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Abstract

This paper addresses certain functional learning tasks in signal processing using fa-
miliar algorithms and analytical tools of least squares for autoregressive moving average
exogonous input (ARM AX) models. The models can be viewed as conventional ARM AX
models but with parameters dependent on variables such as inputs or states. termed func-
tion input variables. The functional dependence of the parameters on these variables is
represented in terms of basis function expansions, or more generaliv interpoiation func-
tion representations. The interpolation functions in a least squares identification of co-
efficients also turn out to be in essence spread functions that spread learning throughout
the space of function input variables. Thus for a set of training sequences. or trajecto-
ries in function input space, system parameters and thereby system functional can be
updated. The idea is that these will have relevance for similar sequences or neighboring
trajectories.

The concept of persistence of excitation to achieve complete function learning, or
equivalently, signal model learning is studied using least squares convergence results.
Application of the proposed algorithms and theory within the signal processing context
is addressed by means of simple illustrative examples.

1 Introduction

The current neural network literature has highlighted the task of functional
learning for application within the fields of control systems, and signal process-
ing. The idea is that some input-output function ~(”) is learned by means of
a training sequence of function inputs z~ and outputs y~ for k = 1, 2, . . . . r as
~(.). The functi:n estimate ~() can then be used to achieve outputs y from

inputs z as y = j(z).
Of cou:se, neural networks are usually restricted to the set of parametriza-

tion for /(. ) in terms of suitably parametrized sigmoid functions and weights in
a multilayer network. The parameters and weights are learnt by various methods
including backward propagation, and extended KaJman filters [1]. The repre-
sentations are such that the functions are not linear in the parameters/weights
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so that standard least squares or weighted ieast squares parameter estimations
techniques do not apply.

For a number of reasons it would be of interest to pursue the role of least
squares techniques for functional learning where the functions are linear in the
parameters (weights ). Least squares methods can be truly recursive in that
estimates can be updated as each new measurement arrives. They are rea,dllv

implemented. .Uso their convergence properties are relatively weil understood
within the aaapti}’e control and signal processing context where they are ubiq-
uitous. It has been a natural development for such adaptive methods to evoive
towards learning systems where the underlying task is functional learning rather
than parameter estimation. Thus in the trivial functional learning environment
when the function is linear and constant. it is appealing ior the learning al-
gorithms to specialize to the well understood least squares based parameter
estimation schemes.

.%key property of least squares algorithms is that their convergence depends
on certain excitation conditions of the regression vectors. which in turn depend
on external excitations. This property in the adaptive estimation context shouid
carry over to the functional learning context. In earlier studies ~2][3][4], the
concept of functional persistence of excitation is developed for continuous-time
deterministic systems in an infinite dimensional setting working with integral
operators. The kernel functions allow information to spread in the function
input space. .ipplication studies for the control of robots are performed using
discrete-time and gradient or least squares ideas. From this work, the question
that naturaily emerges is: What are fundamental results concerning functional
learning and persistence of excitation in a least squares stochastic identification
cent ext ?

In this paper we interpret a class of functional learning tasks as least squares
parameter estimation tasks, or a system of lower order least squares parameter
estimation tasks performed in parallel. One of the main ideas used in the paper
is that in learning a function ~() at a point -~ from input-output measurements
x/c,g~, the closer zk is to “~, the greater the Influence of the pair xk, yk should
be in learning j(;f). Thus for x~ in the neighborhood of ~, the associated
weighings are high relative to weighings for z~ outside the neighbourhood of
AI.The weighings then control what can be termed the spread of learning.

The algorithm we propose, in its most general form, seeks function esti-
mates. or rather function parametrization estimates at a set of points 171 =

[-/1,72, . . . , Y.] in the function input variable space r.. As each new measure-
ment pair xk, y~ arrives, estimates on 1’1 are updated with the learning being
strongest in the neighborhood of xk and diminished or even zero outside this
neighbourhood. With estimates at 171, then an interpolation function can be
used to give estimates on 17=. In fact, in our algorithm, the interpolation func-
tion is also used to control the spreading out of learning, Because of this dual
role for the interpolation function, we must select bisigmoidal functions Ki (z)
which decay to zero outside the neighbourhood of ~i. Thus polynomial, spline.
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and Fourier basis or interpolation functions are not an appropriate practical
choice. although some of our formulations allow such function representations.

