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DYNAMICAL SYSTEMS THAT COMPUTE BALANCED
REALIZATIONS AND THE SINGULAR VALUE DECOMPOSITION*

U. HELMKE!, J. B. MOORE!, AND J. E. PERKINS?

Abstract. The tasks of finding balanced realizations in systems theory and the singular value de-
composition (SVD) of matrix theory are accomplished by finding the limiting solutions of differential
equations. Several alternative sets of equations and their convergence properties are investigated.
The dynamical systems for these tasks generate flows on the space of realizations that leave the
transfer functions invariant. They are termed isodynamical flows. Isodynamical flows are general-
izations of isospectral flows on matrices. These flows evolve on the actual system matrices and thus
remove the need for considering coordinate transformation matrices. The methods are motivated
by the power of parallel processing and the ability of a differential equations approach to tackle
time-varying or adaptive tasks.
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1. Introduction. In current practice, the problems of finding a balanced real-
ization for a linear control system, as well as achieving an SVD of a matrix are solved
using algebraic matrix manipulations, implemented in standard computer programs.
Balanced realizations are a useful tool in systems theory to increase numerical ro-
bustness, and they allow a sensible model order reduction to be performed. This
operation has been widely studied {10], [11] and computation methods have been de-
scribed. Certainly, these methods are widely used, reliable, and well understood. On
the other hand, recent advances in neural network theory and associative memories
have shown that gradient-type algorithms can lead to effective and fast methods for
algebraic tasks such as principle component analysis. This latter task is equivalent to
the SVD. It follows that gradient flows can be an effective tool for SVD, although the
full possibilities and limitations of this approach are not yet fully clear.

Brockett (1], again motivated by the renewed interest in neural networks, paral-
lel processing, and analog computing, has also shown that other linear algebra and
combinatorial problems can be solved in terms of the limiting solutions of ordinary
differential equations (ODEs) that are gradient flows on orthogonal matrices. In [2] a
systematic approach to balanced realizations of linear systems was developed, which
treats balanced realizations as the global minima of objective functions, defined on
the set of all realizations of a given transfer function. Aspects of this work are gener-
alized in [3] for the task of finding an SVD using gradient flows on unitary matrices.
In an earlier paper [4], it is shown how certain types of balancing problems can be
solved using gradient flows on positive definite matrices with an exponential rate of
convergence. Such algorithms are possibly suitable for application to time-varying
systems [5].

In this paper, a systematic attempt is made to construct and analyze dynami-
cal systems that are capable of achieving balancing or the SVD. Based on the cost
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function approach developed in [2], we propose several different gradient flows that
solve the problem of finding a balanced realization, given an initial system realiza-
tion. Each of these equations has an exponential rate of convergence and we compare
their respective rates. It is envisaged that for particular applications there will be one
gradient flow that will give a better convergence rate than other algorithms. First
we review the linear and quadratic gradient flows of [4] that evolve on P =T'T > 0,
where T is the state space transformation matrix that gives the balanced realiza-
tion. The next solution method we consider are differential equations that evolve on
the actual transformation matrix T. This solution method is of interest because it
circumvents the need to find T given P = T'T.

Next we propose alternative ODEs that solve the balanced realization problem.
These differential equations, termed isodynamical flows, evolve on the actual system
matrices (A4, B,C) rather than having the intermediate step of transformation ma-
trices. They have the obvious advantage of immediacy as well as giving a clearer
indication as to how the system is evolving. This is the first time a direct method
to compute balanced realizations, without computing any balancing transformations,
has been given. The class of all isodynamical flows can be viewed as a generalization
of the isospectral flows, studied in matrix theory, as in [1], 3], [6], [7], [9], and their
references.

In §2 gradient flows that give the transformation matrices for balanced realizations
are studied, and in §3 related OQDEs are developed for a direct evolution of the system
matrices. In §4 flows achieving the SVD of a matrix are studied, and in §5 conclusions
are drawn. The Appendix summarizes important results about gradient flows on
manifolds.

2. Gradient flows for balancing transformations. In this section we con-
sider the problem of computing balancing coordinate transformations via differential
equations. While a part of this problem has been already considered in [4], we review
some of the material developed in [4] and emphasize some new points as well.

We consider linear dynamical systems in continuous or discrete time

{ zé:; zéﬁg + Bu(t) } or { xk;; zéﬁ: + Buy }

defined by the system matrices (4, B,C) € R™*" x R**™ x RP*" Such a system
is called asymptotically stable if the eigenvalues of A are in the open complex left
half-plane or in the open unit disc, respectively. For any asymptotically stable system
(A,B,C), the controllability and observability gramians W, and W, are, respectively,
defined in discrete time and continuous time by the symmetric matrices

(o] o0
(2.1a) We=Y A*BB'A%,  W,=) A*C'CAF,
k=0 k=0
oo oo
(2.1b) W, = / BB d, W, = / et C'CeAtat,
0 0

For unstable systems the controllability and observability gramians are likewise
defined by finite sums or integrals rather than by the above infinite sums or integrals.
In the following we will assume asymptotic stability of A; however, all results hold
mutatis mutandis in the unstable case using finite gramians. To emphasize the de-
pendence of the gramians on (4, B, C), we also write W,(A, B) and W, (A, C) for the
controllability and observability gramians of (A, B, C).
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In the sequel we fix an initial asymptotically stable controllable and observable
realization (A4,B,C) € R™X" x R™*™ x RP*™ of a given transfer function G(s) =
C(sI — A)~1B € R(s)P*™. Thus, by Kalman’s realization theorem, see, e.g., Kailath
[8), all other minimal realizations of G(s) are of the form (TAT!,TB, CT™) for a
uniquely determined invertible coordinate transformation 7.

Any linear change of coordinates in the state space R™ by an invertible trans-
formation T € GL(n,R) changes the realization according to (A, B,C) — (TAT™!,
TB,CT!) and thus transforms the gramians via

(2.2) W= TW. T, W, (T")'W,T7 L

We call a state space representation (A, B,C) of the transfer function balanced
if W, = W,. This is more general than the usual definition of balanced realizations,
(see Moore [10]), which requires that W, = W,, = diagonal. In this case we refer to
(A, B,C) as a diagonal balanced realization, which is thus one particular realization
of our class of balanced realizations.

