obvious advantage of immediacy as well as giving a clearer
indication as to how the system is evolving. This is the first time a direct method
to compute balanced realizations, wit bout computing any balancing transformations,
has been given. The class of all isodynamical flows can be viewed as a generalization
of the isospectral flows, studied in matrix theory, as in [1], [3], [6], [7], [9], and their
references.

In 52 gradient flows that give the transformation matrices for balanced realizations
are studied, and in $3 related ODES are developed for a direct evolution of the system
matrices. In $4 flows achieving the SVD of a matrix are studied, and in $5 conclusions
are drawn. The Appendix summarizes important results about gradient flows on
manifolds.

2. Gradient flows for balancing transformations. In thk section we con-
sider the problem of computing balancing coordinate transformations via differential
equations. While a part of this problem has been already considered in [4], we review
some of the material developed in [4] and emphasize some new points as well.

We consider linear dynamical systems in continuous or discrete time

{ }{

i(t) = Ax(t) + Bu(t) or Xk+l = Axk + Buk
y(t) = Cz(t) Yk = Cxk 1

defined by the system matrices (A, B, C) G Rnxn x W’”m x W-’xn. Such a system
is called asymptotically stable if the eigenvalues of A are in the open complex left
half-plane or in the open unit disc, respectively. For any asymptotically stable system
(A, B, C), the controllability and observability gramians WC and WO are, respectively,
defined in discrete time and continuous time by the symmetric matrices

w
(2.la) W= = ~ AkBB’A’k, W. = ~ A’kC’CAk,

k=o k=O

I

cm
(2.lb) w.= meAtBB’etA’dt, W.=

J etA’C’CeAidt.
o 0

For unstable systems the controllability and observability Kramians are likewise
defined by finite sums or integrals rather than by the above infi;lte sums or integrals.
In the following we will assume asymptotic stability of A; however, all results hold
mutat is mutandis in the unstable case using finite gramians. To emphasize the de-
pendence of the gramians on (A, B, C), we also write WC(A, B) and WO(A, C) for the
controllability and observability gramians of (A, B, C).
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In the sequel we fix an initial asymptotically stable controllable and observable
realization (A, B, C) G iRnxn x W ‘m x !J2Pxnof a given transfer function G(s) =
C(S1 – A)-lB E !R(s)Pxn. Thus, by Kalman’s realization theorem, see, e.g., Kailath
[8], all other minimal realizations of G(s) are of the form (TAZ’-l, TB, C’T-I) for a
uniquely determined invertible coordinate transformation T.

Any linear change of coordinates in the state space Y?n by an invertible trans-
formation T E GL(n, 3?) changes the realization according to (A, B, C) + (TAT-1,
TB, C’T- 1) and thus transforms the gramians via

(2.2) W. * TWCT’, WO H (T’)–l WOT–l.

We call a state space representation (A, B, C) of the transfer function balanced
if WC = WO. This is more general than the usual definition of balanced realizations,
(see Moore [10]), which requires that WC = W. = diagonal. In this case we refer to
(A, B, C) s a diagonal balanced realization, which is thus one particular realization
of our class of balanced realizations.

To obtain a quantitative measure of how the gramians change for the various
realizations of a transfer function, we consider the function

Q(T) = tr(WC(TAT-l, TB) + WO(TAT-l, CT-l))

(2.3)
= tr(TWCT’ + (T’) -lWOT-l)

= tr(WCT’T + WO(T’T)-l)

= tr(WCP + WOP-l)

with

(2.4) P = T’T.

Note that @(T) is the sum of the eigenvalues of the controllability and observabil-
ity gramians of (TAT– 1,TB, CT– 1) and is thus a crude numerical measure for the
controllability and observability of (TAT-1, TB, CT– ]).

2.1. Balancing flows of positive definite matrices. Let ‘P(n) denote the set
of positive definite real symmetric n x n matrices P = PI >0. P(n) is an open, convex
subset of the set of all symmetric n x n matrices and is diffeomorphic to Euclidean
space %(1/2jn(n+lj. By (2.3) we are led to study the function

(2.5) d : P(n) e 3?, @(P) = tr(WCP + WOP-l).

For a proof of the following results we refer to [4] and [9].

LEMMA 2.1 ([4], [9]). Let Wc, WO be the controllability and observability gr-arni-
ans (2.1) of an asymptotically stable minimal realization (A, B, C). Then the junc-
tion @ : T’(n) + ?R,@(P) = tr(WCP + WOP–l), defined on the set T(n) of posz’-
tiue definite sgmmettic matrices, has compact sublevel sets, i.e., for all a G R then

{P ~ P(n) I tr(W.P + W&_l) <a} is a compact subset of~(n). In particular, there
exists a minimizing P = P’ >0 for the function ~ : P(n) * W defined by (2.5).

While Lemma 2.1 establishes the existence of a minimizing pm = P& >0 for the

function (2.5), Theorem 2.2 provides a more constructive approach towards finding
the minimum by showing that it is the global attractor for the gradient flow on T(n).

THEOREM 2.2. Linear index gradient flow ([4]). Let WC, WO denote the control-
lability and observability gramians (2.1) of an asymptotically stable, controllable, and
observable realization (A, B, C).
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(a) There exists a unique Pm = P: >0, which minimizes@ : P(n) -t $?, O(P) =

tr(WCP+ WOP–l), and Tw = Pm1J2 is a balancing transformation for (A, B, C). This

minimum is given by

(b) The gradient flow P(t) = – v @(P(t)) oj @ : ‘P(n) ~ 3? is given by

(2.6) P = P-lWOP-l – WC,

FOT evey initial condition PO = P; > 0, P(t) exists for all t ~ O and converges
exponentially fast to P~ as t * m with a lower bound for the rate of exponential
convergence given by

(2.7)
A~i~( WJ3/2

P22A
max(wo)l/2‘

where A~i~(A) respectively A~aX(A) denote the smallest, respectively largest, eigen-
value of A.

