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Abstract

This paper addresses certain functional learning tasks in signal processing using fa-
miliar algorithms and analytical tools of least squares for autoregressive moving average
exogonous input (ARMAX) models. The models can be viewed as conventional ARMAX
models but with parameters dependent on variables such as inputs or states. termed func-
tion input variables. The functional dependence of the parameters on these variables is
represented in terms of basis function expansions, or more generally interpolation func-
tion representations. The interpolation functions in a least squares identification of co-
efficients also turn out to be in essence spread functions that spread learning throughout
the space of function input variables. Thus for a set of training sequences, or trajecto-
ries in function input space, system parameters and thereby system functionals can be
updated. The idea is that these will have relevance for similar sequences or neighbouring
trajectories.

The concept of persistence of excitation to achieve complete function learning, or
equivalently, signal model learning is studied using least squares convergence results.
Application of the proposed algorithms and theory within the signal processing context
is addressed by means of simple illustrative examples.

1 Introduction

The current neural network literature has highlighted the task of functional
learning for application within the fields of control systems. and signal process-
ing. The idea is that some input-output function f(-) is learned by means of
a training sequence of function inputs z; and outputs y, for £ = 1,2,...,r as
f(:). The function estimate f(-) can then be used to achieve outputs y from
inputs z as y = f(z).

Of course, neural networks are usually restricted to the set of parametriza-
tions for f(-) in terms of suitably parametrized sigmoid functions and weights in
a multilayer network. The parameters and weights are learnt by various methods
including backward propagation, and extended Kalman filters [1]. The repre-
sentations are such that the functions are not linear in the parameters/weights
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so that standard least squares or weighted least squares parameter estimations
techniques do not apply.

For a number of reasons it would be of interest to pursue the role of least
squares techniques for functional learning where the functions are linear in the
parameters (weights). Least squares methods can be truly recursive in that
estimates can be updated as each new measurement arrives. They are readily
implemented. Also their convergence properties are relatively weil understood
within the adaptive control and signal processing context where they are ubig-
uitous. It has been a natural development for such adaptive methods to evolve
towards learning systems where the underlying task is functional learning rather
than parameter estimation. Thus in the trivial functional learning environment
when the function is linear and constant. it is appealing for the learning al-
gorithms to specialize to the well understood least squares based parameter
estimation schemes.

A key property of least squares algorithms is that their convergence depends
on certain excitation conditions of the regression vectors, which in turn depend
on external excitations. This property in the adaptive estimation context should
carry over to the functional learning context. In earlier studies [2][3][4], the
concept of functional persistence of excitation is developed for continuous-time
deterministic systems in an infinite dimensional setting working with integral
operators. The kernel functions allow information to spread in the function
input space. Application studies for the control of robots are performed using
discrete-time and gradient or least squares ideas. From this work, the question
that naturally emerges is: What are fundamental resuits concerning functional
learning and persistence of excitation in a least squares stochastic identification
context?

In this paper we interpret a class of functional learning tasks as least squares
parameter estimation tasks, or a system of lower order least squares parameter
estimation tasks performed in parallel. One of the main ideas used in the paper
is that in learning a function f(-) at a point v from input-output measurements
Tk, Yk, the closer zj is to v, the greater the influence of the pair zy, y; should
be in learning j(v). Thus for z, in the neighborhood of «, the associated
weightings are high relative to weightings for z; outside the neighbourhood of
7. The weightings then control what can be termed the spread of learning.

The algorithm we propose, in its most general form, seeks function esti-
mates, or rather function parametrization estimates at a set of points I'; =
[¥1,72s - - s 7= in the function input variable space I';. As each new measure-
ment pair Ti,yx arrives, estimates on I'; are updated with the learning being
strongest in the neighbourhood of z; and diminished or even zero outside this
neighbourhood. With estimates at I';, then an interpolation function can be
used to give estimates on I';. In fact, in our algorithm, the interpolation func-
tion is also used to control the spreading out of learning. Because of this dual
role for the interpolation function, we must select bisigmoidal functions K;(z)
which decay to zero outside the neighbourhood of 4;. Thus polynomial, spline,



and Fourier basis or interpolation functions are not an appropriate practical
choice, although some of our formulations allow such function representations.

