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Abstract: We consider the problem of stabilizing a nonlinear

plant through the use of a, possibly unstable, pre-compensator

and a stable feedback-compensator, and parametrizing a class
of such stabilizers in terms of a BIBO stable map Q. In the

linear case, by means of superposition the pre-and feedback-

compensator can be combined in such a way that the BIBO

map Q occurs in just one feedback loop within the controller,

feeding back output residuals (prediction errors) to the control

inputs. The main contribution of this paper is to develop a

nonlinear generalization of this property.

Building on earlier work in forming the Youla–Kucera

parametrization for nonlinear systems, we show the equiv-

alence of the class of all (bounded-input) stabilizing nonlinear
pre- and feedback-compensators to a class of possibly unstable
feedback controllers in which a map Q, is present in only the

one feedback loop. We then show that necessary and sufficient

condition to achieve stability of the system is that Q, be BIBO

stable. One advantage of the new formulation is that differen-

tial boundedness assumptions do not involve the parametriza-

tion Q, in any way.

Just as the linear versions of our results have applications in

the areas of optimal control and adaptive control of linear

systems, it is conjectured that the present results will underlie

more general results for adaptive control and nonlinear sys-

tems.

Keyword: Nonlinear systems; stabilization; control; parame-

trization.

1. Introduction

The intent of this paper is to produce a nonlin-
ear version of the results of the Youla–Kucera

theory for the stabilization of linear systems. It is
expected that in this way a more general theory

* Work partially supported by DSTO Australia, and Boeing
(BCAC).

for the stabilization of nonlinear plants will be
formed, thus leading to the solution of nonlinear
versions of some of the linear problems that the

linear theory has been so successful in solving.
The study of coprime factorization of a linear

plant has led to a theory giving the class of all
stabilizing controllers for a linear plant [9]. This
approach has given rise to many useful techniques
for solving problems in adaptive control, robust
control, and the like [7,5]. Work has since been
done in the field of extending the linear theory
into the nonlinear domain, see for example [4,6].

The early work done [4,3] uses an approach based

on the right coprime factorization of an injective

(one to one) nonlinear plant G. This is seen to

guarantee the existence of a pre- and feedback-
compensator pair which gives stability of the
closed-loop transfer functions derived from inputs
prior to the pre-compensator. By considering the
left coprime factorization of G, it is shown that a
class of such stabilizing pairs can be constructed.
Later work [6] shows a generalization of the re-

sults to include a class of not necessarily injective

plants, namely the class of all plants G, such that
the inverse image of an unbounded element of the

range of G is either bounded, or contains no
elements which are bounded.

Implicit in this earlier work is the result that
under certain differential boundedness assump-
tions, there is (bounded-input) internal stability,
in that the boundedness of the internal signals of
the closed loop is guaranteed in the presence of

suitably bounded, but otherwise arbitrary, signals

injected around the loop. In the linear case, the

boundedness and differential boundedness con-

straints evanesce, and by means of superposition
the pre- and feedback-compensator can be com-
bined in such a way that the map Q occurs in just
a single feedback loop within the controller, feed-
ing back output residuals (prediction errors) to the
control inputs. We are motivated in this paper to
seek a nonlinear generalization of this property.
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In Section 2, we first review some of the current
results on the stabilization of nonlinear plants. In

particular the class of all pre-compensator, feed-
back-compensator pairs which make the system
internally (bounded-input) stable is constructed.

Given one stabilizing controller K for G, this class

is then shown to be characterized in terms of an

arbitrary BIBO stable map Q, save that certain
maps involving factorization of K, G and Q must

be differentially bounded. This result specializes
readily to the familiar Youla– Kucera parametriza-
tion.