To obtain a quantitative measure of how the gramians change for the various
realizations of a transfer function, we consider the function

(T) = tr(W(TAT ™, TB) + W,(TAT™',CT™ "))
= tr(TW.T' + (T") " 'W,T™1)

(2.3)
= te(W.T'T + Wo(T'T)™%)
= tr(WeP + WoP 1)

with

(2.4) P=TT.

Note that ®(T) is the sum of the eigenvalues of the controllability and observabil-
ity gramians of (TAT™!,TB,CT~!) and is thus a crude numerical measure for the
controllability and observability of (TAT~},TB,CT™!).

2.1. Balancing flows of positive definite matrices. Let P(n) denote the set
of positive definite real symmetric n xn matrices P = P’ > 0. P(n) is an open, convex
subset of the set of all symmetric n x n matrices and is diffeomorphic to Euclidean
space R(1/2n(n+1) By (2.3) we are led to study the function

(2.5) ¢: P(n) - R, ¢(P) = tr(W.P + W,P~1).

For a proof of the following results we refer to [4] and [9].

LEMMA 2.1 ([4), [9]). Let W, W, be the controllability and observability grami-
ans (2.1) of an asymptotically stable minimal realization (A, B,C). Then the Sune-
tion ¢ - P(n) — R,¢(P) = tr(W.P + W,P~1), defined on the set P(n) of posi-
tive definite symmetric matrices, has compact sublevel sets, i.e., for all a € R then
{P € P(n) | tr(W.P+W,P~) < a} is a compact subset of P(n). In particular, there
ezists a minimizing P = P’ > 0 for the function ¢ : P(n) — R defined by (2.5).

While Lemma 2.1 establishes the existence of a minimizing P, = P!, > 0 for the
function (2.5), Theorem 2.2 provides a more constructive approach towards finding
the minimum by showing that it is the global attractor for the gradient flow on P(n).

THEOREM 2.2. Linear indez gradient flow ([4]). Let W., W, denote the control-
lability and observability gramians (2.1) of an asymptotically stable, controllable, and
observable realization (A, B,C).
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(a) There erists a unique Po, = P > 0, which minimizes ¢ : P(n) — R, ¢(P) =
tr(W.P+W,P™1), and T, = ij is a balancing transformation for (A, B,C). This
minimum s given by

P = Wc—1/2(WC1/2WOWC1/2)1/2WC_1/2_
(b) The gradient flow P(t) = — 7 ¢(P(t)) of ¢ : P(n) — R is given by
(2.6) P=Pw,Pl_w,.

For every initial condition P, = P, > 0, P(t) exists for all t > 0 and converges
exponentially fast to Py, ast — oo with a lower bound for the rate of exponential
convergence given by

Amin(”c)a/2
2.7 > n S
@7) £ (W) 172

where Amin(A) respectively Amax(A) denote the smallest, respectively largest, eigen-
value of A.

In the sequel we refer to (2.6) as the linear index gradient flow. Instead of min-
imizing ¢(P), we might as well consider the minimization problem for the quadratic
index function

(2.8) U(P) = tr((W.P)? + (W,P~1)?)

over all positive definite symmetric matrices P = P’ > 0.

Since, for P = T'T, ¥(P) is equal to tr[(TW.T")? + ((T')"'W,T"')?], the
minimization problem for (2.8) is equivalent to minimizing tr{(W.(TAT!,TB))?+
(Wo(TAT~',CT~1))?] over the set of all realizations (TAT!,TB,CT ') of a given
transfer function G(s) = C(sI — A)~!B. Thus ¥(P) is the sum of the squared eigen-
values of the controllability and observability gramians of (TAT~,TB,CT!). Note
also that

tr{(TWTH? 4+ (T) W, T2 = ||TW.T' — (T) *W,T7 Y2 + 2tr[W. W, ).

Thus minimizing this quadratic index function is equivalent to minimizing the least
square distance ||TW,T' — (T')"'W,T~}{2.

THEOREM 2.3. Quadratic index gradient flow ([4]). Under the same hypotheses
as for Theorem 2.2, we have:

(a)

1/2

P°° = Wc_l/z(Wcl/:zWchl/z) Wc—l/z

is the uniquely determined P € P(n) which minimizes ¥ : P(n) — R and To = PL?
is a balancing transformation for (A, B,C).
(b) The gradient flow P(t) = — 7 ¥(P(t)) on P(n) is

(2.9) P=2P 'W,P ‘W, P! — 2W,.PW,.

For all initial conditions P, = P} > 0, the solution P(t) of (2.9) ezists for allt > 0 and

converges exponentially to Po,. A lower bound on the rate of exponential convergence
is

(210) p> 4/\min(Wc)2'
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We refer to (2.9) as quadratic index gradient flow. The above results show that
both algorithms converge exponentially fast to Poo. Both algorithms are rather slow
if the smallest singular value of W, is near to zero, i.e., if the system is nearly un-
controllable. In contrast to this behaviour, (2.7) shows that the convergence of the
linear index flow becomes relatively fast if Ayax(W,); that is, the 2-norm ||W,||2 of the
observability gramian is small. Similarly, the bound (2.10) for the rate of convergence
of the quadratic index flow is independent of W, and therefore we expect a certain
amount of robustness of our algorithms in the case where the observability properties
of the system are poor.

In general, the quadratic index flow seems to behave better than the linear in-
dex flow, at least if the smallest singular value of the associated Hankel operator
of (4,B,C) is greater than 1, ie., if Apin(WoW,) > 1. This is supported by the
following simulations.

Simulations. The following simulations show the exponential convergence of the
diagonal elements of P towards the solution matrix P, and illustrate what might
affect the convergence rate. In Figs. 1(a)-(c) we have

7443 5 2 0 3
442 2 2 7 -1 -1
WosWo=1ly g g | 80d WesWas1y 1 5 5 |
321 5 3 -1 2 6

50 that Amin(WoW,) ~ 1.7142 > . Figure 1(a) concerns the linear index flow, while
Fig. 1(b) shows the evolution of the quadratic index flow, both using P(0) = P,,
where

1000 2 100
., _]0 100 L, 1210
PO=P=1g9 1) PO=R=],7 5,

0001 001 2

Figure 1(c) shows the evolution of both algorithms with a starting value of P(0) = P;.
These three simulations demonstrate that the quadratic algorithm converges more
rapidly than the linear algorithm when Apin(W,W,) > %. This rapid convergence
rate is achieved at the expense of twice the number of matrix multiplications in
calculating the gradient.