A second main idea of the paper concerns the convergence of least squares
algorithms in the functional learning context. Known convergence theory for
the least squares algorithms can be applied. Thus in any calculation. conver-
gence behaviour can be estimated on line in terms of persistence of excitation
measures on variables used in the calculations. under appropriate assumptions.
It is of course desirable to transiate such excitation conditions onto external
variables. We claim that the (functional) persistence of excitation conditions
for consistent estimation of the function, under function reconstructability con-
ditions are a natural generalization of the available theory for the parameter
estimation context, making connections to related work [4].

So as to generalize least squares based adaptive schemes in signal processing
and control, we will work with signal models which are natural generalizations
of familiar input-output models in these fields.

We desire to learn the functional representation of the coefficients of the
discrete-time "ARMAX” equation. specialized to the white noise case. namely

A(.’Ek)yk = B(mk)uk + Wy (1.1)

where w,, is zero mean white Gaussian noise. u; € ', the set of allowable inputs.
and z; € [';, the set of allowable function input variables. The vectors xi, yi,
uy are measurable at time k. Here A(zy) = 1 +ay{ze)g™ ! + ... + a,(zk)g™™ and
B(zk) =1+ bi(ze)qt + ... + bp(zi)g~™ where ¢~} is the unit delay operator.
Given a set of noisy measurements {zx, Y, s} we propose two different types
of least squares algorithms to estimate (possibly matrix or vector) function
representations f(z) of the coefficients a;(-), b;(-).
Of course. (1.1) is a special case of the more general form

Y = <I>'k@(a:k) + Wi (1.2)

When specialized to (1.1), then (1) = {a1(-) ... an(-)b1(*) ... bm(")] and &} =
[Yke1 .+ YkenUk—1 - - - Uk—m]. Our objective is to estimate the (vector or matrix)
function ©(-) from knowledge of the sequences z, yi, Pi.

One example where functional learning in dynamical systems can arise is in
gain scheduling for an aircraft controller where the function input variables xi
are the speed and altitude of the aircraft and f(zy) is the gain schedule. Another
possible application area is in robotics, [4], where z; could be the position, and
orientation, of the robot hand in space. In these two cases the parameters of the
linear system are functionally dependent on the position. The optimal control
is then also a function of position. The aim is to learn the control function given
calculations at discrete points.

In Section 2, some theorems are reviewed about functional representation,
and least squares convergence. In Section 3, the standard type of least squares
method is applied to functional learning, and in Section 4 the idea of interpolat-
ing functions is exploited for this context. Section 5 has some simulation results



and observations on practical implementation. In Section o. areas that require
further investigation are discussed and conciuding remarks made.

2 Preliminary Definitions and Theorems

This section on functional representation. and least squares convergence can be
used as reference material for some of the resuits in the paper.

2.1 Function Representation

For some of the results to follow we focus on representing a function as a sum of
simply parametrized functions. termed here representation functions. Examples
of such representation functions are sigmoids, and bisigmoids. The definition of
these functions are now recailed.

Definition 2.1 A scaiar sigmowd function of a scalar variable t is one of the
form

1 t—-x
10t ==

This general definition dues not require continuity, however the sigmoids we are

interested in are continuous. An example of such a scalar sigmoid function is
o(t) =(l+e )7L

Definition 2.2 A scalar bisigmoid is the difference of two offset sigmoid func-
tions with the property

0 t—= o
0 t—= -

op(t) = oit) — ot = 1) = {

We are interested in integrable bisigmoids generated by a monotonic sigmoid.
An example of such a scalar bisigmoid is oy(t) = (1 +e™ )7L — 1 + e~ 7L

Another function that is of interest is the familiar Gaussian function with
covariance I, assuming |T,| = 0, is o(t) = {/271Z;]) " Lexp( =S /2).

A theorem about functional representations on a compact interval is now
reviewed. This theorem gives conditions for approximating an arbitrary inte-
grable function to an arbitrary accuracy using a given error measure. These
conditions justify the use of continuous sigmoids and integrable bisigmoids as
representation functions.