.i second main idea of the paper concerns the convergence of least squares
algorithms in the functional learning context. Known convergence theory for
the least squares algorithms can be applied. Thus in any calculation. conver-
gence behaviour can be estimated on line in terms of persistence of excitation
measures on variables used in the calculations. under appropriate assumptions.
It is of course desirable to translate such excitation conditions onto external
variables. We claim that the (functional) persistence of excitation conditions
for consistent estimation of the function. under function reconstructability con-
ditions are a natural generalization of the available theory for the parameter
estimation context, making connections to reiated work [4].

So as to generalize least squares based adaptive schemes in signal processing
and control, we will work with signal models which are natural generalizations
of familiar input-output models in these fields.

We desire to learn the functional representation of the coefficients of the
discrete-time ‘.\RM.A.X” equation. specialized to the white noise case. nameiv

where wk is zero mean white Gaussian noise. u~ G I’u the set of allowable inputs.
and xk C rz, the set of allowable function input variables. The vectors ~k, y~,
uk are measurable at time k. Here .~(~k) = 1 + al(~k)~-l J- . . + an(~k)~-n and
B(z~) = 1 +bl(xk)q-l + . . . + bn.t(~k)q-m where q-l is the unit delay operator.
Given a Set Of nOIS~ I_II&3SUHIIf2ntS {~k, ~k, Uk } we propose tWO different typeS
of least squares algorithms to estimate (possibly matrix or vector) function
representations ~(z) of the coefficients ai ( .), b,(.).

Of course. (1.1) is a special case of the more generai form

(1.2)

When specialized to (1.1), then 6’() = [ale... anobl).b~()]” ()]” and @~ =
[yk-~ . . . ~&~~&l . . . ~&~]. Our objective is to estimate the (vector or matrix)
function @(. ) frOm knowledge of the sequences xk, ~k, @~.

One example where functional learning in dynamical systems can arise is in
gain scheduling for an aircraft controller where the function input variables xk
are the speed and altitude of the aircraft and j (~k ) is the gain schedule. Another
possible application area is in robotics, [4], where xk could be the position, and
orientation, of the robot hand in space. In these two cases the parameters of the
linear system are functionally dependent on the position. The optimal control
is then also a function of position. The aim is to learn the control function given
calculations at discrete points.

In Section 2, some theorems are reviewed about functional representation,
and least squares convergence. In Section 3, the standard type of least squares
method is applied to functional learning, and in Section 4 the idea of interpolat-
ing functions is exploited for this context. Section 5 has some simulation results
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and observations on practicai implementation. In Section 6. areas that require
further investigation are discussed and concluding remarks made.

~

This
used

2,1

Preliminary Definitions and Theorems

section on functional representation. and least squares convergence can be
as reference materiai for some of the resuits in the paper.

Function Representation

For some of the results to [O11OWwe focus on representing a function as a sum of
simply parametrized functions. termed here representation functions. Examples
of such representation functions are sigmoids. and bisigmoids. The definition of
these functions are now recaiied.

Definition 2.1 A scaiur stgmo?d ~unctimz of a scalar
“form

variable t N one of the

-’:)=
(I t–m

(0 t–-x

This general definition uues not require continuity, however the sigmoids we are
interested in are continuous. .In exampie of such a scalar sigmoid function is
a(t) = (1 +e-~)-l.

Definition 2.2 A scalar bzszgmozd is the difference of two offset szgmoid func-
tions wtth the properly

{

o t+oa
a~(t) = ‘T(t) –C7(t – 1) = ~ ~ - —!~

We are interested in integrable bisigmoids generated by a monotonic sigmoid.
.in example of such a scalar bisigmoid is a~(t) = ~1 + e-C]-l – ~17 e-~~l)-l.

Another function that is of interest is the familiar Gaussian function with
covariance Z~, assuming iX, I = O, is a(t) = (JZEj-l exp(–t’Z; it/2).