In Section 3, we construct a closed-loop system
consisting of a plant, G, and a single controller,
K. It is shown that the class of pre- and feedback-

compensator pairs each parametrized by BIBO
stable maps Q generates a class of feedback con-

trollers for G. Further we show that this class can
be generated by a single BIBO stable map, Q,,
which can be calculated in terms of the original
map Q. It is then shown that a necessary and
sufficient condition on Q, for the system to be
(bounded-input) stable, under certain differential
boundedness conditions on factorization of G

and K, is that Q, is BIBO stable. Serendipitously,
the differential boundedness assumptions do not
involve Q,. This specializes to an analogous result

in the linear theory. Conclusions are drawn in

Section 4.
Other work in nonlinear factorizable systems

appears in [1,8]. In this work, when dealing with
the class of ‘all’ stabilizing controllers, either the
plant or compensator is assumed to be stable,

although some of the
plants.

2. The Youla-Kucera

ear systems

results permit time-varying

parametrization for nonlin-

Since the work of this paper builds on that of
[6] and [4], we adopt definitions and notation from
these papers, and work in discrete time. In par-
ticular we work with the signal sequences SO(R“ ),

the set of all sequences with elements in R“, where
R is the set of extended real numbers, such that all

elements of the sequence before the Oth place are
zero. We also work with the set of signals SO(e“ ),

the subset of SO(Rn ) which has the elements of its
sequences bounded by e.

We first review the connection between right

“-m:
Fig. 2.1. Feedback system,

coprime factorization and the Bezout identity,

and then the Youla– Kucera parametrization for
nonlinear systems, from [6,4], with mild generali-
zations where appropriate.

Lemma 2.1 (Review). Consider a nonlinear plant

G: SO(Rm ) + SO( R“ ) such that the inverse image

of an unbounded element of the range of G is either
bounded, or contains no elements which are bounded.

Furthermore, suppose that there exists a feedback

controller K: So(R”) + SO(Rm), as in Figure 2.1

such that the closed loop is well posed, giving ex-

istence of (Z– KG)-’, and achieves stability of

G( I – KG)- 1, but not necessarily other closed-loop
transfer mappings. Then:

(i) [2] Existence of the controller K, with KG

strictly causal, implies the existence of right

bounded-input bounded-output ( BIBO) stable fac-

torization,

G= N* M*-l, (2.1)

N*: S*+ SO(R”), M*: S*+ SO(Rm),

where N * and M * are BIBO stable and S * is the

factorization space.

(ii) [3] Existence of N* and M*, as in (i),
implies the existence of a right coprime factoriza-

tion,

G= NM-l, (2.2)

N: S+ SO(R”), M: S+ SO(Rm),

where N and M are BIBO stable and S is the

factorization space. ~By definition a right coprime

factorization exists iff the set of all w E S.(9’”)
which have bounded images through G, but un-

bounded images through M-’, is the empty set fi.

See [6] or [4] for details.]
(iii) [3] Existence of a right coprime factorization

of G over the factorization space S, implies the

existence of BIBO stable maps

fi:SO(Rm)+S, (2.3a)

~: SO(R”)n Im(G)+S (2.3b)

such that the following Bezout identity holds:

fiM-ON=I:S+S. (2.4)
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Fig. 2.2. Feedback system with external inputs

(iv) [6] In addition, the feedback system shown in

Figure 2.2, in the case w~, w ~ = O, has stable

closed-loop transfer mappings defined under (2.4),

e = Vkfw, el=Mw, y=Nw. (2.5)

Remark. Note that all injective systems G have the
property assumed in the lemma, so this formula-
tion is slightly more general than is given in
previous work. An example of such a noninjective
system is one with hysteresis.

Lemma 2.2 (Mild generalization of Lemma 3.4 of
[4]). Consider the feedback system of Figure 2.2,

where G satisfies the constraints of Lemma 2.1,

giving existence of BIBO stable V, ~ such that (2.4)

and (2.5) hold, but with (small ) external input

signals w,, w ~. Consider that

C and f are differential~ bounded

by 6’U and Ov, respectiue~, (2.6)

in that there exists Eu, Ev such that for y, y * ●

So(R”), [y–y” I <Eu implies

and forx, x* ●SO(Rm), 1x—x* 1 <Ev implies

Itix-tix*l<f)v.