We use the notation that /R is the set of real numbers, N the set of natural
numbers. Consider

G:R- R
Let us define

r

Y (G) = {g:9(z) =3 B,G(¥;z +z);z,y; € R",q € N, z,53; € R}
i=1



Theorem 2.1 Denote the unit cube in IR™ by I,. If G(-) € L*. the space of

absolutely integrable scalar functions, and [; G(t)dt # 0. then 7(G) is dense
im LMI,)

Proof the proof of this can be found in (6] a

Similar theorems are given in {6},[5] that give conditions for dense function
representations over the space of continuous functions. An immediate conse-
quence of this theorem is that sums of continuous integrable bisigmoid functions
are dense. in the L! sense, and can approximate integrable functions over finite
domains.

2.2 Least Squares Convergence

The theory of least squares gives a method of finding the constant coefficient ¢
of the equation

yk=<b’k0+wk (21)
where y; 1s an m vector, &, is an r X m matrix. ¢ is an r vector, and wy is an
m vector of white Gaussian noise. independent of ¢, and 6. Here the task is

to select 4 as to minimize a weighted square of the error. That is to minimize
with respect to ¢

k
Ve(Q) = T 3 (0s — B0 Wilus — ) (22

=0

Where W, = W] > 0 are the weighting matrices. The optimal ¢ at time &,
denoted 8, is given from the recursion

O = 0h_1 + Pu®iWilye — ®i0k1) 5 4o (2.3)

Pit =P + & Wi, s Po=Fi>0 (2.4)
where P; is an m X m matrix, and with appropriate initial conditions.
Theorem 2.2 Consider the weighted least squares algorithm (2.3) (2.4) applied
to the signal model (2.1). Then, as k — oo, P, — Py, 6; — 0, a.s.. Con-
sider also that 6 is a random variable with a normal probability density function

N{by, Po], and that the noise wy is independent with a probability density func-
tion N[0, W], then the conditional distribution of 8), given v ...y has mean

0 given by (2.3) and covariance Py given by (2.4). Moreover, if Py, = 0 a.s.,
then iMoo O = 9 a.s..

Proof The proof of this can be found in [7]. ]



Remarks:

1. Actually, if the regression vector @, is not influenced by the estimates
O, then the initial condition restriction in the theorem can be relaxed. as
indeed can the interpretation of W' as a noise covariance. See (7.

2. Convergence rates for §, are according to the convergence rates for P,.
Precise results on this can be found in [8] for the case when 8 is not required

to be a random variable. Thus with w; a martingale increment process with
bounded second moments.

log(tr( Py h))

16, — 811° = O( L2y a.s. (2.5)
’\min(Pk l)
where Ani, denotes the minimum eigenvalue. Of course. if for all 7, and
some V,
R
>+ Y dWd! > af a.s. (2.6)
N =

then |6, — 0112 = O(k~!logk).

3. In the noise free case it can be shown that the convergence of 4, to 6 is at
least exponential when $; satisfies (2.6).

3 Least Squares via Basis Functions (one dimensional
problem)

3.1 The Signal Model

Here we examine a standard problem in (deterministic) approximation theory,
in order to gain insights for the (stochastic) learning problem which is the
focus of this paper. In particular. we work with basis function expansions and

employ least squares parameter estimation for estimating the coefficients in a
basis function expansion.

Consider for simplicity the square integrable functions

file—= R, z—y= f(z) (3.1a)
K;:T, - R,z — K(z) (3.1b)

where I'; C [R. Let us investigate finite representations estimating f(z) of the
form

fl2:0) = 3 Ki(e)ds = Kp(a)0 (32
where

-

Q=[2G Gl , Kp(z) = [Ki(z), Ka(z), -, Ka(2)]



Here K;(-) are known square integrable basis functions and @ is a parameter
vector estimate.

We observe data points (z, yx) generated as:

Ye = flTk) + wy

where wy is a sequence of white Gaussian noise independent of position z.