In Fig. 1(d),
7 4 4 3 5 4 0 3
442 2 4 R
Wo=Wi=1, 9 4 1| ond We=Wy=| _71 51 21 ;
321 3 3 -1 2 6

s0 t.ha.t A?‘*“(W"WC) ~ 0.207 < . Figure 1(d) compares the linear index fow be-
haviour with that of the quadratic index flow for P(0) = P;. This simulation demon-
strates that the linear algorithm does not necessarily converge more rapidly than the

quadratic algorithm when Amin(WoW,) < i, because the bounds on convergence rates
are conservative.

2.2. Gradient flows for balancing transformations. In the previous section
we studied gradient flows that converged to P,, = T2, where T, is the unique
symmetric positive definite balancing transformation for a given asymptotically stable
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. Quadratic Flow
. Quadratic Flow Qu

5 s 1 1.5 2 2.5 3

TIME
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FiGg. 1. Comparison of linear and gquadratic flows on P(t). (a) Linear inder flow whe@
Amin(WoWe) > i—. (b) Quadratic indez flows when Amin(WoWc) > 21-. {(¢) Linear and guadratic
flows when Agin (WoW,) > 41. (d) Linear and quadratic flows when Apin(WoWe) < %.

system (A, B,(C). T, is then obtained as the unique symmetric positive definite
square root of P,,. In this section we address the general problem of determining
all balancing transformations 7' € GL(n,R) for a given asymptotically stable system
(A, B,C), using a suitable gradient flow on the set GL(n,R) of all invertible n x n-
matrices. This allows us to compute balancing transformations without squaring
down an operator; cf. [11].

Thus for T € GL(n, R), we consider the cost function ® : GL(n,R) — R defined
by
(2.11) ®(T) = tr(TW.T' + (T')"'w,T71)
and the associated gradient flow 7" = — 7 ®(T) on GL(n,R). Of course, to define the
gradient of a function, we must specify a Riemannian metric with respect to which

the gradient is defined; see the Appendix. Here, as in the previous section, we endow
GL(n,R) with its standard Riemannian metric

(2.12) (A, B) = 2tr(A'B),
Le., with the constant Frobenius inner product (2.12) defined on the tangent spaces
of GL(n,R).

THEOREM 2.4. Let W, and W, denote the controllability and observability grami-
ans of the asymptotically stable, controllable and observable realization (A,B,0C).
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(a) The gradient flow T=—-g®T) of: GL(n,R) — R is
(2.13) T = (T W(T'T)™! ~TW,,

and for any initial condition Ty € GL(n,R), the solution T(t) of (2.13), T(0) = T
exists in GL(n,R) for allt > Q.

(b) For any initial condition Ty € GL(n,R), the solution T(t) of (2.13) converges
to a balancing transformation Ty, € GL(n,R), and all balancing transformations can
be obtained in this way for suitable initial conditions Ty € GL(n,R).

(c) Let T be a balancing transformation and let In(Ty,) denote the set of all
Ty € GL(n,R), such that the solution T(t) of (2.13) with T(0) = Ty converges to
Too ast — oo. Then In(T,) is an immersed invariant submanifold of GL{n,R) of
dimension n(n + 1)/2 and every solution T'(t) € In(T) converges exponentially fast
in In{Ty) to T

Proof. GL(n,R) is an open subset of ®**™ and therefore the tangent space of
GL(n,R) at T can be identified with the R-vectorspace of all real n x n matrices
€ € R™"*". The Fréchet derivative of ® : GL(n,R) — R, at T is the linear operator
on the tangent space of GL{n,R) at T defined by

D®|r(£) = 2tr[(W,T' — T™HT) W, T~ 1)¢] = 2tr[(TW, — (T") W, (T'T)~1)'¢]

for all £ € R**™. Thus the gradient of & with respect to the Riemannian metric
(2.12) is

VO(T) = TW, ~ (T) W, (T'T)~*.

To prove that the gradient flow (2.13) is complete, i.e., that the solutions T'(t) exist
for all ¢ > 0, it suffices to show that ® : GL(n,R) — R, is proper, i.e., that the
pre-image ®~!(K) of any compact subset K C R, is compact in GL(n,R). More
generally, a continuous map f : X — Y between topological Hausdorff spaces is called
proper if the inverse image of f~!(K) of any compact subset X C Y is compact. Let
P(n) = {P € GL(n,R)|P = P’ > 0}. By Lemma 2.1, P — tr(W.P + W,P~!) is a
proper function on P(n). By the polar decomposition, the set of invertible matrices
T corresponding to a fixed matrix T'T is compact. More generally, we conclude that
the map GL(n,R) — P(n),T — T'T is proper. Thus ® is the composition of proper
maps and therefore it is also proper. This shows (a). To prove (b), we note that by
(a) and a well-known property of gradient flows, any solution T(t) converges to an
equilibrium point Ty, of (2.13).

(To) W (T Too) ™Y = T W, = (T5,) WIS = T W T,

and hence T, is balancing. This shows (b).
To prove (c), we use the following lemma, where

(2.14) E = {Too € GL(n, R)|(TooToo ) We(To Too) = Wo}

denotes the set of equilibria points of (2.13).
LEMMA 2.5. The tangent space of E at To € E is

(2.15) Tr E = {§ € R ST + TS = 0}.
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Proof. Let P, denote the unique symmetric positive definite solution of PW P =
W,. Thus E = {T|T'T = P} and therefore T1_E is the kernel of the derivative of
T+ T'T — Py, at To. Thus S € T F if and only if $'Tc + T, S = 0. 0

Let

#(P) = tr(W.P + W,P™!)
and
AT) =T'T.

Thus &(T) = ¢(A(T)). By Theorem 2.2, see also {4] and [2],
(i) Délp, = 0.
(ii) D*¢lp,, > 0.
Let X denote the matrix representing the linear operator DA|r,_(S) = TS +
S'T. Using the chain rule, we obtain

(2.16) D?*®|r, =X -D*|p, - X

for all Too € E. By (ii) and (2.16), D?®|r,, > 0 and D?®|T, degenerates exactly
on the kernel of X, i.e., on the tangent space Tt E. Thus ® is a Morse-Bott func-
tion; see the Appendix. Thus Proposition A.3 implies that every solution T'(t) of
(2.13) converges to an equilibrium point. Moreover, the equilibrium set E is normally
hyperbolic.