In the sequel we refer to (2.6) as the linear index gradient jlow. Instead of min-
imizing 4(P), we might as well consider the minimization problem for the quadratic
index function

(2.8) V(P) = tr((WCP)2 + (WOP-1)2)

over all positive definite symmetric matrices P = P’ >0.
Since, for P = Z“T, Q(P) is equal to tr[(’TWcT’)2 + ((Z’’) -1 WOT-1)2], the

minimization problem for (2.8) is equivalent to minimizing tr[( W. (TAT- 1, T13))2+
(W’O(TAT-l, CT-1) )2] over the set of all realizations (TAT-l, TB, CT-l) of a given
transfer function G(s) = C(SY – A) – 1B. Thus W(P) is the sum of the squared eigen-
values of the controllability and observability gramians of (TAT– 1, TB, CT– 1). Note
also that

tr~(Z’WcT’)2 + ((T’) -lWOT–1)2] = ]/TWCT’ – (T’) -lWOT-11/2 + 2tr[WcWO].

Thus minimizing this quadratic index function is equivalent to minimizing the least
square distance /lZ’WCT’ – (T’)’1 WOZ’– 1II2.

THEOREM 2.3. Quadratic index gradient flow ([4]). Under the same hypotheses
as for Theorem 2.2, we have:

(a)

pm = wc–1/2(w:/2wow: /2)1/2 we-l/2

is the uniquely determined P E P(n) which minimizes @ : P(n) + 9? and TW = P~f2
is a balancing transformation for (A, B, C).

(b) The gradient flow P(t) = - v V(P(t)) on T(n) is

(2.9) P = 2P–lWOP–lWOP–1 – 2WCPWC.

For all initial conditions PO = P: >0, the solution P(t) of (2.9) exists for all t ~ O and
converges exponentially to Pm. A lower bound on the rate of exponential convergence
is

(2.10)
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We refer to (2.9) as quadratic index gradient j?ow. The above results show that
both algorithms converge exponentially fast to Pm. Both algorithms are rather slow
if the smallest singular value of WC is near to zero, i.e., if the system is nearly un-
controllable. In contrast to this behaviour, (2.7) shows that the convergence of the
linear index flow becomes relatively fast if Am.. (Wo); that is, the 2-norm IIWO112of the

observabilityy gramian is small. Similarly, the bound (2.10) for the rate of convergence
of the quadratic index flow is independent of WO and therefore we expect a certain
amount of robustness of our algorithms in the case where the observability properties
of the system are poor.

In general, the quadratic index flow seems to behave better than the linear in-
dex flow, at least if the smallest singular value of the associated Hankel operator
of (A, l?, C) is greater than ~, i.e., if A~i~(WOWC) > ~. This is supported by the
following simulations.

Simulations. The following simulations show the exponential convergence of the
diagonal elements of P towards the solution matrix Pm and illustrate what might
affect the convergence rate. In Figs. 1(a)–(c) we have

wo=w~= [i:::]andwc=w’=[w
so that ~mi~(WOW,-) x 1.7142> ~. Figure 1(a) concerns the linear index flow, while
Fig. 1(b) shows the evolution of the quadratic index flow, both using P(0) = PI,
where

P(o) = PI =

10001
0100
0010 ‘

P(o) = Fj =

Looolj

2100
1210

1

0121”
0012

Figure l(c) shows the evolution of both algorithms with a starting value of P(O) = P2.
These three simulations demonstrate that the quadratic algori~hm converges mo~e
rapidly than the linear algorithm when ~min(WOWC) > ~. This rapid convergence
rate is achieved at the expense of twice the number of matrix multiplications in
calculating the gradient.

In Fig. l(d),

wo=w~=

[X:] andwc=w2=[M;]

so that A~i~(WOWG) $S 0.207 < ~. Figure 1(d) compares the linear index flow be-
haviour with that of the quadratic index flow for P(0) = PI. This simulation demon-
strates that the linear algorithm does not necessarily converge more rapidly than the

quadratic algorithm when Amin(WOWC) < ~, because the bounds on convergence rates
are conservative.

2.2. Gradient flows for balancing transformations. In the previous section
we studied gradient flows that converged to Pm = T&, where Tm is the unique
symmetric positive definite balancing transformation for a given asymptotically stable
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FIG. 1. Comparison of linear and quadmticflows on P(t). (a) Linear indez flow when

~min (~oWC) > ~. (b) Quadmtic indez jZOUJSwhen A~i.(W.Wc) > ~. (c) Linenr and guudmtic
j70ws when A~i~(WOW=) > ~. (d) Linear and guadraticj70ws when A~in(WoW.) < }.

system (A, B, C). Tm is then obtained as the unique symmetric positive definite
square root of Pm. In this section we address the general problem of determining
all balancing transformations T ~ GL(n, $?) for a given asymptotically stable system
(A, B, C), using a suitable gradient flow on the set GL(n, 3?) of all invertible n x n-
matrices. This allows us to compute balancing transformations without squaring
down an operator; cf. [11].

Thus for T ● GL (n, R), we consider the cost function @ : GL(n, ~) + Y?defined
by

(2.11) @(T) = tr(TWcT’ + (T’)-l WOT-l)

and the associated gradient flow T = – v @(T) on GL(n, $?). Of course, to define the
gradient of a function, we must specify a Riemannian metric with respect to which
the gradient is defined; see the Appendix. Here, as in the previous section, we endow
GL(n, Y?) with its standard Riemannian metric

(2.12) (A, 1?) = 2tr(A’B),

i.e., wit h the constant Frobenius inner product (2.12) defined on the tangent spaces
of GL(n, 32).