3.2 Maeasures of Error and Minimization Task

We consider now in what sense we wish the function representation to approxi-
mate the function. Let us work with a global measure of the error f(z)— f(z; Q),
for all z € ', under (3.1a), (3.2). An example of such a measure is

Q) = ([ 1I7(a) - f(z Q)| *daf* (3.3
which is the mean square error measure. With f(z;) available only at a discrete

set of points z, € [',, it makes sense to consider a restricted measure of the
mean square error as

Zl\f zx) — f(z; Q))7]2 (3.4)

In approximating functions (3.1a) by function representations (3.2), the mini-
mization task we focus on is as follows

min da(Q) (3.5)
Q
or the closely related index )
min di”(Q) (3.6)
Q

Remarks

1. It is really the error measure d»(Q) that is of interest, because this gives a
measure of the error at both the points that have been visited and those for
which a function estimate is given. In any application only measurements
at a finite set of points are available so d({)(Q) is the only realistic error
measure to work with. In the situation that f(z) is smooth and the points
) are chosen in a uniformly dense way, then standard calculus theory tells
us that the d({) error measure approaches the d, error measure.

2. Another example of an error measure which is appropriate in some situa-
tions is

4(Q) = max|| (=) ~ F(z; Q)|



There is in fact a whole family of possible error measures of the form

Q) = [ lf(z) = flz: Q)lpdaly

which may have merit for particular applications. In the sequal however
we are concerned only with the d, error measure.

3. The error measure only considers the functional representation on the re-
gion I';. It will be dependent on the aplication as to whether values should
be truncated outside this region or not.

3.3 Allowable Basis Functions and Reconstructability

If one function f(z) is to be represented as a sum of other functions. it is
necessary that the possible function summations f(:r, Q) be sufficiently rich to
allow a reasonable approximation. Representation theorems like 2.2 are im-
portant in giving conditions as to what functions can be used in such repre-
sentations. There are obvious disadvantages if there exist @, # Q, such that
f(z,@Q1) = f(z,Q,) for ail £ € [',. It is also necessary that the measurements
that are used to choose the function representation are sufficiently rich to char-
acterize the behaviour of the function being approximated. There is a need in
some of the theory to follow for restrictions on the function representations as
well as on the class of function that is estimated. Of particular interest are

allowable basis function representations and the class of reconstructable func-
tions.

Definition 3.1 The set of square integrable basis functions Ky(z) is termed
allowable if and only if

x > [/F Kg(z) K (z)dz] > 0 (3.7)

Definition 3.2 The function f(z) 1s said to be reconstructable if it is in the
model set of functions f(z; Q) of (3.2) that is

f(z) = Kx(z)Q for some vector Q. (3.8)

Theorem 3.1 The minimization task (3.5) under (3.1a) (3.2) has a unique
critical point if and only if the elements of Kg(z) are allowable. This optimal
@, denoted Q*, is given by

Q= (/F: Kzs(a:)Kjg(az:)ala:)“/P f(z)Kg(z)dz (3.9)

Moreover, when f(z) is reconstructable with respect to the class of functions

f(z;Q) of (3.2), then f(z) is uniquely parametrized as in (3.8) with Q = Q*
given in (3.9).



Proof Consider the minimization of d, under (3.1a) (3.2) as in (3.8). Upon
differentiation, it is evident that any critical point must satisfy

- Q/P Ka(2)[f(z) = Kiy(z)Olde = 0. (3.10)

The critical point is unique if and only if (3.7) holds and is given by (3.9). Under

(3.8), Q = Q*. a
Remarks:

1. If Kg(z) is not allowable, then there will be an infinite number of critical
points of the minimization.

2. As n increases, the class of reconstructable f(z) becomes larger. In order to
represent an arbitrary function with arbitrarily small error, it is necessary
that n approach infinity.

3. For f(-) known to be frequency band limited in a spatial sense. suitable
choices of K, are ‘
oy _ ) sin{3z) ieven
Ki(z) = { cos(:5tz) iodd
For f(-) known to be a polynomial of degree less than or equal to some
fixed value, an appropriate choice would be

K‘(.’B) = .Tli

Definition 3.3 The set of ppoints i is sufficiently rich on Kg(-) if for all k,

~ -

f(zk’ Ql) = f(xk»QZ) then Ql = QZ'

This is an obvious discretization of the condition that @ is uniquely deter-
mined. A necessary and sufficient condition to guarantee that z, is sufficiently
rich is that -

ZKB(zk)Kiy(xk) >0 (3.11)
k=3
A stronger condition is that there exists an /V such that for all j > 0

1 J+N

§I > yi Y Ka(zx)Kp(ze) >nl >0 (3.12)
=3

for some 6,7 > 0. This condition is termed persistence of excitation, and means
that in every set of N measurements there is sufficient information to choose a

unique Q, thus giving fast learning. Observe that Kp(z) being allowable is a
sufficient condition for the existence of such persistently exciting sequences.