It follows from the theory of stable manifolds (see, e.g., Irwin [12]) that In(7Tw) is
the stable manifold of (2.13) at T, and thus is an immersed invariant submanifold of
GL(n,R) of dimension dim GL(n,R) —dim E = n? —n(n — 1)/2 = n(n + 1)/2. Since
the convergence is always exponential on stable manifolds, this completes the proof
of (c). O

Now consider the following quadratic version of our objective function ®. For
T € GL(n,R), let ¥ : GL(n,R) — R be defined by

(2.17) U(T) := tr((TW.T')? + ((T))'W,T~1)?).
The gradient flow 7" = — 7 ¥(T) on GL(n, R) is easily computed to be
(2.18) T = (T W,(T'T)"*W,(T'T)™* = TW.T'TW.,.

The same arguments as for Theorem 2.4 show that for all initial conditions T, €
GL(n,R), the solution T'(t) € GL(n,R) of (2.18) exists for all ¢ > 0 and converges
to a balancing transformation for (A4, B,C). Thus we can also use (2.18) or suitable
discretized versions to compute balancing transformations for a given asymptotically
stable minimal realization (A4, B,C). We illustrate the behaviour of the gradient flows
(2.13) and (2.18) by means of the following simulation experiments.

In Fig. 2 the diagonal entries of T'(t) are plotted. Figure 2(a) uses W, = Wy,
W, = W, and a starting value of Ty = Py, in (2.13). Figure 2(b) has the same value
for the gramians, but has a starting value of

T, =

BN W b
B W
[PUR SN RN
N QSRS W )
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L] 4.5 1 1.5 2 2.3 3

TIME ' TIME
(a) ®)

~

®

@ -
U I U NI

®
7}

0.4 8.6 0.8 1 ) ¥} 8.2 8.3 0.4

TIME TIME
@ @)
Fi1c. 2. Comparison of linear and quadratic indez flows on GL(n,R). (a) Linear flow on T
when Agin (WoW,) < %. (b) Quadratic flow on T when Amin(WoW,) < %. (c) Linear flow on T
when Apin (W, W,) > %. (d) Quadratic flow on T when Amin(WoW,) > %.

It can be observed that these Ty values give different final solutions, both of which
are generalized balancing transformations. Figures 2(c)~(d) use W, = W, W, =W,
and a starting value of Tp = P,. Figure 2(c) uses (2.13) while Fig. 2(d) uses (2.18).
Note that in this case, (2.18) converges more rapidly than (2.13).

2.3. Diagonal balancing transformations. Here we address the related issue
of computing diagonal balancing transformations T for a given asymptotically stable
minimal realization, Le., T satisfies

TW.T' = (T")"'W,T" = diagonal.

Any such diagonal balancing transformation T is of the form T'= © . To, where
Too = P;{ % is the uniquely determined positive definite symmetric balancing transfor-
mation whose existence is guaranteed by Theorem 2.1 and where O is an orthogonal
matrix that diagonalizes TooW.T, = (T5) ' W,T 5.

Let us consider a fixed diagonal positive definite matrix N = diag()y,.. 5 An)
with distinct eigenvalues AL> o> A, > 0. Using N, a weighted cost function for
balancing is defined by

(2.19) ON(T) = tx(NTW,.T' + N(T)w, 1),
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The following lemma characterizes the diagonal balancing transformations as the
critical points of the weighted cost function ®y on GL(n,R).

LEMMA 2.6. Let N = diag(A1, ..., An) with Ap > -+- > Ap > 0 and let W, W, de-
note the controllability and observability gramians of an asymptotically stable minimal
realization (A, B,C). Then

(a) T € GL(n,R) is a critical point of & : GL(n,R) — R, ®n(T) = tr(NTW.T'+
N(T)*W,T™Y), if and only if T is a diagonal balancing transformation, i.e.,

TW,T = (T")"'W,T~! = diagonal.

(b) ®n : GL(n,R) — R has compact sublevel sets. In particular, a global
minimum Tyin € GL(n,R) of ®y : GL{n,R) — R exists.

Proof. The Fréchet derivative of & : GL(n,R) — R at T is the linear map
defined by

DO N|7(€) = 2tr(NEW, T — N(T) W, T~ 1eT™1)

2.20
(2.20) = 2tr[(NTW, — (T")*W,TN(T')~1)'¢],

and therefore the gradient of ®(7) with respect to the Riemannian metric (2.12) on
GL(n,R) is

(2.21) v ®N(T) = NTW, — (T") " *W, T N(T')~ L.

It follows that T € GL(n,R) is a critical point of ® if and only if Y@ N(T) =0, i.e,,
if and only if

(2.22) NTW. T = (T')"'W,T~!- N.
By symmetry of TW.T" and (T")"'W,T~!, we obtain from (2.22) that

(2.23a) N?TW. T’ = TW.T'N?,
(2.23b) NY(THY*w, T = (T")~'W, T~ IN2.

Any symmetric matrix that commutes with N2 must be diagonal, since N2 has distinct
eigenvalues. Thus we see that (2.22) is equivalent to TW, TV = (T")"'W,T~! =
diagonal. This proves (a). For (b) note that ®x5(T) < a implies

INV2TW}2|2 <o,  |WY2T-INV2|I2 <0

for the Frobenius norm || X||> = tr(XX’). Hence ||T|| < ¢, ||T}|| < ¢, for positive
constants cy, ¢ that depend only on N, W, W, and a. Thus {T' € GL(n, R) | n(T) <
a} is a closed subset of the compact set {T' € GL(n,®) | ||T|| < ¢1, T-Y| < cp} and
therefore also compact. This shows that &y : GL(n,®) — R has compact sublevel
sets. But any continuous function f : GL(n,R) — R, with compact sublevel sets
has a minimizing T € GL(n,R). This completes the proof of Lemma 2.6. o

From Lemma 2.6 and by (2.20), similar arguments as for Theorem 2.4(a) and (b)
show the following theorem.