In addition, consider that N is stable over SO( 6’n),
where 0> 8U -t-Ov. Then the system is internally

(bounded-input ) stable for

W=s”([e–eu–av]m),

WI =SO(E; ), w2~So(.4j),

in that under these constraints all signals are bounded

for all possible inputs, or equivalent~ all the closed-

loop transfer mappings are BIBO stable.

Proof. First consider the case when WI = w z = O.
Then for w = So( 6 ~ ) we have all internal signals

bounded. The transfer mappings of Figure 2.2 are
given implicitly, via (2.5), (2.4), in

e=(Z–~Gf)-’w=fiMw, (2.7a)

el= ~–le=Mw, y=e2=Ge1=Nw. (2.7b)

These are all BIBO stable by Lemma 2.1. Consider

now the effect of adding in the small signal w z ~

S.( E: ) with w, = O. Then the response at e will be
given by

e=w+ti(wz+ y).

Define the mapping

a(w2)=ti(w2+y)

(2.8)

a: So(e; )~S by

– ~,. (2.9)

Since C is differentially bounded by 8U and w z G

So(E~), we have a( W2) E So(8~). Note that the
response at e when w ~ # O is the same as if we
replace the input signal w with w + r-x(w ~) and set
w z = O. Hence we may conclude that for w =

S.([O – du]~) the introduction of Wz ● So($)
does not affect the boundedness of the signals e,
e, and y. The signal e2 will remain bounded as it

is the sum of two bounded signals.
Consider now the effect of adding in the small

signal WI = S.( 8 ~ ) and, without loss of generality,
as shown above we can take w z = O. The response
of el will be given by

e,=wl+ti-l (w+tie2). (2.10)

Define the mapping ~: So(t~) -r S by

~(w, )= fi[fi-1(w+Ue2)+w1]

-ti[ti-’(w+ tie,)]. (2.11)

Since ~ is differentially bounded and w, ● So( e~ ),
we have B( WI) ● So(O~). If we replace the input
W by

w+~(wl) =ti[&l( w+tie2)+w1]-tie2

(2.12)

and set the input at w ~ zero, then it is straightfor-
ward to show that the output el is unchanged.

Consequently, el is bounded, as then are e, ez
and y. Likewise, with the input

W=so([e–tlu-ev]’n)

the effect of both WI G So(d~) and W2 = So(O~)
can be incorporated into the input signal, under
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the differential boundedness assumptions on ~, ~.
This gives us the result. ❑

Remarks. (1) When using this lemma in the devel-
opment of the main results of this paper, N is

taken to be BIBO stable, and we are able to

choose O <19< cc arbitrarily large, so that w is

effectively unrestricted.
(2) In the linear case ~, ~ are differentially

bounded by all 9, and &u a 6, Eva 0. As a conse-
quence the closed-loop system is internally stable,
without rest riction on the inputs w, w,, w~.

In the following theorem we shall require the
notion of a left coprime factorization of

G : SO(Rm ) + SO(R* ), defined as follows. Let M
and ~ be a left factorization for G,

G = fi-l~,

~:Im(G)~~, fi:SO(R”)+~, (2.13)

where M and N are BIBO stable mappings. Then

~ and fi are left coprime iff the set of all

unbounded sequences w = SO(Rm ) such that Gw
is unbounded and Nw is bounded is the empty set
f7. In the linear case this definition reduces to that

of right half place coprimeness. We note that
following from results given in [6], a plant will
have a stable left coprime factorization under this
definition iff G satisfies the assumption given in
Lemma 2.1.