3.4 Recursive Least Squares Algorithm

In order to minimize dff’ of (3.4) for r = 1.2,..., given a sequence {1, it },
standard least squares derivations leads to a recursive estimate of Q. denoted

@k, as ) ~ .
Qr = Qi_1+ P}CKB(.Ek)[yk - !r’\’lB(CEk)Qk_Q (313)
Pt = Pl — Rploe) Ky(zk) (3.14)
with suitable initial conditions Qo, Py=F)>0.

Theorem 3.2 Consider that K is allowavie as defined in 13.7), and f(-) is
reconstructable with regard to f(-;-) of (3.2). Then provided the P, as defined in

(3.14) approach zero as k — o, the parameter estimates Q of (3.13) converge
as

Lim Qr = Q" as. (3.15)
If the persistence of excitation condition 13.12) is satisfied then
FrCPY), Amin Pr) = O0R) a.s. (3.16)
and . .
1Qk — Q1> = O(k™ ' log k) a.s. (3.17)
Proof Standard least squares theory of Theorem 2.2 applies a
Remarks:

1. The condition (3.12) can be seen to correspond to the continuous time
persistence of excitation condition (3.3) in [4].

2. What happens if f(z) is not reconstructable but K is allowable? There
1s a reconstructable f*(r) that is closest in mean square to f(z). The
difference between f(z) and f*(z) is orthogonal to Kz(z) and hence the
learning of f*(x) from vy is covered by Theorem 3.2.

3. In the non persistence of excitation case, where
o
P = (> Kplze)K5(z)) ' =0
k=0
the algorithm still converges with a rate given “looselv” by the rate of

convergence of Py to 0.

4. Of course, by monitoring Py it would become clear if P, /4 0. To achieve
convergence more excitation of zy is required. In any practical applications,
persistence of excitation could be a difficult property to ensure a priori.
(See Remark 2 following Theorem 2.2)

10



5. In applying the basis function approach. as above. to the signal model
(1.2). there are two possible approaches. The first is. in the case when
d; = d(zy), to estimate the product ®'()O(-) as the unknown function.
ignoring the fact that ¢, is known. This would be particularly unattractive
if ©(-) is a simple function and ®; is not. The second approach is to
introduce ¢, into the analysis replacing Kg(z) by KB(J:) 2 dr. where @
denotes the Kronecker product. Of course. then limy o + Silo(Kp(ze) 3
P )(Pr & Kp(xy)) will not generally be diagonal. Consequently, there is no
particular advantage to work with orthogonal Kg(-). This second approach
is developed further in the next section.

4 Interpolation Functions in Least Squares

4.1 Signal Model

Consider now a method for identifying signal models (1.2) using interpoiation
function representations for @(z). Thus ©(r) is approximated as

z:Q) = \“A (2)G: (4.1)

1= 1

with Q' = (¢, - - ¢.,]. Here ¢, is an m vector, Q is an mn vector and K,(z) is a
scalar function of . Here 'y = {v1,72,...,7a} Is a preselected set of points in
I'., and we work with K,(z) as a scalar interpolating function between the points
in I'; and those in I',. Of course. one could specialize K;(z) to be orthogonal
basis functions so that (4.1) is a basis function expansion. and build on the
methods of the previous section. Here we prefer to think of §, as close to O(v;)
so that (4.1) allows an interpolation for z ¢ I';. Given K,(-), and estimates of
g, then ©(z; Q) can be evaluated at any z using (4.1).

4.2 Reconstructability

Under reconstructability of @(z) as a function O(z; Q) of the form given in (4.1},
then for some parameter vector Q, denoted Q*, O(z; Q) satisfies @(:z: Q%) =
®(z). Thus in the case that K,(z) are integrable bisigmoids suitably shifted
by affine maps, Theorem 2.1 tells us that as n becomes infinite, the class of
functions (4.1) are dense in the space of continuous functions. Now under
reconstructability, (1.2) can be written as

e = B Z Ki(z)q} + w, = (i) Q" + wi (4.2)

1=1

where [with scalar K,(-)]
i(zi) = [Ki(ze) P, Ka(zk)® - Kalzk) Pl = Ki(ze) © &4 (4.3)

11



Ki(zr) = Ki(ze) Ka(zk) - Ko(ze)]

Here ®;(-) is known. and @* is to be estimated.