THEOREM 2.4. Let Wc and W. denote the wntrollability and observability grami-
ans of the asymptotically stable, controllable and observable realization (A, B, C).
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(a) Thegradient flow~ =-V@(T) of@: GL(n, Y?)~!Rzs

(2.13) T = (T’) -lWO(T’T)-l – TWC,

and for any initial condition To ● GL(n, 3?), the solution T(t) oj (2.13), T(O) = To
exists in GL(n, R) for all t 20.

(b) Fo~ any initial condition To ~ GL(n, R), the solution T(t) of (2.13) converges
to a balancing transformation Tw c GL(n, !)?), and all balancing transformations can

be obtained in this way for suitable initial conditions To ● GL(n, $?).
(c) Let Tm be a balancing transformation and let In(Tm) denote the set of all

To E GL(n, R), such that the solution Z’(t) of (2.13) with T(0) = To converges to
Tm as t * cm. Then In(TM) is an immersed invariant submanifold of GL(n, ?R) of
dimension n(n + 1)/2 and every solution T(t) ~ In(Tm) converges exponentially fast
in In(T’m) to Tm.

Proof GL(n, $?) is an open subset of !FTxfi and therefore the tangent space of

GL(n, 3?) at T can be identified with the !R-vectorspace of all real n x n matrices
~ E !JPxn. The Fr6chet derivative of@ : GL(n, 3?) ~ 32, at T is the linear operator
on the tangent space of GL(n, $2) at T defined by

D’$IZ’(<) = 2tr[(WCT’ - T-l(T’)-lWOT-l)@ = 2tr[(TWC – (T’) -lWO(T’T)-l)’&]

for all f ~ !JP‘n. Thus the gradient of @ with respect to the Riemannian metric
(2.12) is

@(T) = TWC – (T’) -lWO(T’T)-l.

To prove that the gradient flow (2.13) is complete, i.e., that the solutions T(t) exist
for all t 20, itsuffices to show that @ : GL(n, 3?) - R+ is proper, i.e., that the
pre-image @-1 (K) of any compact subset K c $?+ is compact in GL(n, !3?). More
generally, a continuous map ~ : X - Y between topological Hausdorff spaces is called
proper if the inverse image of $– 1(K) of any compact subset K C Y is compact. Let
P(n) = {P = GL(n, !R)lP = P’ > O}. By Lemma 2.1, P ~ tr(WCP + WOP-l) is a
proper function on ~(n). By the polar decomposition, the set of invertible matrices
T corresponding to a fixed matrix T’T is compact. More generally, we conclude that
the map GL(n, 9?) + P(n), T * T’T is proper. Thus @ is the composition of proper
maps and therefore it is also proper. This shows (a). To prove (b), we note that by

(a) and a well-known property of gradient flows, any solution T(t) converges to an
equilibrium point Tm of (2.13).

(T&) -lWO(T&Tm)-l = TmWC s (T&) -lWOT~l = TwWCT&

and hence Tm is balancing. This shows (b).
To prove (c), we use the following lemma, where

(2.14) E:= {Tm E GL(n, !R)l(T~T@)WC(T~Tm) = WO}

denotes the set of equilibria points of (2.13).

LEMMA 2.5. The tangent space of E at Tw ~ E is

(2.15) T~~E = {S ● !R”x”\S’Tm +T@ = O}.
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Proof Let Pm denote the unique symmetric positive definite solution of PWCP =

Wo. Thus -E = {T]T’T = Pm} and therefore TT~ E is the kernel of the derivative of
T w T’T – Pm at Tm. Thus S E TTWE if and only if S’Tm + T~S = O. U

Let

@(P) = tr(WCP + W.P-i)

and

A(T) = T’T.

Thus O(T) = @(A(T)). By Theorem 2.2, see also [4] and [2],
(i) Dq!IIP~ = O.
(ii) D2@]Pm >0.

Let X denote the matrix representing the linear operator ll~lz-~ (S) = T&S+
S’TW. Using the chain rule, we obtain

(2.16)

for all Tm c E. By (ii) and (2.16), D2@[~~ _> 0 and D2@\Tm degenerates exactly

on the kernel of X, i.e., on the tangent space TT~ E. Thus @ is a Morse-Bott func-
tion; see the Appendix. Thus Proposition A.3 implies that every solution T(t) of
(2.13) converges to an equilibrium point. Moreover, the equilibrium set E is normally
hyperbolic.

It follows from the theory of stable manifolds (see, e.g., Irwin [12]) that In(T~) is
the stable manifold of (2.13) at T@ and thus is an immersed invariant submanifold of
GL(n, 3?) of dimension dim GL(n, 3?) – dim E = n2 – n(n – 1)/2 = n(n + 1)/2. Since
the convergence is always exponential on stable manifolds, this completes the proof
of (c). D

Now consider the following quadratic version of our objective function 0. For
T E GL(n, 3?), let T : GL(n, $?) + 3? be defined by

(2.17) W(T) := tr((TWCT’)2 + ((T’) -lWOT-1)2).

The gradient flow T = – v W(T) on GL(n, 32) is easily computed to be

(2.18) T = (T’) -l WO(T’T)-lWO(T’T)-l – TWCT’Z’’WC.

The same arguments as for Theorem 2.4 show that for all initial conditions T. E
GL(n, 3?), the solution T(t) ~ GL(n, ?)?) of (2.18) exists for all t z O and converges
to a balancing transformation for (A, B, C). Thus we can also use (2.18) or suitable
discretized versions to compute balancing transformations for a given asymptotically
stable minimal realization (A, B, C). We illustrate the behaviour of the gradient flows
(2.13) and (2.18) by means of the following simulation experiments.

In Fig. 2 the diagonal entries of T(t) are plotted. Figure 2(a) uses WO = W1,
W. = W2 and a starting value of To = PI, in (2.13). Figure 2(b) has the same value
for the gramians, but has a starting value of

[1
1342
4325

TO=Z2A1.