Theorem 2.1 (Mild generalization of Theorem 3.1
of [6]). Consider a nonlinear plant G: SO( Rm ) +

SO( R“ ), satisfying the assumptions of Lemma 2.1,

with right and left coprime factorization, G =

NM– 1 = A? lfi over the factorization spaces S, S-.
Consider also BIBO stable mappings

F: SO( Rm ) + S, invertible, (2.14a)

ti:SO(Rn)+S (2.14b)

such that the feedback system shown in Figure 2.2
has stable transfer mappings of (2.5). Then:

(i) [6] The class of all stable ~~, ~~ satisfying

?#f– ~~N= I (2.15)

is characterized in terms of an arbitrary BIBO

stable nonlinear map Q: S-+ S as

i7~=(ti+ QA7):SO(R”)+S, (2.16a)

ti~=(fi+ Qfi):SO(Rr’’)+S. (2.16b)

w -Y

}
e2

tiQ=ti+Qfi w

Fig. 2.3. The class of all (bounded-input) stabilizers of G.

Moreover, the feedback system of Figure 2.3 for the
case w,, w ~ = O is well-posed and has stable

input–output transfer mappings given form

e= f~klw, el=Mw, y=Nw. (2.17)

(ii) -(Gener~lization of (i)) Moreouer, consider

that U and V satisfy the differential boundedness

constraints of (2.6) and M and if are such that

there exist BIBO stable maps Q: ~ + S achieving

Q~:SO(R’’)+ SandQ~:SO(Rn)+S

differentially bounded by 19u, 6V, respectively.

(2.18)

Then the class of all stable maps fi~ and ~~ dif-
ferential~ bounded by Qu, Qv, respectively, satisfy-

ing the Bezout identity (2.4), and achieving

(bounded-input ) stability of the feedback system of

Figure 2.3, is characterized in terms of a BIBO
stable map Q: ~ + S, constrained to satisfy (2.18).

Furthermore ~~ and f~ are given by (2.16).
(iii) If the system of Figure 2.3 is to be structur-

ally stable then, whether or not (2.18) holds, it is

necessary that Q be BIBO stable. ~By structural--
stability we mean that the mappings V~,,, U~,, will
(bounded-input ) stabilize the system for arbitrary

Qu, Qv in some ‘small’ neighborhood of Q,

without the constraint Qu = Q “.]

Proof. See [6] for a proof of (i).
Proof of (ii). Suppose Q is BIBO stable and

makes Q~ and Qfi differentially bounded, as
above. Then ~~ and fi~ given by (2.15) will be
differentially bounde~ by 6U and t9v, respectively.
Substituting ~~ and V~ into (2.4) shows that they
satisfy the Bezout identity, hence the closed-loop

transfer mappings given by (2.17) will be stable.
Applying Lemma 2.2 shows that ~~ and ~~

(bounded-input) stabilize the system.
Now suppose that ~* and ~* are differen-

tially bounded by du and @v, respectively, and
satisfy (2.4), stabilizing the system. Then as both

they and ~, ~ satisfy (2.4) we get

(fi*-ti)M=(~*-~)N. (2.19)
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Now define Q by the equation

Qti=~*-~ (2.20)

which is differentially bounded by 8U. Substitut-
ing into (2.19) gives

(v*- ~) M= QfiN=QtiM, (2.21a)

~*–~=Qfi (2.21b)

which is differentially bounded by 6” under (2.21).
Note that (2.20) is in the form of (2.16a) and

(2.21) is of the form of (2.16b), and so we have the
required result.

Proof of (iii). Suppose that the system of Figure
2.3 is structurally stable and that Q is unstable.
Then for unstable Qu, Qv in the neighbourhood
of Q the system is stable, and ez, u are bounded.
Note that since Qu, Q ~ are unstable,

e= Qu@el– Qv~u+ w

is bounded only if Qu~e2 – Q “fiu is bounded.

This condition generically fails for Qu, Qv pairs
in the neighbourhood of Q, and the result ob-

tained follows. ❑

Remarks. (1) In the linear case, the conditions
requiring differential boundedness evanesce, as
noted before, as do the restrictions on the magni-

tudes of the inputs w~, w*. Theorem 2.1 then gives
the Youla–Kucera parametrization for the class of
all stabilizing controllers for a linear plant G.

(2) The differential boundedness condition
(2.18) appears to be overly restrictive; however we

are unable to give sufficiency of Q BIBO without
it. This motivates to some extent the work of the
next section.