4.3 Allowable Interpolation Functions

Using the methodology of Section 3.3 we find conditions that allow unique
identification of ). This requires conditions on both the basis function A, and
the data sequence, as in Section 3.3.

The class of allowable K(-) is equivalent to the class of allowable K(-).

The condition for unique identifiability using discrete measurements requires
now that

i <I>1(:z:k)<I>’I(a:k) >0

which 1s dependent on both the state domain xz; trajectory in I'; and the time
domain regression vector ;. It is not immediately clear how to interpret this
excitation condition when excitation in both the time domain and the state

domain are invoived. OUne wav to indicate the difference between &, and z; is
to use time scale separation.

Definition 4.1 Suppose there 1s qiven a continuous function N;(x) with a Lip-
shitz constant ¢, such that 0 < Ky(z) < 1, Jr, Ki(z)K)(x)dz > al, and a
sequence ®,. Then the transformation T(xy) ts said to be slowly varying with
respect to @i, and Ky, if 3 ane < énaﬂ‘lc‘l, N, «, 3 such that for all k

(T 2z — 2]l <€ W€ {0,1,---, N}

1 +N-1
and 31 > N Z ¢ P, >al >0 hold. (4.4)
N k=t

Theorem 4.1 Assume that bI > [, K(z)K}(z)dz > al > 0. and @, satisfies
(4.4). Assume also that {z,}§® is gwen by zx = T(zk-1) where T is a mapping
from 'y to T'y such that z, satisfies (3.12), and is slowly varying with respect
to ®r, K;. Then $;(-) satisfies

1 +5-1
8> 5 S @p(zi)®(zk) > 61 >0 (4.5)
k=l

for some finite S,3,6 and all .

Proof By the definition of ®;, then simple manipulations give,

1 S-1 1 S-1
§ (I)[(.'Bk>(I)I(.’Bk Z KI .’Bk KI(Ik) ® (Dk'@k
k=0
N S/N (3+1)N-1
?Z z,NK,:L‘,N)®N Z ¢ P, + R
1=0 k_“lN

12



where the remainder can be overbounded by |R| < ZGCB. Because z; are per-

sistently exciting there exists a finite S such that Y7 K(z;)K4(z;) > nl > 0.
Thus

mIZ

ﬁ
Z Hzin)Ki(zin) > nl — 2ec
Hence

1
—Z@Imk Hze) > al @al —4ecBIQ [ > r]a[@[

Hence there exists a finite S such that for all j

j+S

Z‘I’[ :Dk >§[

k=3

The proof for the upper bound is similar. O

Remarks:

1. The condition (4.5) can be seen to parallel the continuous time persistence
of excitation condition (3.3) in [4].

(3]

. One method of ensuring that this condition is satisfied is to fix z; for NV

iterations while &, spans the space. Then the Q need only be updated
every Nth iteration.

3. It is possible to relax the condition that T be slowly varying. This may
be seen by rearranging the ordering of finite groups of samples so that the
reordered samples are slowly varying. That this is allowable follows from
the uniform convergence of the sample means.

4. As the number of interpolating functions, n, tends to infinity the size of
the vector K;(-) will tend to infinity, but it is always rank 1. Noting that
S > n then S must tend to infinity in order to satisfy condition (4.5). Thus
persisance of excitation is unrealistic.

4.4 Least Squares Algorithm

The standard least squares recursions associated with (4.2) are

Qk = Qi1 + Pel(T1)®r(zi)[yr — (k) Qp] (4.6)

P(Tr) = PA(T1) + 1(2) @7 () (4.7)
At any time k, the signal model parameter ©(z,) can be estimated using (4.1).