2434
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FIG. ,2. Comparison of linear and quadmtic index flows on GL(n, Y?). (a) Linear jlow on T
when Amiri(W’QWC) < ~. (b) Quadratic flow on T when Amin(Wo WC) < ~. (c) Linear flow on T

when Amin(Wo W’c) > ~ (d) Qurzdmtzc fZOW On T when Amin (WOW=) > ~.

It can be observed that these To values give different final solutions, both of which
are generalized balancingtransformations. Figuresz(c)–(d)use ~. = ~3, WC = ~4

and a starting value of To = PI. Figure 2(c) uses (2.13) while Fig. 2(d) uses (2.18).
Note that in this case, (2.18) converges more rapidly than (2.13).

2.3. Diagonal balancing transformations. Here we address the related issue
of computing diagond balancing transformations T for a given asymptotically stable
minimal realization, i.e., T satisfies

TWCT’ = (T’)’1 WOT-l = diagonal.

Any such diagonal balancing transformation T is of the form T = @ . Tw, where

T~ = P#2 is the uniquely determined positive definite symmetric balancing transfor-
mation whose existence is guaranteed by Theorem 2.1 and where EI is an orthogonal
matrix that diagonalizes Tm WCT~ = (TL ) -1 WOT~l.

Let us consider a fixed diagonal positive definite matrix iV = diag(~l, . . . . &)
with distinct eigenvalues Al > . . .

> ~~ > 0. Using IV, a weighted cost function for
balancing is defined by

(2.19) @N(T) = tr(jVTWcT’ + N(T’)-lWOT-l)
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The following lemma characterizes the diagonal balancing transformations as the
critical points of the weighted cost function @N on GL(n, $?).

LEMMA 2.6. Let N = diag(~l,..., ~~) with~l > “.. > ~~ >0 and~etWclWo de-
note the controllability and observability gramians of an asymptotically stable minimal
realization (A, B, C). Then

(a) T = GL(n, $?) is a critical point of @jV : GL(n, R) - 3?,@N(T) = tr(NTW.T’+
N(T’)-l WOT-l), if and only if T is a diagonal balancing transformation, i.e.,

TWCT’ = (T’) ‘l WOT- 1 = diagonal.

(b) +N : GL(n, 3?) ~ R has compact sublevel sets. In particular, a global
minimum T~i. ~ GL(n, ~) of @jv : GL(n, ~) ~ $? exists.

Prooj The Fr6chet derivative of @N : GL(n, R) - $? at T is the linear map
defined by

(2.20)
.D@N]~(<) = 2tr(N<WCT’ – N(T’)-lWOT-l&T-l)

= 2tr[(iVTWC – (T’)-l WOT-lN(T’)-l)’~],

and therefore the gradient of @N (T) with respect to the Riemannian metric (2.12) on
GL(n, $?) is

(2.21) v ON(T) = NTWC – (T’) -lWOT-’N(T’)-l.

It follows that T ~ GL(n, R) is a critical point of ON if and only if @N(T) = O, i.e.,
if and only if

(2.22) NTWcT’ = (T’) -l WOT-l . N.

By symmetry of TWcT’ and (T’)- lWOT-l, we obtain from (2.22) that

(2.23a) N2TWCT’ = TWCT’N2 ,

(2.23b) N2(T’)-l WOT-1 = (T’) -l WOT-1N2.

Any symmetric matrix that commutes with N2 must be diagonal, since N2 has distinct
eigenvalues. Thus we see that (2.22) is equivalent to TWCT’ = (T’)- 1WOT– 1 =
diagonal. This proves (a). For (b) note that @N(T) ~ a implies

for the Frobenius norm 11X112= tr(XX’). Hence IITII s c1, \]T–l II s C2 for positive
constants c1, C2that depend only on N, Wc, IV. and a. Thus {T E GL(n, 3?) \@~(T) S
a} is a closed subset of the compact set {T E GL(n, !3?)I I]T][ < c1, [[T-l [[ s C2} and
therefore also compact. This shows that @’N : GL(n, R) ~ R has compact sublevel
sets. But any continuous function f : GL(n, 32) - 9?+ with compact sublevel sets
has a minimizing T E GL(n, $?). This completes the proof of Lemma 2.6. Cl

From Lemma 2.6 and by (2.20), similar arguments as for Theorem 2.4(a) and (b)
show the following theorem.

THEOREM 2.7. Let WC, WO be the controllability and observability gramians of
the asymptotically stable, controllable, and observable realization (A, B, C) and let
N=diag(~l,..., &) ~ith~l >... > An > f). Then
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(a) gradient flow T=-~@~(T) of theweighted costjunction @~: GL(n, !R)~
% is

(2.24) T = (T’) -l WoT-lN(T’)-l – NTWC.

Forallinitial conditions T(0) ~ GL(n, !R), thesoMonT(t) s GL(n, !R) of (2.24)

exists forallt 20.
(b) Foranyinitial condition T(0) ~GL(n, Y?), thesoMionT(t) oj(2.24) con-

verges to a diagonal balancing transformation Tm of(A, B, C).
(c) Suppose that thesingular values O<dl <... <dn of the Hankel operator

oj (A, B,C) are distinct. Then the stable equilibrium of (2.24) are characterized by
(T&) -lWOT~ 1 = Ta WCT& = D, where D = diag(dl, . . . . dn) is diagonal and the
diagonal entries are in reverse ordering to those of N. Moreover, the gradient flow
(2.24) converges exponentially fast to the 2n stable equilibria with a convergence rate
lower bounded by

All other equilibria are unstable.
Proof. Parts (a) and (b) follow easily from Lemma 2.6, using similar arguments as

for Theorem 2.4. To prove (c), consider the linearization of (2.24) at an equilibrium

point Tm; that is, where (T&)’1 WOT~l = Tw WCT& = D and

~ = –NqT~lD(T~)-l – DqT:lN(T&)-l

- (T&) -’q’DN(T&)-l - DN(T&J-lrf(T&J-l.