(3) Refering to result (iii), when Qu and Qv are
unstable and Qu = Q”, then it appears difficult to

show that Qufiez – Qv~u is bounded for all
possible u, e2 bounded. Of course in the linear
case, where superposition holds, this situation is

excluded by well-posedness assumptions.

Corollary 2.1. Consider that the conditions of Theo-
rem 2.1 apply, and in addition G is stable, with

right coprime factorization, and left coprime factori-

zation pairs N = G, M = I and # = G, M = I.
Then a pre- and feedback-compensator pair ~-1, ~

satisfying the Bezout identity (2.4) is given by ~ = Z,

~ = O. Moreover the class of all stabilizing con-

trollers for G, characterized in terms of a BIBO
stable map Q such that QG is differentially bounded,

and gives stability of the feedback system of Figure

2.3, is given by

V~=(I-QG)-’, ti~=Q. (2.22)

Proof. Examination of the definitions of left and
right coprime factorization gives coprimeness of
(2.22). Application of Theorem 2.1 then gives the

result. Note that the O and Z operators are dif-

ferentially bounded by any 0, so the bounds given
by Theorem 2.1 on the inputs are determined
solely by the differential boundedness of Q and
QG. ❑

3. A class of stabilizing controllers for G

Consider again the class of stabilizing con-
trollers for a nonlinear plant G which satisfies the
conditions of Theorem 2.1. In the first instance we

consider the case w = O as depicted in Figure 2.1.
The class of feedback controllers K~ stabilizing G
is characterized in terms of a BIBO stable func-
tion Q, restricted as in Theorem 2.1, where the
controller K~ is given b

K~=~; lti~=(~+ Qfi)-l(ti+Qti) (3.1)

as shown in Figure 3.1.
In the linear case, the principle of superposition

applies to allow re-configuration of the controller

w

u- U 1-
e~

M
I 1 I I

Fig. 3.1. The controller K@

w

u— u

if

Fig. 3.2. The controller KQ,.
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Fig. 3.3. Re-configuration of the controller KQ:

K~ of Figure 3.1, now denoted K~,, as in Figure

3.2, where Q, = Q. Notice that the controller class
of Figure 3.2 has the form of Figure 3.3 for some
operator J, whereas the arrangement of Figure 3.1

does not.
Our purpose in this section is to examine for

the nonlinear case, where superposition does not
hold, the controller class K~, of Figures 3.2 and

3.3, parametrized in terms of Q,. Is K~, stabiliz-
ing for arbitrary stable Q,? Is there some stable Q,

such that K~ = K~, for arbitrary stable Q? In
other words, is there a natural generalization to
the linear results where the class of all stabilizing
controllers can be conveniently parametrized as in

Figure 3.3 with the block Q implemented in a

single feedback loop?

To proceed, let us note that for the controller
shown in Figure 3.2, with w = O,

Since u = K~ez we substitute for u and rearrange

to get

However, from (3.1), we have that

(PK, -ti)=QWQfiK,,

so that substitution into (3.2) gives

(3.2)

Q,=(Q-QfiKQ)(J-%-’ (3.3)

and the following lemma is established.

Lemma 3.1. Consider a nonlinear plant G = M- ‘F

(bounded-input ) internally stabilized by the con-

troller class K~ of (3.1) under the conditions of

Theorem 2.1; see Figure 3.1 for the case w = O.

Then for each Q, there exists a nonlinear mapping

Q, such that

Remarks. (1) Given Q,, we see no general method
to select Q such that (3.4) holds.

(2) When (V - ~K~) 1 is BIBO stable it may

be shown that Q BIBO stable implies Q, BIBO

stable. In the linear case this condition is satisfied

due to the application of the principle of super-

position; however it is not clear whether this result
carries over to the nonlinear case. Thus we cannot
currently guarantee stability of Q, when given
stability of Q.