THEOREM 2.7. Let W, W, be the controllability and observability gramians of
the asymptotically stable, controllable, and observable realization (A,B,C) and let
N =diag(A1, ..., ) with Ay > - >\, > 0. Then
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(a) gradient flow T = ~ 7 ®N(T) of the weighted cost function ®x: GL(n,R) —
R is
(2.24) T = (") 'W,TIN(T)"! —= NTW,.

For all initial conditions T(0) € GL(n,R), the solution T(t) € GL(n,R) of (2.24)
exists for allt > 0.

(b) For any initial condition T(0) € GL(n,R), the solution T(t) of (2.24) con-
verges to a diagonal balancing transformation T, of (A, B,C).

(c) Suppose that the singular values 0 < dy < --- < dj of the Hankel operator
of (A, B,C) are distinct. Then the stable equilibrium of (2.24) are characterized by
(TL) WIS = T W.T., = D, where D = diag(d,,...,d,) is diagonal and the
diagonal entries are in reverse ordering to those of N. Moreover, the gradient flow

(2.24) converges exponentially fast to the 2" stable equilibria with a convergence rate
lower bounded by

Amin((TooTe) ™) rpg?[(di ~d;)(Aj — Ai), 4di ).

All other equilibria are unstable.

Proof. Parts (a) and (b) follow easily from Lemma 2.6, using similar arguments as
for Theorem 2.4. To prove (c), consider the linearization of (2.24) at an equilibrium
point Too; that is, where (T))) " W,T! = T W,.T., = D and

7= ~NnT'D(T)™" = DnT N(T%,)™
~ (To,) "' DN(T5) ™ = DN(T,) " 'n/(TL,) ™"
Let ( =nTZ!, then
{(ToT.) = —N(D — D(N — ¢('DN — DN(’

and thus, using Kronecker products and the vec notation, and recalling that vec(ABC)
= (C' @ A)vec(B), then

(ToTL,) ® Ilvec(() = —~[D® N + N ® Dvec({) ~ [DN ® I + I ® DN]vec(¢’).
Consider first the special case when T, T = I, and ( is denoted ¢*:
(2.25) vec((*)=~[D® N+ N ® Djvec(¢*) —[DNQI+I® DN]vec(¢*').
Then for i < j,

i

5] [ dhhd dh a1 G
* d,')\1‘+dj)\j di)\j‘*'/\idj C;z '

and for all z,
Cz*z = —4d; Mi(;.

By assumption, A; > 0, and d; > 0 for all i. Thus (2.25) is exponentially stable if
and only if (d; — d;)(A; — A;) > O for all 4, 3,7 < j, or equivalently, if and only if the
diagonal entries of D are distinct and in reverse ordering to those of N. In this case,
(2.25) is equivalent to (2.26)

(2.26) vec((*) = —Fvec(C*)



744 U. HELMKE, J. B. MOORE, AND J. E. PERKINS

4

Fi1Gc. 3. Evolution of the diagonalizing transformation T.

with a symmetric positive definite matrix 7 = F’ > 0.

Consequently, there is exponential convergence with a rate given by Apin(F) as
follows:

. . did; + Aid; did;+di .
Amin(F) =min | min;«; | A n([ v v I t ’])],mlni4di)\i>
m ( ) ( <J [ m did; + dj/\j di/\j + /\idj [ ]
= min(mini<j [di/\j + /\idj - dj/\j - di)\z']7 mini [4d,/\1])

= min(mini<j[(di - dJ)(/\J - )\i)], m1n,,[4d1/\1])

Relaxing the assumption TooTo, = I is possible since T, Ty, is positive definite
so that (TeoT%, ® I) is positive definite. Thus exponential stability of (2.26) assures
exponential stability of

(ToTL,) ® Ivec($) = —Fvec(().

The rate of exponential convergence is given by Amin[((TooT) ! ® I)F]. Now since
A=A">0,B=B" >0 implies Amin(AB) > Anin(A)Amin(B), a lower bound on the
convergence rate is given from

/\min[((TooTéo)’l ® I)ﬂ Z /\min[(TooTéo)_l ® I]’\mm(f)
= )\m;n[(TwTéo)_l] min(miniq[(d,— - dJ)(AJ - /\i)],mini [4di>‘i])

as claimed. 1]

Simulation. In Fig. 3 the diagonal elements of T'(¢) are plotted. The flow (2.24)
is allowed to evolve with W, = Wy, W, = W,, N = diag(5,4, 3,2), and initial matrix
Ty as before. At ¢t = 3,

-0.9788 0.6595 —0.1033 0.6623
—0.0807 -0.1124 —-0.7002 0.5847
0.1079 —0.4691 0.4256 0.1943
0.7586  0.5177  0.4245 0.3909

T(t) =
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and this transformation gives

0.4554  0.0017  0.0006 —0.0005
W. = 0.0017  2.7493 0.0034 -0.0000
T 0.0006  0.0034  3.3641 —0.0034 |~

| —0.0005 -0.0000 -—0.0034 11.3114

[ 0.4553 0.0021 0.0009 0.0014
0.0021 2.7496 0.0042 0.0007
0.0009 0.0042 3.3625 0.0081
| 0.0014 0.0007 0.0081 11.3090

Notice that although convergence has not been completed, the gramians are diagonally
dominant with increasing elements.

3. Differential equations for balanced realizations. In this section we con-
struct certain ordinary differential equations

A= f(A,B,C)
B = 9(A, B,C)
C = h(A, B,C)

evolving on the space of all realizations (A,B,C) of a given transfer function G(s),
with the property that their solutions (A(t), B(t), C(t)) all converge for t — oo to
balanced realizations (A, B, C) of G(s).

Let G(s) € R(s)P*™ denote an asymptotically stable strictly proper real ratio-
nal transfer function of McMillan degree n. Thus G(s) has its poles either in the
open left half-plane or in the open unit disc, respectively. We denote by (A, B,C) €
Rrx (n+m+p) an asymptotically stable, controllable, and observable realization of G (s),
e, G(s) = C(sI — A)~'B.