Let ~ = qT:l, then

@c&) = -N<D - D<N - <’DN - DN<’

and thus, using Kronecker products and the vec notation, and recalling that vec(ABC)
= (C’@ A)vec(B), then

Consider first the special case when TWT~ = I, and ~ is denoted ~“:

(2.25) vec(~*) = -[D @ N + N @ D]vec(~*) - [DN @ I + I @ DN]vec(~*’).

Then for i < j,

and for all i,

By assumption, Al >0, and di >0 for all i. Thus (2.25) is exponentially stable if
and only if (da – dj ) (,Jj – Ai) >0 for all i, -j, i < j, or equivalently, if and only if the
diagonal entries of D are distinct and in reverse ordering to those of N. In this case,
(2.25) is equivalent to (2.26)

(2.26) vec(~*) = –Fvec(c; )
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FIG. 3. Evolution of the diagonalizing transformation T

with a symmetric positive definite matrix 3 = F’ >0.

Consequently, there is exponential convergence with a rate given by A~i.(.F) as
follows:

( “ P’.([.A~i~(>) = min mmz<j
di~j + Aidj dj~j + di~i
di~i + dj~j di~j + Aidj 1)1,mini [4dzAi]

)

= min(mini< ~[diAj + Aidj – dj Aj – di~i], mini [4dz&] )

= min(mini<j [(di – dj )(Aj – Ai)], mini [4diA~]).

Relaxing the assumption TwT& = I is possible since TwT~ is positive definite
so that (TMT& @ 1) is positive definite. Thus exponential stability of (2.26) assures
exponential stability of

The rate of exponential convergence is given by Ami. [((TMT& )‘1 @ 1)~. Now since
A = A’ >0, B = B’ >0 implies A~in(AB) ~ ~min(A)Amin(B), a lower bound on the
convergence rate is given from

= A~in[(T~T&)-l] min(minl<j [(dz – dj)(~j – Az)], min~[4diAi])

as claimed. II

Simulation. In Fig. 3 the diagonal elements of T(t) are plotted. The flow (2.24)
is allowed to evolve with WO = WI, WC = W2, IV = diag(5, 4,3, 2),

To as before. At t = 3,

[

–0.9788 0.6595 –0.1033 0.6623

T(t) =
–0.0807 –0.1124 –0.7002 0.5847
0.1079 –0.4691 0.4256 0.1943
0.7586 0.5177 0.4245 0.3909

and initial mat rix
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and this transformation gives

[

0.4554 0.0017 0.0006 –0.0005

w.=
0.0017 2.7493 0.0034 –0.0000
0.0006 0.0034 3.3641

1

–0.0034 ‘
–0.0005 –0.0000 –0.0034 11.3114

[
0.4553 0.0021 0.0009 0.0014

W.=

[

0.0021 2.7496 0.0042 0.0007

1

0.0009 0.0042 3.3625 0.0081 “
0.0014 0.0007 0.0081 11.3090

Notice that although convergence has not been completed, the gramians are diagonally
dominant with increasing elements.

3. Differential equations for balanced realizations. In this section we con-
struct certain ordinary differential equations

A = f(A, B,C)

~ = g(A, B, C)

c = h(xl, B, c)

evolving on the space of all realizations (A,B,C) of a given transfer function G(s),
with the property that their solutions (A(t), B(t), C(t)) all converge for t j co to
balanced realizations (~, ~, ~) of G(s).

Let G(s) E !J?(s)Pxn denote an asymptotically stable strictly proper real ratio-
nal transfer function of McMillan degree n. Thus G(s) has its poles either in the
open left half-plane or in the open unit disc, respectively. We denote by (A, 1?, C) E

Rnx tn+m+J’Jan asymptotically stable, controllable, and observable realization of G(s),
i.e., G(s) = C(S1 – A)–l B.

Let

(3.1) ~C = {( A, B,C) ~ !Rnx@+’”+PJ I G(s) = C(SI – A)-lB}

denote the set of all minimal state space realizations of the transfer function G(s).
By Kalman’s realization theorem, [8]

(3.2) ‘R~ = {(TAT-l, TB, CT-l) ~ !J?”xfn+m+PJ I T G GL(n, R)}

for any fixed initial realization (A, B, C) ~ Rc. Thus l’?~ is an orbit of the GL(n, !R)-
similarity action (A, B, C) w (TAT-1, TB, CT– 1) on !llnx (n+myp).

We consider the function

defined by

(3.3) @(A, B, C) = tr(WC(A, 1?) i- WO(A, C)),

i.e., by the sum of the eigenvalues oft he controllability y and observability gramians of

(A, B, C). The following proposition summarizes some important properties of RG

and@:~G4~.
PROPOSITION 3.1. Jt holds that
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(a) ~~ is a smooth, closed submanijold of !Rnxfn+m+p). The tangent space of

~G at (A, B, C) ~ ~G 2S

(3.4) ‘(4 B,C)~G = {(XA – AX, XB, –CX) I X c !Rnx”}.

(b) The function @ : ‘%k + 3? defined by (3.3) is smooth and has compact
sublevel sets.