(3) Note that from a comparison of Figure 3.1

and 3.2 it is straightforward to conclude that Q, is

linear if and only if Q is linear, and in this case

Q,= Q. Moreover, in the case where all operators
are linear and Q, = Q, then the controller classes
of Figures 3.1, 3.2 and 3.3 are equivalent with J
defined from

(1[u K
p-,

1(1
e2——

J2(I-GK) –IW1 s “

(3.5)
r

(4) In the case w # O the controllers K~ and

K~ of Figures 3.1, 3.2 will (bounded-input) stabi-
lize the system, although there is no general rela-
tionship between Q, and Q which gives K~, = KQ.

Conditions on Q, giving (bounded-input) stability
of the system are yet to be derived.

Motivated by the linear results we now look for
conditions on Q, to achieve (bounded-input) in-
ternal stability of the closed-loop system with

plant G and controller KQ,. Lemma 3.1 shows that
when w = O the class of (bounded-input) stabiliz-

ing controllers for G may be parametrized in

terms of a single Q,. This allows us to restructure
the nonlinear system of Figure 2.3 into that of
Figures 3.3 and 3.4, where

e=[e, el, e2]’ and w= [w, WI, W2]’.

In this case we can obtain an expression for .l in
terms of the composition of two nonlinear oper-
ators. This may be seen from the examination of

w
Further, Q, is given by (3.3). Fig. 3.4. Reconfiguration of the system of Figure 2.3
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the following:

where o denotes composition of operators.
We now look for conditions on Q, that will

give stability of the system. By studying this struc-

ture, and using the theory of Section 2, the follow-
ing result is derived.

Lemma 3.2. Consider the feedback system of Figure

3.5, where G, 6 and fi satisfv the conditions of

Theorem 2.1. Also consider that s is bounded, w,,

w ~ are bounded by Eu and &v, respectively, and w

is bounded. Then:

(i) The mapping

T: S.(8”’) XSO(t:) XSO(E; )

+So(w)x so(w’)xso(lv) Xso(zv),

T: (w, w,, w2)~(e, el, ez, r) [~+(e, ~)1
(3.7)

is BIBO stable.
(ii) Moreouer, if

~ and ~ are differentially bounded

by 6M, e~, respectively, (3.8)

with 1WI 1 < e~ and IW2 I < .s~, then r is bounded

by 9~+ 8~.

Proof. (i) The subsystem of T with inputs (s, w)
and outputs e is itself a reorganization of the

scheme of Figure 2.2, where the input w of Figure
2.2 is replaced by s + w. Thus under the condi-

‘wk+(

u

)
el

i
G

w w~

u
e2

s

T

Fig. 3.5. Structure of the operator T.

tions of the lemma, by Theorem 2.1 the outputs e
will be bounded.

Now fi is BIBO stable, hence Me2 is bounded.

Also ~- *e = el – WI, hence ~- le is bounded, and
since ~ is BIBO stable fi~– le is bounded. Conse-

quently r = fiez – lf~- le is bounded. Hence for

inputs (s, w) bounded as given in the lemma, the

outputs (r, e) are bounded, giving the result, (i).
(ii) Referring to Figure 3.5, clearly r can be

expressed as

r=tiez-~u

=ti(w2+ G(w1+u))-fiu. (3.9)

Now define the functions a( WI) and B( Wz) by

a(w, )= N(u+wl)–fi(u), (3.10)

~(w2)=ti(w, +ti-lb)-ti(ti-lb), (3.11)

where b = ~u + a( w, ). Since F, M are differen-
tially bounded by ON, fl~ respectively, then a( w ~)

and P( w z) are also bounded by 13,v,O,w. Further,
(3.9) can be rewritten as

r= fi(wz+ii-l (Ifu+a(w, )))– fiu

=ti(l?’(Nu +a(w, )+ B(w2))-Nu

=a(w, )+ B(w2). (3.12)

Since a( w ~) and B( w z) are bounded by L9v and
8M, respectively, r is bounded by 19N+ O,Lf.This

completes the proof. ❑

Remarks. (1) Note that we assuming N is BIBO,
so the assumption that s be bounded may be
dropped as noted in the Remark to Lemma 2.2.