13



Theorem 4.2 Consider that K(-) is allowable, ©(-) is reconstructable as a
function ©(z; Q) of the form gwen in (4.1). Consider also that in (4.7), P
approaches zero as k — ~. Then n (4.6)

lim Qr = Q as.. (4.8)

Furthermore, 1f ({.5) holds then

tr(Pk)a /\min(P/c) = O(k) a.s. (49)
and )
1Qr — QlI* = O(k™tlogk) a.s.. (4.10)
Proof This follows the proof of Theorem 3.2 m|
Remarks

1. If (4.5) does not hold. this algorithm can be implemented with a check on
P to watch for convergence. If P is not going to zero. r; must be further
excited. It may be that there is little learning of the function ©(z) in the
vicinity of a subset of [';. Then it makes sense to select z; trajectories in
the vicinity of that subset.

[

. If the Ki(z) are chosen to be bisigmoids, generated by monotonic sig-
moids, centered on v; then straightforward reasoning shows that P! =
Yo @r(xk )P (k) is diagonally dominant. (Each & has one element that
is greater than the others, and decreases symmetrically away from this el-
ement, hence ®;(z;)®}(zr) is diagonally dominant.) Using this approach
g; is a first approximation of ©(v;). Also a new measurement pair (s, yi)
primarily updates the g; for which z; is near v, and has a diminishing
effect as |z — ;| increases.

3. Following on from Remark 2, with an appropriately truncated K;, then
P! is diagonal. and ¢; = ©(y;) for all ;. Certain #; selection and ap-
propriate truncation could lead to P,' being (say) tridiagonal. Diagonal,
tridiagonal. or such truncation of P, would then lead to computational
savings at the expense of introducing limits to spreading the learning and
the interpolation.

4. Remark 2 suggests that for bisigmoid representations even in the absence of
any K truncation, by using only the diagonal part of Py, or tridiagonal part
(say), the computational effort will be reduced with some loss in spread
of learning, but not in interpolation spread. The accuracy of such an
approach is dependent on the “width” of the function K;. We do not
present here any theory for this case when the K; are not truncated, but
Py is diagonalized. Simulation results in Section 5 support the proposed
method for computational effort reduction.

14



(1}

. In neural networks. nonlinear functions are represented as sums of sigmoid
functions. suitably biased, which are dense in function space. One might
think that it is reasonable for K; to be chosen to be offset sigmoids. Re-
marks 2 and 3 above do not apply with this choice of interpolation function.

nor is there physical meaning to the parameter g;. We do not explore such
selections further.

6. It can be seen that when there is only one v; and K,(z) = 1, that is.
@ = q1,9(z) = @, then the algorithm collapses to the standard least
squares parameter estimation algorithm.

. With the choice of K;(-) as
Ki(zy) = { (1) i (lze = wll < v = 1/2 ¥ # }

BN |

(4.11)

otherwise

then only one of the ®; are nonzero and the basis function algebra is
recovered. (The basis function is a rectangular pulse of height 1). In
this case P, is block diagonal and the computationai effort is minimal
as only one of the ¢; are updated at each iteration. Such a truncated
interpolation function as (4.11) effectively decides which ~, neighbourhood
a measurement is in, and then upgrades the associated ¢; estimate with a
stepsize which is independent of the “distance” from z; to v; within the
neighbourhood of ~;.

8. When there is only partial excitation of the region ['; there can still be
some useful results. If the region I C [', is persistently excited while
the whole of the region I', is not excited then there is no unique estimate
of the function over the region I', but there is a unique function value
representation on I,

5 Numerical Simulation

Consider the reconstructable system (1.2) where
O(z) = 2K1(z) + 3Ka(z) + 2K3(z) + Ky(z)

Ki(z) = e %==7" [, = [0,1], and v; = =1, Figure 5.1 shows the time evo-
lution of the parameter estimates Q when the least squares recursion (4.6) is
used. It can be observed that as the theory predicted the parameter estimates
converge to the true value. We suggested earlier that calculations could be
simplified in the case of K; being bisigmoid by considering only the diagonal
elements of P. Figure 5.2 shows the evolution of the parameter ¢) when the
suboptimal version of (4.6), taking only the diagonal part of Py, is used. This
example demonstrates the marginally slower response expected using the di-
agonalized algorithm (performance can be expected to be sacrificed since the
calculations are simplified) compared to the full algorithm.