Proof. ~G is an orbit of the GL(n, !R)-similarity action

a : GL(n, !f?) X ~nx(n+m+p)+ !l?nx(n+m+p)
(Z’, (A, B, C)) ~ (TAT-l, TB, CT-l)

and thus, by a general result about algebraic Lie group actions (see, e.g., Appendix
C in [9]) is a smooth submanifold of the Euclidean space !l?x (n+m+p). By Lemma
3.3 [2], %?Gis a closed subset of !R*tn+m+~l if (A, B, C) is controllable and observable.
Explicitly, by realization theory, ~G is a fiber of the continuous map

and therefore closed.
To prove (b) and (3.4), we consider the diffeomorphism

(3.6)
a : GL(n, $?) ~ ~G

T M (TAT-l, TB, CT-l)

(this requires that (A, B, C) is minimal). The derivative of a at the identity matrix
is the linear map X + (XA – AX, XB, –CX), which maps ?Rnxn onto T[A,~,c)7?G.
This proves (3.4). Furthermore, with P = T’T,

@(a(T)) = tr(TWc(A, B)T’ + (T’) -l WO(A, C)T-l)

= tr(WCP + W#-l),

and the result now follows from Lemma 2.1, i.e., that the function P + tr(WCP +
WOP-l ) on the set of positive definite symmetric matrices has compact sublevel
sets. II

We now address the issue of finding gradient flows for the objective function
@ : ~G ~ W relative to some Riemannian metric on ~G. While there are several
possible choices for a ~~emannian metric on the realization space ~c, the following
one leads to a particularly simple expression for the gradient.

In the sequel, we use the Lie bracket notation

(3.7) [A, 1?] = AB - BA

for n x n matrices A, B.

Given two tangent vectors ([XI, A], XII?, –CX1) and ([X2, A], X2B, –CX2) c

T(A,B,c)~G we define

(3.8) ((([X1, AI, XIB, -CX1), ([X2, A], X2B, -CXZ))) := tr(X{Xz).
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To prove that (3.8) defines an inner product on T(A,B,C)’??G, we need the following
lemma.

LEMMA 3.2. Let (A, l?, C) be controllable or observable. Then ([X, A], XB, –CX)
= (01O,O) implies X = O.

Proof. If Xl? = O and AX = XA, then X(B, Al?,..., A“-l B) = O. Thus
controllability implies X = O. This is also true for observability. O

It is now easily seen, using Lemma 3.2, that (3.8) defines a nondegenerate sym-
metric bilinear form on each tangent space T(A,~,C) ~G and in fact a Riemannian
metric on ~G. We refer to this as the normal Riemannian metric on ~c.

To determine the gradient flow of @ : ~c - W with respect to the normal
Riemannian metric, we need a lemma.

LEMMA 3.3. Let N E !Rnxn be a real symmetric n x n matrix and let @N : 7?G -
R be defined by ON(A, 1?, C) = tr(AW’C(A, B) -t AUVO(A, C)) for all (A, B, C) ~ 7ZG.
Then the Frkchet derivative of @~ at (A, B, C) ~ ~G is the linear map D@~ (A, B, C) :

T’(A,B,c)~G --+3? defined by

(3.9) D@~(A, 1?, C)([X, A], XB, -CX) = 2tr[(WC(A, B)N - NWO(A, C))X]

for X C $2’””.
Proof. Let o : GL(n, ~) a XG be the diffeomorphism defined by o(T) =

(TAT-l, TB, CT-1). The derivative of a at the identity matrix In is the linear
map X ~ ([X, A], XB, –CX) on !Wxn. By the chain rule for the composed map
@JJ o g defined by

@~(a(T)) = tr(NTWC(A, B)T’ + N(’T’)-lWO(A, C) T-l),

we have

D@N(a(In))([X, A], –XB, CX) = D(ON 0 o)(In)X

= 2tr(NXWC(A, B) – NWO(A, C)X)

= 2tr[(WC(A, l?)N – NW.(A, C))X]

for all X ~ !lPx n. The result follows.
THEOREM 3.4. Let @ : 77.G~ Y? be the~bjective function defined by @(A, B, C) =

~tr(W~(A, B) + W.(A, C)).
(a) The gradient f?ow (A = -gradA@(A, B, C), B = -gradB@(A, B, C), d =

–grad~@ (A, B, C)) of@ for the normal Riemannian metric on ~c is

A = [A, WO(A, C) - WC(A, l?)]

(3.10) ~ = (WO(A, C) – WC(A, B))B

C = C(WC(A, B) – YVO(A,C)).

For every initial condition (A(0), B(0), C(0)) ~ ~c, the soiution (A(t), B(t), C(t)) ~
~G of (3.10) exists for all t >0 and converges fort - +co to a balanced Realization
(~, l?, ~) of G(s):

WC(A, B) = J’VO(A,C).

(b) Convergence to the class of balanced realizations is exponentially jast.
(c) The transfer function of any solution (A(t), B(t), C(t)) of (3.10) is indepen-

dent oft.
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Proof By definition of a gradient,

grad@ (A, B, C) = (grad~@(A, B, C), gradBQ(A, B, C), gradC@(A, l?, C))

is characterized by the properties (see the Appendix)

(3.lla) .grad@(A, B, C) c ~(A,B,c)~G,

and

(3.llb) D@(A, B, C)([X, A], XB, -CX) = ((grad@ (A,.B, C), ([X, A], XB,-CX)))

for all X c !JPx”. By Proposition 3.1 and Lemma 3.2,

(3.12) grad@ (A, B, C) = ([A, A], AB, –CA)

for a uniquely determined A ~ Wnxn. Applying Lemma 3.3 for N = ~In, we see that
(3.llb) is equivalent to

tr[(WC(A, B) – WO(A, C))X] = ((([A, A], AB, –CA), ([A, X], XB, –CX)))
= tr(A’X)

for all X ~ !Wx”. Thus

A = IVC(A, B) – VVO(A,C)

and grad@ (A, B, C) = ([A, A], AB, –CA). This proves (3.10). Since (3.10) is minus
the gradient flow of 0, @(A(t), B(t), C(t)) decreases on any solution of (3.10). By
Proposition 3.l(b), {(A,B,C) 6 ~G I @(A,B,C) < @(A(0), B(O), C(O))} is a compact
subset of ~G, which is invariant under the flow of (3.10). Therefore (A(t), B(t), C(t))
stays in that compact subset and thus exists for all t z O. The equilibria of (3.10) are
characterized by WC(A, B) = WO(A, C), i.e., by the balanced realizations. This proves
(a), except that we have not yet established convergence to an equilibrium point.