A theorem about functional representations on a compact interval is now
reviewed. This theorem gives conditions for approximating an arbitrary inte-
grable function to an arbitrary accuracy using a given error measure. These
conditions justify the use of continuous sigmoids and integrable bisigmoids as
representation functions.

We use the notation that R is the set of real numbers, N the set of natural
numbers. Consider

G:l?~lR

Let us define
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Theorem 2.1 Denote the unzt cube
absolutely integrable scalar functions,

in L1(I~)

Proof the proof of this can be found

in R’ by In. If G(. ) ~ L1. the space of
and J1l G(t)dt # O. then ~“(G) is dense

in [6] ❑

Similar theorems are given in ~6],[5] that give conditions for dense function
representations over the space of continuous functions. .+n immediate conse-
quence of this theorem is that sums of continuous integrable bisigmoid functions
are dense. in the L1 sense, and can approximate integrable functions over finite
domains.

2.2 Least Squares Convergence

The theory of least squares gives a method of finding the constant coefficient 8
of the equation

where y~ is an m vector. @L
m vector of white Gaussian
to seiect 8 as to minimize a

with respect to ~

Y/i = Qie + ~uk (2.1)

is an r x m matrix. @is an r ~rector. and Wh is an
noise. independent of @~ and 0. Here the task is
weighted square of the error. That is to minimize

Where Wk = W; > 0 are the weighting matrices. The optimal < at time k,

denoted ~k is given from the recursion

;k = &_~ + ~~@kW~(g~ – @@&l) ; & (2.3)

p;l = p-l
k.l + @kt’’Vk@j ; P() = ~: > () (2.4)

where P~ is an m x m matrix. and with appropriate initial conditions.

Theorem 2.2 Consider the weighted least squares algorithm (2.3) (2.4) applied

to the signal model (2.1). Then, as k + co, pk + Pm, $k — 6m as.. Con-
sider also that 0 is a random variable with a normal probability density function
NIOO,Po], and that the noise Wk is independent with a probability density func-
tion NIO,W~-l], then the conditional distribution of Okgiven yl . . . yk has mean

~&given by (2.3) and covariance Pk given by (2.4). Moreover, if Pm = O as.,

then ~im~+m jk = 8 as..

Proof The proof of this can be found in [7]. ❑



Remarks:

1.

J-J-.

3.

3

3.1

Actually, if the regression \ector QK is not influenced by

dk, then the initial condition restriction in the theorem can
indeed can the interpretation of PVk:l as a noise covariance.

the estimates

be relaxed. as
See [7].

Convergence rates for ~k are according to the convergence rates for PK,
Precise results on this can be found in [8] for the case when 6 is not required
to be a random variable. Thus with wk a martingale increment process with
bounded second moments.

(2.5)

where ~~i~ denotes the minimum eigenvalue. Of course. if for all j, and
some N,

In the noise free case it can be shown that the convergence of ~~ to 8 is at

least exponential when @~ satisfies (2.6).

Least Squares via Basis Functions (one dimensional

problem)

The Signal Model

Here we examine a standard problem in (deterministic) approximation theory.

in order to gain insights for the (stochastic) learning problem which is the
focus of this paper. In particular. we work with basis function expansions and
employ least squares parameter estimation for estimating the coefficients in a
basis function expansion.

Consider for simplicity

f

the square integrable functions

: rz -- R,zl+y= f(z) (3.la)

Ki : r= + R,X * Ki(X) (3.lb)

where rZ c IR. Let us investigate finite representations estimating j(x) of the
form

j(~; Q) = ~ ~i(~)~i = ‘&(~)Q (3.2)
1=1

where

Q=[&d2 ,””” ~N ) &?(~)= [~1(~),K2(Z),“““ , Kn(z)] .
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Here A’,(.) are known square integrable basis functions and Q is a parame~er
vector estimate.

We observe data points (z~, y~) generated as:

where ~k is a sequence of white Gaussian noise independent of position xk.