Let

(3.1) Re = {(4, B,C) € R**(+m+p) | G(s) = C(s] — A)"'B}

denote the set of all minimal state space realizations of the transfer function G(s).
By Kalman’s realization theorem, (8]

(3.2) Rg = {(TAT™},TB,CT!) € R**("*+m+9) | T ¢ GL(n, R)}

for any fixed initial realization (A, B,C) € Rg. Thus R is an orbit of the GL(n, ®)-
similarity action (4, B,C) — (TAT~1,TB,CT~!) on R**{ntm+p)
We consider the function

P: Rg— R
defined by
(3.3) ®(A,B,C) = tr(W.(A, B) + W,(A,C)),

i.e., by the sum of the eigenvalues of the controllability and observability gramians of
(A, B,C). The following proposition summarizes some important properties of K¢
and ®: Rg — R.

PROPOSITION 3.1. It holds that



746 U. HELMKE, J. B. MOORE, AND J. E. PERKINS

(a) Rg is a smooth, closed submanifold of R**("+™+P)  The tangent space of
Rg at (A, B,C) € Rg is

(3.4) TiapcyRe = {(XA—- AX,XB,-CX)| X € R**"}.

(b) The function ® : Rg — R defined by (3.3) is smooth and has compact
sublevel sets.
Proof. R¢ is an orbit of the GL(n, R)-similarity action

o : GL(n,R) x RPX(+m+p) _, gnx(n+m+p)
(Ta (Av 37 C)) — (TAT-I, TB, CT_I)

and thus, by a general result about algebraic Lie group actions (see, e.g., Appendix
C in [9]) is a smooth submanifold of the Euclidean space ®**(®*+™+?) By Lemma
3.3 [2], Re is a closed subset of R*("+™+P) if (A, B, C) is controllable and observable.
Explicitly, by realization theory, R¢ is a fiber of the continuous map

)
f . %n(n+m+p) - H Rpx™m

1=0

(3.5) o
(F,G,H)— (HF'G | i € NN,)

and therefore closed.
To prove (b) and (3.4), we consider the diffeomorphism

0:GL(n,R) — Rg

3.6
(3.6) T — (TAT™},TB,CT"!)

(this requires that (A4, B, C) is minimal). The derivative of o at the identity matrix
is the linear map X — (XA — AX, X B, ~CX), which maps " onto T(4,5,c)Rc-
This proves (3.4). Furthermore, with P = T'T,

®(o(T)) = tr(TW.(A, B)T' + (T'") " *W,(4,C)T~1)
= tr(W,.P + W,P™ 1),

and the result now follows from Lemma 2.1, i.e., that the function P ~— tr(W_P +

W,P~1) on the set of positive definite symmetric matrices has compact sublevel
sets. a

We now address the issue of finding gradient flows for the objective function
®: Rg — R relative to some Riemannian metric on Rg. While there are several
possible choices for a Riemannian metric on the realization space R¢, the following
one leads to a particularly simple expression for the gradient.

In the sequel, we use the Lie bracket notation

(3.7) (A,B] = AB — BA

for n X n matrices A, B.
Given two tangent vectors ([X1, 4], X;B,~CX;) and ([X2, A], X2B,-CX2) €
T(A,B,C)RG we define

(38)  ({(IX1,4), X,B,~CX3), ([X2,A],X;B,-CXz))) = tr(X1 X2).
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To prove that (3.8) defines an inner product on T(4 5 cyRg, we need the following
lemma.

LEMMA 3.2. Let (A, B, C) be controllable or observable. Then ([X, A}, XB,-CX)
= (0,0,0) implies X = 0.

Proof. If XB = 0 and AX = XA, then X(B,AB,...,A""'B) = 0. Thus
controllability implies X = 0. This is also true for observability. O

It is now easily seen, using Lemma 3.2, that (3.8) defines a nondegenerate sym-
metric bilinear form on each tangent space T4 5.c)Rc and in fact a Riemannian
metric on Rg. We refer to this as the normal Riemannian metric on Rg.

To determine the gradient flow of ® : Rg — R with respect to the normal
Riemannian metric, we need a lemma.

LEMMA 3.3. Let N € R™*™ be a real symmetric n x n matriz and let 5 : Rg —
R be defined by ®n(A4, B,C) = tr(NW (A, B) + NW,(A,C)) for all (A,B,C) € Rg.
Then the Fréchet derivative of @y at (A, B,C) € R 1is the linear map D®n (A, B,C) :
T(A,B,C)RG - R deﬁned by

(3.9) D®y(A, B,C)([X,A], XB,~CX) = 2tr[(W.(A, B)N — NW,(A,C))X]

for X € gnxn",

Proof. Let o : GL(n,R) — R¢g be the diffeomorphism defined by o(T) =
(TAT Y, TB,CT~!). The derivative of ¢ at the identity matrix I, is the linear
map X — ([X,A],XB,-CX) on R**". By the chain rule for the composed map
&y o o defined by

&y (o(T)) = tr(NTW (A, BYT' + N(T’)‘IWO(A,C)T‘I),
we have

DO (o(In))([X, A], -XB,CX) = D(®n o 0)(In)X
= 2r(NXW.(A,B) - NW,(4,C)X)
— 24r((We(4, B)N — NW,(4,C))X]
for all X € ®™**™. The result follows. 0
THEOREM 3.4. Let & : Rg — R be the objective function defined by (A, B,C) =
$tr(W.(A, B) + Wo(A,C)).
(a) The gradient flow (A = —grad ;®(A,B,C),B = —gradz®(4,B,C),C =
—grad ,®(A, B,C)) of ® for the normal Riemannian metric on Rg is
A=[A,W,(AC) - WA, B)]
(3.10) B = (W,(A,C) - W.(A, B))B
C = C(W.(A, B) — W,(4,0)).
For every initial condition (A(0), B(0), C(0)) € Rg, the solution (A(t), B(t),C(t)) €

Rg of (3.10) exists for all t > 0 and converges for t — +oo to a balanced realization

(4, B,C) of G(s):
W.(4,B) = W,(4,0C).
(b) Convergence to the class of balanced realizations is exponentially fast.