To prove (b), we consider the diffeomorphism a : GL (n, $?) ~ RC defined by
o(T) = (TAT–l, TB, CT–l) for any (A, B, C) & ~G. At each critical point, (A, 1?, C)
of @ : ~G ~ 32, 0 induces an invertible congruence transformation between the Hes-
sian of @ : ~G -+ $2 at (A, B, C) and the Hessian of @ o a at ~~. By (2.16) and the
proof of Theorem 2.4(c), the Hessian of@ o u at In is positive semidefinite and degen-
erates exactly on the tangent space (at In) of the set of balancing transformat ions.
Therefore the Hessian of @ at a balanced realization (A, B, C) is positive semidefi-
nite and degenerates exactly on the tangent space of the set of balanced realizations
at (A, B, C). (N.B. By Lemma 2.5, the set of balanced realizations of G(s) can be
shown to be a smooth submanifold of ~c.) This proves (b). As @ : ??C a W is
now seen as a Morse-Bot t function, we can apply Proposition A.3 to conclude that
(A(t), B(t), C(t)) converges to an equilibrium point.

part (c) is obvious, as the flow evolves on %C. II
We emphasize that Theorem 3.4 gives, for the first time, a direct method to

compute balanced realizations, without computing any balancing transformations.
We regard this as one of the really new insights that can be obtained by our ODE
methods.

Remark. As is shown in the above proof, any flow on symmetric matrices

A=–[A, A(A, B, C)]

a=–A(A, B,C)B

G=+ CA(A, B, C),
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where A(A, B, C) c !Rnx n is an arbitrary matrix valued function of (A, B, C), leaves
the transfer function

G(t, S) = c(t)(S~n - A(t)) -lB(t) = c(o)(s~n - A(0)) -lB(O)

of the system invariant. We therefore term these flows isodynamical and a more
systematic analysis of such flows is given in [9]. Obviously, these flows leave the
eigenvalues of A(t) invariant and in fact generalize the class of isospectral flows on

matrices, obtained by letting B = O,C = O; see, e.g., [1], [3], and the references
therein.

Simulations. Figures 4(a)-(c) show the evolution of the system matrices (A, B, C)
using this algorithm. In this example, the starting matrices are chosen to be

(3.13)

‘=[1+UB=K17“=w

and after ten “time intervals” the gramians are equal to three significant figures.
A similar “isodynamical flow approach works also for obtaining diagonal bal-

anced realizations.

(3.14)

for a real diagonal

Here we consider the weighted cost function

@jv:’RG~$?,

@N(A, B, C) = ~tr[iV(WC(A, B) + WO(A, C))]

matrix IV.

THEOREM 3.5. Let ON : 72G ~ 8? be the objective function defined by (3.14) for
N = ~diag(~l ).. .,~n), ~l>”>~n>o>o.

(a) The gradient flow

(A= -grad~@N(A, B, C), ~ = -gradB@N(A, B, C), d = -gradC@~(A, B, C))

of @N with respect to the normal Riemannian met~”c on ~C iS

A = [A, AJWO(A, C) – WC(A, B)N]

(3.15) ~ = (NWO(A, C) – WC(A, B)N)B

d = C(WC(A, B)N – NW.(A, C)).

For every initial condition (A(0), B(0), C(0)) ~ %!G, the solution (A(t), l?(t), C(t)) ~
~G of (3. 15) em”sts for all t ~ O and converges for t ~ +m to a diagonal balanced
realization (A, ~, ~) of G(s), i.e., WC(X, ~) = WO(A, (?) = diagonal.

(b) Suppose that the singular values of the Hankel of (A, B, C) are distinct. Then
(3.15) has exactly 2n locally asymptotically stable equilibrium points (~, B, ~), charac-
terized by WC(A, B) = WO(A, ~) =diagonal, with the diagonal elements in the reverse
order to that of N. All other equilibria are unstable.

(c) The transfer function of every solution (A(t), B(t), C(t)) of (3.15) is inde-
pendent oft.

Proof The proof runs similarly to that of Theorem 3.4, now applying Lemma
3.3 for N = ~diag(~l,. . . . An) and using Proposition A.3. The only points we must
check are that the equilibria of (3.15) are just the diagonal balanced realizations and
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FIG. 4. Evolution of the system matrices (A, B, C).
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their stability. But the equilibria of (3.15) are the critical points of ON : ‘% ~ W
and hence correspond to those of @N o a : GL(n, Y?) + 3?. The result now follows
from Lemma 2.6, and Theorem 2.7. Cl

Sirmdations. Figure 5 shows the evolution of the matrices (A, B, C) for (3.15),
with starting condition given in (3.13), and IV = diag(3, 2, 1). After 30 “time intervals”
the solution gives

[

2.7720 0 0

1[

2.7750 0 0
W*= o 0.1367 0.0214 , Wc= o 0.1367 0.0212

0 0.0214 0.0048 0 0.0212 0.0067 1

as opposed to the true balanced solution WO = WC = diag(O.0021, 0.1401, 2,7744).
The convergence in this case can be expected to be slow because the smallest Hankel
singular value is near zero.

4. Application to SVD. The common linear algebra problem of SVD can be
solved using different ial equations. Gradient flow solutions for SVD have been studied
in [3], [4], [6], and [7]. Here we consider SVD to be a special case of the balanced
realization task.

THEOREM 4.1. Given an m x n matrix H of rank r with distinct singular values
fYl>... > or. Let N be an r x r diagonal matrix with distinct positive diagonal entries.
Let X. c !Rmxr and Y. 6 W xn be matrices of full rank T such that H = XOYO. Then
the solution (X(t), Y(t)) of

(4.la) X = X(NYY’ – X’XN), x(o) = Xo,
(4.lb) Y = (X’XN – NYY’)Y, Y(o) = Yo

exists for all t ~ O and satisfies H = X(t)Y(t) fo~ all i! ~ O. The solution (X(t), Y(t))
converges to (X@, Ym ) such that H = XmYm and X&Xm = YWY& = D = diagonal.
Moreover, there are 2T stable equilibria that have the diagonal elements of D in reverse
order to those of N. All other equilibrium points are unstable.