3.2 Measures of Error and Minimization Task

We consider now in what sense we wish the function representation to a~proxi-
mate the function. Let us work with a global measure of the error j(z) – f(z; Q ),
for all z < I’Z under (3. la), (3.2). An example of such a measure is

(3.3)
Jr=

which is the mean square error measure. With ~($k ) available only at a discrete
set of points Z~ c I’., it makes sense to consider a restricted measure of the
mean square error as

(3.4)

In approximating functions (3. la) by function representations (3.2), the mini-
mization task we focus on is as follows

or the closely related index

mind$)(@
Q

(3.5)

(3.6)

Remarks

1. It is really the error measure dz(Q) that is of interest, because this gives a
measure of the error at both the points that have been visited and those for
which a function estimate is given. In any application only measurements

at a finite set of points are available so d!)(Q) is the only reaiistic error
measure to work with. In the situation that ~(z) is smooth and the points
xk are chosen in a uniformly dense way, then standard calculus theory tells

us that the d$) error measure approaches the d2 error measure.

2. Another example of an error measure which is appropriate in some situa-
tions is

dXl(Q) = yy llf(~) – f(~; Q)ll



There is in fact a whole family of possible error measures of the form

which may have merit for particular applications. In the sequal however
we are concerned onlv with the d~ error measure.

3. The error measure only considers the functional representation on the re-
gion 17=. It will be dependent on the application as to whether values should
be truncated outside this region or not.

3.3 Allowable Basis Functions and Reconstructability

If one function j(x) is to be represented as a sum of other functions, it is.
necessary that the possible function summations j(x, Q) be sufficiently rich to
allow a reasonable approximation. Representation theorems like 2.2 are im-
portant in giving conditions as to what functions can be used in such repre-
sentations. There are obvious disadvantages if there exist Ql # QQ such that

f(z, QI) = f(z, Qz) for aii .c z r,. It is also necessary that the measurements
that are used to choose {he function representation are sufficiently rich to char-
acterize the behaviour of the function being approximated. There is a need in
some of the theory to follow for restrictions on the function representations as
well as on the class of function that is estimated. Of particular interest are
allowable basis function representations and the class of reconstructable func-
tions.

Definition 3.1 The set of square integrable basis functmns KB (x) is termed
allowable if and only if

(3.7)

Definition 3.2 The functton f(x) ZS said to be reconstructable if it is in the

model set of functions ~(x; Q) of (3.2) that is

f(z) = K~(z)Q for some vector Q. (3.8)

Theorem 3.1 The minimization task (3. 5) under (3. la) (3.2) has a unique
critical point if and only if the elements of KB (x) are allowable. This optimal

Q, denoted Q“, is given by

(3.9)

Moreover, when f(x) is reconstructable with respect to the class of functions

j(x; ~) of (3.2), then f(x) is uniquely parametrized as in (3.8) with Q = Q*
given in (3.9).
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Proof Consider the minimization of dz under (3.la) (3.2) as in (3.8). Upon
differentiation, it is evident that any critical point must satisfy

(3.10)

The critical point is unique if and only if (3.7) holds and is given by (3.9). Under

(3.8), Q = @*. ❑

Remarks:

1. If ~~(z) is not allowable, then there will be an infinite number of critical
points of the minimization.

2. As n increases, the class of reconstruct able ~(x) becomes larger. In order t o
represent an arbitrary function with arbitrarily small error, it is necessary
that n approach infinity.

3. For f(. ) known to be frequency band limited in a spatial sense, suitable
choices of ~, are

Ki(x) =
{

sin( ~Z) i even
COS(&Z) i odd

For j( ) known to be a polynomial of degree less than or equal to some
fixed value, an appropriate choice would be

Ki(z) = z’

Definition3.3 The set of ppoints xk is sujjicientiy rich on KB(.) if Jm all k,

f(%Ql) = j(z~,Q2) thenQ1= Q2.