15
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Figure 5.1: Parameter estimation for a reconstructable system using (4.6)
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Figure 5.2: Parameter estimation for a reconstructable system using (4.6) with diagonalized
Py
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Figure 5.3: Parameter estimation in the case when the parameter is not reconstructable

We now consider an example where the function to be learnt is not recon-
structable. Figure 5.3 shows a typical resuit of estimating the parameter func-
tion ©(z) = 1.5 + 22° — z of an ARMAX model when the parameter function
is not reconstructable. In this case ®, is taken to be a uniformly distributed
random number between 0 and 1. The noise term is neglected. There are 4
equally spaced Gaussian interpolating functions, located on the boundary and
interior of I, = [0,1] at v; = :3.1-, each one of the form Kj(z) = e~20(=—m)*
The recursion proceeded for 100 iterations. Notice that the final estimates are
reasonably accurate, that is we converge to the best least squares estimate. Fig-
ure 5.4 shows the time evolution of the parameter estimate for this set of data.
Notice the bursts in learning according to the excitation. It can be seen that
the algorithm learns well despite the lack of reconstructability.

Computer simulations have shown the importance (when functions are not
reconstructable) of choosing appropriate interpolation functions. Too wide an
interpolation leads to a blurring of detail, while too narrow an interpolation
leads to “egg-carton” estimates. Figures 5.6 to 5.8 demonstrate this when es-
timating ©(z) = zz' as the sum of sixteen bisigmoid, and can be compared
to Figure 5.5 which shows the actual value of ©(z). In these simulations we
have selected K;(z) = e~!6==%)" where a is set to 1, 3, 0.05 respectively.
An estimate of the d* error is 10.31, 0.4278, 26.44 respectivly. For simplicity
the noise sequence in these simulations has been set to zero. Thus although
non-reconstructable functions can be considered the nature of the interpolating
needs to be considered in order to obtain a reasonable approximation.

If finer structure is required it is suggested that extra +; can be introduced
while reducing the spread of K;. A sensible initial value for the associated g;
would be the previous predicted value of ©(7;). This can be seen in Figure
5.9 where an estimate of z2 — (z — 2)~! is made using 4 and 8 ;. The inverse

17



Figure 5.6: Parameter function estimation in the case when the K are chosen to give an even
coverage of the region I';
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Figure 5.7: Parameter function estimation in the case when the A'; are chosen too narrow to
cover the region ',

Figure 5.8: Parameter function estimation in the case when the K are chosen too broad to
resolve information in the region ",
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Figure 5.9: Comparison of parameter function estimation using 4 and 8 v;

variance of the interpoiating Gaussian was chosen to be 3 times the square of the
number of ,. This increase in number of interpolating functions corresponds to
increasing the size of the class of reconstructable functions and thus decreasing
the necessary error.

The positioning of the interpolating functions influences the precision of the
function estimation in the case where the function is not reconstructable. If the
7i are uniformly distributed in the domain and the K7 are fixed bisigmoids then
edge effects are observed. as shown in Figure 5.10, which estimates the same
surface as Figure 5.6 but with v; now uniformly distributed over the interior of
the region. This can be prevented by placing v; on the edge of the domain as
was done in in the previous figures, thus preventing the edge bisigmoids from
covering a larger region than the interior bisigmoids.

6 Conclusion

We have shown how a least squares algorithm or a system of such can be applied
in functional learning. Crucial to the success of the algorithms is the selection of
interpolation functions. not only to interpolate between parameter estimates at
a set of points in the function space, but also to spread learning from the data
to achieve estimates at the set of points in question. Convergence properties of
this algorithm for stochastic models are established using standard least squares
results. The results here have been developed for ARMAX models with coeffi-
cients being functionals of some input variables. Simulation studies have shown
various trade offs in the selection of the interpolation function expansions. There
are still open questions concerning optimization of the choice of interpolation
functions, and guaranteeing identifiability in any practical application.
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Figure 5.10: Parameter function estimation when there are no ~; located on the boundary of
T,
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(b) Let @ : 3/ — R be a Morse-Bott function on a Riemannian manifold M.
Then the w-limit set L,(z), ¢ € M. for the gradient flow (3) is a single
critical point of . Every solution of the gradient flow (3) converges as

t — 40 to an equilibrium point.

27