(c) The transfer function of any solution (A(t), B(t),C(t)) of (3.10) is indepen-
dent of t.
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Proof. By definition of a gradient,
grad®(A, B,C) = (grad 4®(4, B, C),grad g ®(4, B, C), grad - ®(A, B, C))
is characterized by the properties (see the Appendix)

(3‘113.) grad@(A, B, C) S T(A,B,C)RGy
and

for all X € R™*™. By Proposition 3.1 and Lemma 3.2,
(3.12) grad®(A4, B,C) = ([A,A]l,AB,—-CA)

for a uniquely determined A € R**". Applying Lemma 3.3 for N = %In, we see that
(3.11b) is equivalent to

tr[(WC(A’ B) - WO(A> C))X] = <<([A7 A],AB, _CA)7 ([A7X]’XBv _CX)>>
= tr(A’'X)

for all X € ®**". Thus
A =W.(A,B) - W,(A,C)

and grad®(A, B,C) = ([4,A],AB,—CA). This proves (3.10). Since (3.10) is minus
the gradient flow of ®, ®(A(t), B(t),C(t)) decreases on any solution of (3.10). By
Proposition 3.1(b), {(4,B,C) € R¢ | ®4,B,C) < (4(0),B(0),C(0))} is a compact
subset of R¢, which is invariant under the flow of (3.10). Therefore (A(t), B(t), C(t))
stays in that compact subset and thus exists for all t > 0. The equilibria of (3.10) are
characterized by W (A, B) = W,(A4, C), i.e., by the balanced realizations. This proves
(a), except that we have not yet established convergence to an equilibrium point.

To prove (b), we consider the diffeomorphism ¢ : GL(n,R) — R¢ defined by
o(T) = (TAT~',TB,CT ) for any (A, B,C) € Rg. At each critical point, (4, B, C)
of ® : Rg — R, o induces an invertible congruence transformation between the Hes-
sian of ® : Rg — R at (4, B,C) and the Hessian of ® o ¢ at I,. By (2.16) and the
proof of Theorem 2.4(c), the Hessian of ® oo at I, is positive semidefinite and degen-
erates exactly on the tangent space (at I,) of the set of balancing transformations.
Therefore the Hessian of & at a balanced realization (A4, B, C) is positive semidefi-
nite and degenerates exactly on the tangent space of the set of balanced realizations
at (A,B,C). (N.B. By Lemma 2.5, the set of balanced realizations of G(s) can be
shown to be a smooth submanifold of Rg.) This proves (b). As ® : Rg — R is
now seen as a Morse-Bott function, we can apply Proposition A.3 to conclude that
(A(2), B(t),C(t)) converges to an equilibrium point.

Part (c) is obvious, as the flow evolves on Rg. 0

We emphasize that Theorem 3.4 gives, for the first time, a direct method to
compute balanced realizations, without computing any balancing transformations.
We regard this as one of the really new insights that can be obtained by our ODE
methods.

Remark. As is shown in the above proof, any flow on symmetric matrices

A=—[A A(A, B,C)]

B=-A(A,B,C)B
C = +CA(A, B, C)v
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where A(A4, B,C) € R"*" is an arbitrary matrix valued function of (A, B,C), leaves
the transfer function

G(t,s) = C(t)(sIn ~ A(t)) ' B(t) = C(0)(sI — A(0)) ™' B(0)

of the system invariant. We therefore term these flows isodynamical and a more
systematic analysis of such flows is given in [9]. Obviously, these flows leave the
eigenvalues of A(t) invariant and in fact generalize the class of isospectral flows on
matrices, obtained by letting B = 0,C = 0; see, e.g., [1], [3], and the references
therein.

Simulations. Figures 4(a)—(c) show the evolution of the system matrices (4, B, C)
using this algorithm. In this example, the starting matrices are chosen to be

-3 0 0 2 2
(3.13) A=| 0 -2 o |, B=|3]|, ¢=|11],
0 0 -1 1 3

and after ten “time intervals” the gramians are equal to three significant figures.
A similar “isodynamical flow approach” works also for obtaining diagonal bal-
anced realizations. Here we consider the weighted cost function

@NZRG—’%,

(3.14) ®n(A,B,C) = %tr[N(Wc(A,B) + Wo(A,C))]

for a real diagonal matrix N.

THEOREM 3.5. Let &y : Rg — R be the objective function defined by (3.14) for
N = %diag()\l,...,)\n),)\l > >, >0

(a) The gradient flow

(A= —grad,®n(4,B.C),B = —gradg®n (4, B,C),C = —grad®n(4, B,C))
of @ with respect to the normal Riemannian metric on Reg 18

A=[A,NW,(A,C)—W.(A, B)N]
(3.15) B = (NW,(A,C) - W.(A,B)N)B
C = C(W.(A,B)N — NW,(4,0)).

For every initial condition (A(0), B(0),C(0)) € Rg, the solution (A(t), B(t),C(t)) €
Rea of (3.15) exists for allt > 0 and converges for t — +00 to a diagonal balanced
realization (A, B,C) of G(s), i.e., Ws(A, B) = W,(4, C) = diagonal.

(b) Suppose that the singular values of the Hankel of (A, B,C) are distinct. Then
(3.15) has ezactly 2™ locally asymptotically stable equilibrium points (4, B, C), charac-
terized by W.(A, B) = W,(A, C)=diagonal, with the diagonal elements in the reverse
order to that of N. All other equilibria are unstable.

(c) The transfer function of every solution (A(t), B(t),C(t)) of (3.15) is inde-
pendent of t.

Proof. The proof runs similarly to that of Theorem 3.4, now applying Lemma
3.3 for N = %diag()\l, ..., An) and using Proposition A.3. The only points we must
check are that the equilibria of (3.15) are just the diagonal balanced realizations and
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Fi1G. 4. Evolution of the system matrices (A, B, C).
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their stability. But the equilibria of (3.15) are the critical points of &y : Rg — R
and hence correspond to those of @y 0o : GL(n,R) — R. The result now follows
from Lemma 2.6, and Theorem 2.7. 0

Simulations. Figure 5 shows the evolution of the matrices (4, B,C) for (3.15),
with starting condition given in (3.13), and N = diag(3,2,1). After 30 “time intervals”
the solution gives

2.7720 0 0 2.7750 0 0
W, = 0 0.1367 0.0214 |, W, = 0 0.1367 0.0212
0 0.0214 0.0048 0 0.0212 0.0067

as opposed to the true balanced solution W, = W, = diag(0.0021,0.1401,2.7744).
The convergence in this case can be expected to be slow because the smallest Hankel
singular value is near zero.

4. Application to SVD. The common linear algebra problem of SVD can be
solved using differential equations. Gradient flow solutions for SVD have been studied
in (3], [4], [6], and [7]. Here we consider SVD to be a special case of the balanced
realization task.