This is an obvious discretization of the condition that Q is uniquely deter-
mined. .A necessary and sufficient condition to guarantee that xk is sufficiently
rich is that

m

~ KB(z,)K~(z,) >0 (3.11)
k=j

A stronger condition is that there exists an N such that for all j >0

for some 6, q >0. This condition is termed persistence of excitation, and means
that in every set of N measurements there is sufficient information to choose a
unique Q, thus giving fast learning. Observe that KB (z) being allowable is a
sufficient condition for the existence of such persistently exciting sequences.
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3.4 Recursive Least Squares Algorithm

In order to minimize d!) of (3.4) for r = 1. 2,.... given a sequence {zL., q~},
standard least squares derivations leads to a recursive estimate oi Q. denoted
Q~, as

& = ~~-~ + ~~~B(~~)[~~ – &(@&_~;, (3.13)

Pk:1 = PLT_li– ~~-g(~kj~{j(~~) (3.14)

with suitable initial conditions Qo, P,. = ?; > 0.

Theorem 3.2 Consuier that I{B is allowable as defined in (.3.7), and f () M
.

reconstructable unth regard to f(.; .) of (3.2). Then provided the P~ as defined in

(3. lJ) approach zero as k
.

— m, the pU7’Umeter eSt277tUteS~k Of (.3.1,3) converge
as

)~~ (& = Q* as.

~f the persistence of ezcztatzon condition /3. 12) is

) = (](~)cr’(F’~))/\mln, fJ~,

anti

~l~k – (?*IIQ= ~(k-llOg~)

Proof Standard least squares theory of Theorem

Remarks:

(3.15)

sattsfied then

2.s. (3.16J

as. (3.17)

2.2 applies a

1. The condition (3.12) can be seen to correspond to the continuous time
persistence of excitation condition (3.3) in [4].

2’. What happens if ~(z) is not reconstructable but A7~ is allowable? There
is a reconstructable f“(x) that is closest in mean square to f(z). The
difference between f(z) and ~’(x) is orthogonal to HB(z) and hence the
learning of ~“(x) from yk is covered by Theorem 3.2.

3. In the non persistence of excitation case, where

m

k=O

the algorithm still converges with a rate given “loosely” by the rate of
convergence of pk to ().

4. of course, by monitoring pk it would become ciear if pk + O. To achieve
convergence more excitation of ~k is required. In any practical applications,
persistence of excitation
(See Remark 2 following

could be a difficult property to ensure a priori.
Theorem 2.2)
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‘ In applying the basis function approach. as above. to the signai model>.

4

4.1

(1.2). there are two possible approaches. The first is. in the case when
~~ = @(z~j, to estimate the product @’OG( ) as the unknown function.

ignoring the fact that @Lis known. This would be particularly unattractive
if Q( ~) is a simple function and @~ is not. The second approach is to
introduce @~ into the analysis replacing KB (x) by KB (.z) ;3 @K.where @
denotes the Kronecker product. Of course. then lim,v+~ ~ Z~=O(J~~(Z~ )2
~~ )(@&&~f~(x~ ))’ will not generally be diagonal. Consequently, there is no
particular advantage to work with orthogonal KB (”). This second approach
is developed further in the next section.

Interpolation Functions in Least Squares

Signal Model

Consider now a method
function representations

for
10r

identifying signal
EI(XJ. ThusQ(Z)

models ( 1.2) using interpolation
is approximated as

n

With Q/ = ~~{. . . ~~]. Here ~, is an m vector, Q is an mn vector and l<,(x) is a
scalar function of x. Here rl = {71, 72, . . . . ~~~} is a preselected set of points in
r,, and we work with h“,(z ) as a scalar interpolating function between the points
in rl and those in 17Z. Of course. one could specialize A’,(z) to be orthogonal
basis functions so that (4.1) is a basis function expansion. and build on the
methods of the previous section. Here we prefer to think of ~, as close to @(”Il)
so that (4.1) allows an interpolation for z $! I?I. Given A’t(~), and estimates of

Q,, then b(z; d) can be evaluated at any z using (4.1).

4.2 Reconstructability

Under reconstructability of ~(x) as a function 6(z; Q) of the form given in (4.1 ),

then for some parameter vector ~, denoted Q*, ~(z; @) satisfies b(x; Q“) =
@(z). Thus in the case that K,(z) are integrable bisigmoids suitably shifted
by affine maps, Theorem 2.1 tells us that as n becomes infinite, the class of
functions (4. 1) are dense in the space of continuous functions. NOW under
reconstruct ability, (1.2) can be written as

~~ = @k ~ ~i(~)~~ + Wk = @;(~k)~* + ‘?d)k (4.2)
1=1

where [with scalar K,(.)]