Furthermore, this factorization yields H = USV, where U = XWD-1j2, S = D,
V = D-1 J2Ym, U’U = I, VV’ = I,

Proof In Theorem 3.5, set A = O and let l?, C be full rank matrices. Clearly,
(A, B, C) is controllable and observable. Then W. = B’B, WO = CC’ and (3.15) is
equivalent to

(4.2) & = –(CC’N – NB’B)B, C = C(CC’N – NB’B).

The equilibria of (4.2) are characterized by B’B = CC’ = diagonal, and the stable
equilibria are such that B’l? is in reverse order to N.

As (4.2) preserves the transfer function, CB is constant. Hence (4.1) with X = C
and Y = B converges to a diagonal balanced matrix factorization H = XWYm. By
choosing U = XmD -Ilz,s = D,V = D-112YW, then

USV=XWD-1/2DD-112Ym = XWYW = H, U’U = D-1/2&XwD-112 = ~,

and VV’ = D–112YmY&D– 1/2 = 1. The full singular value decomposition can be
obtained by extending U and V to make them orthogonal. o
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5. Conclusions. There are a number of distinct ODES that evolve to give the

solution to the task of finding a balanced realization of a system or to the task of find-
ing the SVD of a matrix. Each differential equation has distinct transient behaviour

but all have exponential convergence rates of the factors. The dynamical systems for
balancing gramains that were investigated evolve on either spaces of state coordinate
transformation matrices T, its square P = T’T, or on manifolds of the actual system
matrices (A, B, C). Similar equations for SVD are studied and are a special case of
the balancing equations. Different convergence properties make some algorithms more
attractive in certain problem settings. These solution methods may be useful when
using analog or parallel computers.

Appendix. Riemannian metrics and gradient flows. Let M be a smooth
manifold and let TM and T* M denote its tangent and cotangent bundle, respectively.
A Riemannian metric on M is a family of nondegenerate inner products <,>., defined
on each tangent space T=M, such that <, >Z depends smoothly on x c Al. Any
(nondegenerate) inner product on !JY also defines a Riemannian metric on W (but
not conversely) and thus induces a Rlemannian metric on every submanifold M of
!Rn.

Let @ : M + !3?be a smooth function defined on the manifold M and let D@ :
M ~ T*M denote the differential, i.e., a section of the cotangent bundle T*M. TO
define the gradient vector field of 0, we fix a Riemannian metric <,> on kf. The
gradient V@ of @ is then characterized by the following properties:

Compatibility condition (a). D@(z)~ = (v@(x), ~) for all ~ E TZM.
Tangency condition (b). @(z) G TZM for all x ~ M.
The following result is well known.
PROPOSITION A. 1. There em”sts a uniquely determined vector field ~~ on M

such that (a) and (b) hold. ~@ is called the gradient vector field of G.
Note that the gradient vector field depends on the choice of the Riemannian

metric; changing the metric will also change the gradient.
It follows immediately from the definition of V@ that the equilibria of the differ-

ential equation

(Al) A(t)= – ~ @(x(t))

are precisely the critical points of @. Moreover, the linearization of the gradient flow
(A. 1) around each equilibrium point is given by the Hessian of @ and thus has only
real eigenvalues.

For any solution of (A. 1),

:@(z(t)) = -1] ~ @(x(t)) ]/2

and therefore O(Z (t) ) is monotonically decreasing. The following standard result is
often used in this paper.

PROPOSITION A. 2. Let @ : M + R be a smooth function on a Riemannian
rnanijold with compact sublevel sets, i.e., for all c G 3? the sublevel set {x ~ M I O(x) <
c} is a compact subset of M. Then evey solution x(t) c M of the gradient flow (A. 1)
on M exists for all t > 0. Furthermore, x(t) converges to a connected component of
the set of critical points of@ as t ~ +CC.

Note that the condition of the proposition is automatically satisfied if M is com-
pact. Moreover, in suitable “local coordinates of M, the linearization of the gradient
flow (A, 1) around each equilibrium point has only real eigenvalues.
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Let M be a smooth manifold and let @ : h4 - $? be a smooth function. Let
C(O) C M denote the set of all critical points of @. We say @ is a Morse-Bott
function provided the following three conditions (i), (ii), (iii) are satisfied.

(i) @ : M ~ ~ has compact sublevel sets.
(ii) C(@) = 1$=1 Nj with Nj disjoint, closed, and connected submanifolds of

M, such that @ is constant on Nj, ~ = 1,.. . ,k.
(iii) Ker(Hess@)., = TZNj for all z E Nj, j = 1,..., k.

Actually, the original definition of a Morse-Bott function also includes a global topo-
logical condition on the negative eigenspace bundle defined by the Hessian, but this
condition is not relevant to us.

Recall that the w-limit set LW(z) of a point z c M for a vector field X on M is the
set of points of the form limn+m ~t~ (z), where (&) is the flow of X and t. + +co.
Similarly, the a-limit set Lo(z) is defined by letting tn j –cc instead of +CO.

PROPOSITION A.3.
(a) Suppose @ : M +3? has isolated critical points. Then LU(x), x E M, consists

of a single critical point. Therefore eve~ solution of the gradient flow (A. 1) converges
for t * +co to a critical point of Q.

(b) Let @ : M 4 3? be a Morse-Bott function on a Riemannian manifold M.
Then the w-limit set Lu (x), x ~ M, for the gradient flow (A. 1) is a single critical
point of @. Every solution of the gradient fiow (A. 1) converges as t
equilibrium point.
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