THEOREM 4.1. Given an m x n matrizc H of rank r with distinct singular values
o1 > - > 0p. Let N be anrxr diagonal matriz with distinct positive diagonal entries.
Let Xo € R™*" and Yo € R™*™ be matrices of full rank r such that H = XyYy. Then
the solution (X (t),Y (t)) of

(4.1a) X =X(NYY' - X'XN), X(0)=Xo,

(4.1b) Y = (X'XN-NYY)Y, Y(0)="Y,

exists for allt > 0 and satisfies H = X (t)Y (t) for allt > 0. The solution (X (t),Y (1))
converges 10 (Xoo, Yoo) such that H = XYoo and X' X oo = Yoo Y., = D = diagonal.
Moreover, there are 2" stable equilibria that have the diagonal elements of D in reverse
order to those of N. All other equilibrium points are unstable.

Furthermore, this factorization yields H = USV, where U = X, oD~Y/2, § = D,
V=DV, UU=IVV =1

Proof. In Theorem 3.5, set A = 0 and let B, C be full rank matrices. Clearly,
(A, B,C) is controllable and observable. Then W, = B'B,W, = CC' and (3.15) is

equivalent to
(4.2) B=~-(CC'N-NB'B)B, C=C(CC'N~NB'B).

The equilibria of (4.2) are characterized by B'B = CC’ = diagonal, and the stable
equilibria are such that B’B is in reverse order to N.

As (4.2) preserves the transfer function, CB is constant. Hence (4.1) with X = C
and Y = B converges to a diagonal balanced matrix factorization H = X5 Ye. By
choosing U = XooD™Y/2, 8§ = D,V = D-'/2Y__, then

USV=XeoDY?DD™ V% = XYoo = H, U'U=D"Y?X. X,oDV?=1,

and VV' = D=Y2Y, Y. D™%/2 = ]. The full singular value decomposition can be
obtained by extending U and V to make them orthogonal. 0
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5. Conclusions. There are a number of distinct ODEs that evolve to give the
solution to the task of finding a balanced realization of a system or to the task of find-
ing the SVD of a matrix. Each differential equation has distinct transient behaviour
but all have exponential convergence rates of the factors. The dynamical systems for
balancing gramains that were investigated evolve on either spaces of state coordinate
transformation matrices 7', its square P = T'T, or on manifolds of the actual system
matrices (A, B, C). Similar equations for SVD are studied and are a special case of
the balancing equations. Different convergence properties make some algorithms more
attractive in certain problem settings. These solution methods may be useful when
using analog or parallel computers.

Appendix. Riemannian metrics and gradient flows. Let M be a smooth
manifold and let TM and T*M denote its tangent and cotangent bundle, respectively.
A Riemannian metric on M is a family of nondegenerate inner products <, >, defined
on each tangent space T, M, such that <,>, depends smoothly on x € M. Any
(nondegenerate) inner product on R™ also defines a Riemannian metric on & (but
not conversely) and thus induces a Riemannian metric on every submanifold M of
R~

Let ® : M — R be a smooth function defined on the manifold M and let D :
M — T*M denote the differential, i.e., a section of the cotangent bundle 7*M. To
define the gradient vector field of ®, we fix a Riemannian metric <,> on M. The
gradient s7® of ® is then characterized by the following properties:

Compatibility condition (a). D®(z)§ = (V®(z),€) for all £ € T, M.

Tangency condition (b). v®(z) € T M for all z € M.

The following result is well known.

PROPOSITION A.l. There exists a uniquely determined vector field 7® on M
such that (a) and (b) hold. \7® is called the gradient vector field of ®.

Note that the gradient vector field depends on the choice of the Riemannian
metric; changing the metric will also change the gradient.

It follows immediately from the definition of </® that the equilibria of the differ-
ential equation

(A1) £(t) = — v ®(z(t))

are precisely the critical points of ®. Moreover, the linearization of the gradient flow
(A.1) around each equilibrium point is given by the Hessian of ® and thus has only
real eigenvalues.

For any solution of (A.1),

2 (z(t)) = 1| v o)

and therefore ®(z(t)) is monotonically decreasing. The following standard result is
often used in this paper.

PROPOSITION A.2. Let ® : M — R be a smooth function on a Riemannian
manifold with compact sublevel sets, i.e., for all c € R the sublevel set {x € M | ®(z) <
c} is a compact subset of M. Then every solution z(t) € M of the gradient flow (A.1)
on M ezists for allt > 0. Furthermore, z(t) converges to a connected component of
the set of critical points of ® as t — -+oo.

Note that the condition of the proposition is automatically satisfied if M is com-
pact. Moreover, in suitable local coordinates of M, the linearization of the gradient
flow (A.1) around each equilibrium point has only real eigenvalues.
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Let M be a smooth manifold and let & : M — R be a smooth function. Let
C(®) C M denote the set of all critical points of ®. We say ® is a Morse-Bott
function provided the following three conditions (i), (i), (iii) are satisfied.

(i) ®: M — R has compact sublevel sets.

(ii) C(®) = U§=1 N; with N; disjoint, closed, and connected submanifolds of
M, such that ® is constant on N;,j=1,...,k.

(ili) Ker(Hess®), = T.N; forallz € N;,j=1,...,k.

Actually, the original definition of a Morse-Bott function also includes a global topo-
logical condition on the negative eigenspace bundle defined by the Hessian, but this
condition is not relevant to us.

Recall that the w-limit set L, (x) of a point z € M for a vector field X on M is the
set of points of the form lim,, o ¢:,(z), where (¢;) is the flow of X and ¢, — +oc.
Similarly, the a-limit set Ly(x) is defined by letting ¢, — —oc instead of +oc.

ProrosITION A.3.

(a) Suppose ® : M — R has isolated critical points. Then L, (z),x € M, consists
of a single critical point. Therefore every solution of the gradient flow (A.1) converges
fort — 400 to a critical point of ®.

(b) Let ® : M — R be a Morse-Bott function on a Riemannian manifold M.
Then the w-limit set L, (z), x € M, for the gradient flow (A.1) is a single critical
point of ®. Ewvery solution of the gradient flow (A.1) converges ast — +0o to an
equilibrium point. .
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