@~(~~) = [~~(~j.)@~ ~~(~h)@~ “““ ~n(~k)@~] = ~r(~k) @ ~h (4.3)
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Here @r(. ) is known. and Q* is to be estimated.

4.3 Allowable Interpolation Functions

Using the methodology of Section 3.3 we find conditions that allow unique
identification of Q. This requires conditions on both the basis function A-, and
the data sequence, as in Section 3.3.

The class of allowable If[( ) is equivalent to the class of allowable ~~(. ).
The condition for unique identifiability using discrete measurements requires

now that m

k=o

which is dependent on both the state domain xk trajectory in l?. and the time
domain regression vector Ok. It is not immediately clear how to interpret this
excitation condition ~vhen excitation in both the time domain and the state
domain are involved. (jne \vay to indicate the difference between @~ and x~ is
to use time scale separation.

Definition 4,1 Suppose ~here ZSgtven a continuous functaon {{I(x) wzth a Lzp-
shitz constant c, such /hat 0 < [{l(x) < 1, Jr= KI(z)Kj(x)dx > d, and a
sequence @k. Then the transformation T(xk ) is said to be slowly varying with
respect to ~k, and K1, lf 3 an E < ~rja~-lc-lj N, Q, ~ such that for all k

and /31> ;’+~-’ @,@~ > aI >0 hold. (4.4)
k=i

Theorem 4.1 .isszme that b] > Jr=KI(z)Kj(z)dz > aI >0, and Ok satisfies
l.j.~). .~ssume Uk’Othat {$k}~ is gaven by xk = T(x&l ) where ~ is a mapping
Jrom 17Z to r, such that x~ satisfies (’3.12], and is slowly varying with respect

tO @k, ~{1. Then @{(. ) SatZSfieS

for some finite S, ~, b and all 1.

Proof By the definition of @I, then simple manipulations give,

(4.5)
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where the remainder can be overbounded by IRI < 2Ec~. Because xk are per-
sistently exciting there exists a finite S such that ~~=0 J<[(z; )K;(zi) > ql >0.
Thus

Hence there exists a finite S such that for all j

The proof for the upper bound is similar. ❑

Remarks:

1.

9
L’.

3.

4.

4.4

The

The condition (4.5) can be seen to parallel the continuous time persistence
of excitation condition (3.3) in [4].

one method of ensuring that this condition is sa~isfied is to fix xk for IV
iterations while @~ spans the space. Then the Q need only be updated
every Nth iteration.

It is possible to relax the condition that T be slowly varying. This may
be seen by rearranging the ordering of finite groups of samples so that the
reordered samples are slowly varying. That this is allowable follows from
the uniform convergence of the sample means.

As the number of interpolating functions, n, tends to infinity the size of
the vector Kr(. ) will tend to infinity, but it is always rank 1. Noting that
S ~ n then S must tend to infinity in order to satisfy condition (4.5). Thus
persisance of excitation is unrealistic.

Least Squares Algorithm

standard least squares recursions associated wit h (4.2) are

& = ok-l+ ~k(h)@d~k)[Vk - @j($k)Qk-1] (4.6)

P~l(rl) = P~j~(rl) + @&)@\(Zk) (4.7)

At any time k, the signal model parameter ~(~k) can be estimated using (4.1).
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Theorem 4.2 Consvier that KI(. ) is ailowabie, @(”) ~s reconstructable as a

junction b(x; Q) of the form gtven in (4.1). Consider also that in (4. 7), Pk
approaches zero as k — m. Then m 1’4.6)

lim Qk = Q as..
k~ca

(4.8

Furthermore, Z! (J.5j holds then

tr(~~), ~~,.(~k) = O(k) as. (4.9

and
~iQk– Q\[2= O(k-llogk) as.. (4.10)

Proof This follows the proof of Theorem 3.2 ❑

Remarks

1. If (4.5) does not hold. this algorithm can be implemented with a check on
pk to watch for convergence. If pk is not going to zero. .zk must be further
excited. It may be that there is little learning of the function O(Z) in the
vicinity of a subset of r~. Then it makes sense to select xk trajectories in
the vicinity of that subset.

2. If the K,(x) are chosen to be bisigmoids, generated by monotonic sig-
moids, centered on ~i then straightforward reasoning shows that P~l =

~~=1 @r(~k)@~(Xk) is diagonally dominant. (Each @k has one element that
is greater than the others, and decreases symmetrically away from this el-
ement, hence @~(Z~)@~(Zk) is diagonally dominant. ) Using this approach
q~is a first approximation of ~(~a). Also a new measurement pair (x~, y~)
primarily updates the qi for which xk is near vi, and has a diminishing
effect as (~k – ~~I incre~es.

3. Following on from Remark 2, with an appropriately truncated IYr, then
P;l is diagonaL and qi = @(7a) for all ~i. Certain ~i selection and ap-
propriate truncation could lead to P~l being (say) tridiagonal. Diagonal,
tridiagonal. or such truncation of Pm would then lead to computational
savings at the expense of introducing limits to spreading the learning and
the interpolation.

4. Remark 2 suggests that for bisigmoid representations even in the absence of
any KI truncation, by using only the diagonal part of P~, or tridiagonal part
(say), the computational effort will be reduced with some loss in spread
of learning, but not in interpolation spread. The accuracy of such an
approach is dependent on the “width” of the function KI. We do not
present here any theory for this case when the KI are not truncated, but
P~ is diagonalized. Simulation results in Section 5 support the proposed
method for computational effort reduction.
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.5.

6.

7.

8.

5

[n neural networks, nonlinear iunctions are represented as sums of sigmoid
functions. suitably biased, which are dense in function space. One might
think that it is reasonable for HI to be chosen to be offset sigmoids. Re-
marks 2 and 3 above do not apply with this choice of interpolation function.
nor is there physical meaning to the parameter qi. We do not explore such
selections further.

It can be seen that when there is only one ~i and K,(z) = 1, that is.

Q = w, @(z) = Q, then the Owithm collapses tO the standard least
squares parameter estimation algorithm.

With the choice of K,(. ) as

then only one of the @l are nonzero and the basis function algebra is
recovered. (The basis function is a rectangular pulse of height 1). In
this case PL is block diagonal and the computational effort is minimal
as only one of the q? are updated at each iteration. Such a truncated
interpolation function as (4.11) effectively decides which -~, neighbourhood
a measurement is in. and then upgrades the associated q, estimate with a
stepsize which is independent of the ‘-distance” from x~ to ~i within the
neighborhood of A~,.

When there is only partial excitation of the region 17Zthere can still be
some useful results. If the region I“ c r= is persistently excited while
the whole of the region 17Zis not excited then there is no unique estimate
of the function over the region
represent ation on r’.

Numerical Simulation

Consider the reconstructable system

I’Z but there is a unique function value

(1.2) where

6(Z) = 2~~(z) + 3~*(z) + 2&(z)+ ~~(z)

K,(z) = e-GAf~-~,J’, I’. = [0, 1], and ~, = ~. Figure 5.1 shows the time evo-

lution of the parameter estimates Q when the least squares recursion (4.6) is
used. It can be observed that as the theory predicted the parameter estimates
converge to the true value. We suggested earlier that calculations could be
simplified in the case of Ki being bisigmoid by considering only the diagonal
elements of P. Figure 5.2 shows the evolution of the parameter ~ when the
suboptimal version of (4.6), taking only the diagonal part of pk, is used. This
example demonstrates the marginally slower response expected using the di-
agonalized algorithm (performance can be expected to be sacrificed since the
calculations are simplified) compared to the full algorithm.

15
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Figure 5.3: Parameter estimation in the case when the parameter is not reconstructable

We now consider an example where the function to be learnt is not recon-
structable. Figure 5.3 shows a typical result of estimating the parameter func-
tion ~(z) = 1.5 + 2X2 – z of an ARMAX model when the parameter function
is not reconstructable. In this case @~ is taken to be a uniformly distributed
random number between O and 1. The noise term is neglected. There are 4
equally spaced Gaussian interpolating functions, located on the boundary and
interior of r. = [0, 1] at ~~ = ~, each one of the form Ki(z) = e-20[z–~~j2.
The recursion proceeded for 100 iterations. Notice that the final estimates are
reasonably accurate, that is we converge to the best least squares estimate. Fig-
ure 5.4 shows the time evolution of the parameter estimate for this set of data.
Notice the bursts in learning according to the excitation. It can be seen that
the algorithm learns well despite the lack of reconstructability.

Computer simulations have shown the importance (when functions are not
reconstructable) of choosing appropriate interpolation functions. Too wide an
interpolation leads to a blurring of detail, while too narrow an interpolation
leads to “egg-carton” estimates. Figures 5.6 to 5.8 demonstrate this when es-
timating Cl(z) = XZ’ as the sum of sixteen bisigmoid, and can be compared
to Figure 5.5 which shows the actual value of ~(z). In these simulations we

have selected Ki(z) = e-”lG(Z-~iJ2 where a is set to 1, 3, 0.05 respectively.
An estimate of the d2 error is 10.31, 0.4278, 26.44 respectively. For simplicity
the noise sequence in these simulations has been set to zero. Thus although
non-reconstructable functions can be considered the nature of the interpolating
needs to be considered in order to obt airt a reasonable approximation.

If finer structure is required it is suggested that extra 7a can be introduced
while reducing the spread of Kr. A sensible initial value for the associated qa
would be the previous predicted value of ~(~i). This can be seen in Figure
5.9 where an estimate of Z2 – (c – 2)-1 is made using 4 and 8 vi. The inverse

17



Figure 5.6:
coverageof

Y

Figure 5.4: Parameter function evolution

Figure 5.5: The parameter function to be estimated on the region r,.

Parameter function estimation in the case when the KI are chosen
the region rm

to give an even
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Figure 5.7: Parameter function estimation in the case when the Kr are chosen too narrow to

cover the region I’z

\ ‘1

Figure 5.8: Parameter function estimation in the case when the KI are chosen too broad to

resolve information in the region r=
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Figure 5.9: comparison of parameter function estimation using 4 and 8 T,

variance of the interpolating Gaussian was chosen to be 3 times the square of the

number of ~,. This increase in number of interpolating functions corresponds to
increasing the size of the ciass of reconstructable functions and thus decreasing
the necessary error.

The positioning oft he interpolating functions influences the precision of the
function estimation in the case where the function is not reconstructable. If the

~i are uniformly distributed in the domain and the Kr are fixed bisigmoids then
edge effects are observed. as shown in Figure 5.10, which estimates the same
surface as Figure 5.6 but with 71 now uniformly distributed over the interior of
the region. This can be prevented by placing ~, on the edge of’ the domain as
was done in in the previous figures, thus preventing the edge bisigmoids from
covering a larger region than the interior bisigmoids.

6 Conclusion

We have shown how a least squares algorithm or a system of such can be applied
in functional learning, Crucial to the success of the algorithms is the selection of
interpolation functions. not only to interpolate between parameter estimates at
a set of points in the function space, but also to spread learning from the data
to achieve estimates at the set of points in question. Convergence properties of
this algorithm for stochastic models are established using standard least squares
results. The results here have been developed for ARMAX models with coeffi-
cients being functional of some input variables. Simulation studies have shown
various trade offs in the selection of the interpolation function expansions. There
are still open questions concerning optimization
functions, and guaranteeing identifiability in any

20

of the choice of interpolation
practical application.
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Figure 5.iO: Parameter function estimation when there are no y~ located on the boundary of
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b) Let @ : L1 – ~ be a Morse-Bott function on a Riemannian manifold ill.
Then the w-limit set LW(Z), z s ~hf, for the gradient flow (.5) is a single
critical point of @. Every solution of the gradient flow ~5 ) converges as
t— -t-ccto an equilibrium point.
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