(2) In the case WI = W2 = O we have r = O.

When w ~ and w ~ are not zero, but suitably small,
we have r non-zero, but bounded by 19A,+ O,,1.The
value of r will, in general, depend on the value of
s, but it will remain bounded for all input signals
s. In the linear case, the terms of a( WI) and

~(w2) depend on s, but r=a(w, ) +/3(wJ does
not, giving the result T22= O. The bound on r that
we have obtained here, depending on w,, w ~ and

s is the nonlinear version of the result T2Z= O.

(3) Note that we have not assumed w = O in

this lemma. This is due to the fact that since ~ is
BIBO stable, the boundedness of the system will

be invariant of arbitrary inputs prior to the pre-
compensator.
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‘-----+ ‘* t--+-’+—
Fig. 3.6. The class of (bounded-input) stabilizers for T.

As T is a BIBO stable plant we may now apply

the corollary to Theorem 2.1 to give the class of

pre- and feedback-compensator pairs which will

stabilize T, characterized in terms of a BIBO

stable map Q*, as depicted in Figure 3.6. Thus we
find that if Q* and Q* T are differentially

bounded, then the system will be stable. We now
try to put Figure 3.6 into a form similar to that of
Figure 3.4. We set w * = O and define K~. as

K ~.=(I+Q*T)-lQ*. (3.13)

Note that if we set w: = (w, r), w; = O and con-

strain K~, to be the form

(3.14)

we have put the system into a form similar to
Figure 3.4. We now find a Q * which satisfies this
constraint.

Lemma 3.3. A Q* satisfying (3.14) is

(3.15)

Proof. We give a proof by substitution. For the
lemma to hold we must have

From the second remark to Lemma 3.2 we have

Therefore

[)

Q*T ‘;’ =() (3.17)

o

Substituting this into (3.1 6) completes the proof.

❑

Remark. The most important result from this
lemma is that the precompensator fi(~ is always

equivalent to the identity when there is no input
between fi~] and fi~ *. This would seem to indi-
cate that in the case depicted in Figure 3.4 we
need only require Q, differentially bounded to
give stability of the system. Even this is a stronger
condition than required, as is now explored.

Theorem 3.1. Consider the system of Figure 3.4,
where the operalors fi, G, ~, fi are all differen-
tially bounded as giuen by (2.6) and (3.8), and with

WI and w * bounded by

fin{ Ev, EN }, mk{ E“, &&f }, rek$pdk.k’[y,

(3.18)

and w = O. The closed-loop system is (bounded-in-

put ) stable iff the operator Q, is BIBO stable for all

inputs r bounded by 6M + ~~.

Proof. By Lemma 3.2 the conditions of the theo-
rem give the result that for s bounded the outputs

(e, r) of the system are bounded. Due to the

restrictions on the inputs w, and w ~ given by

(3.18) the value of the output r is bounded by

8M + e~. If Q, is stable for all inputs r bounded
by (?~+ tl~ then the value of 6 will be well
defined, where 6 is given by

o=
,X, H:+8.’Q’X’”

(3.19)

Therefore for all inputs w bounded as above, s
will be bounded by 0. Hence the outputs will be

bounded, and the closed-loop system is (bounded-

input) stable.
If Q, is unstable, then for some r, s = Q,r will

be unbounded. If the signals e, el and ez remain
bounded the system would be stable. Suppose that
ez is bounded; then since O is BIBO stable Ue2 is
bounded, therefore e =s + ~ez is unbounded.
Furthermore as ~ is BIBO, if ~-1 has an un-
bounded input it will have an unbounded output,
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so e will be unbounded. Now suppose that e =s

+ ~ez is bounded; then ~el is unbounded, and as

~ is BIBO, this implies that the signal ez is

unbounded. We have shown that if the signal s is
unbounded then one of the signals e, e, and e2

must also be unbounded. Therefore the system is

unstable. This gives us the result. ❑

Remarks. (1) Notice that in this theorem the dif-
ferential boundedness assumption (2.18) is absent,
so that in this respect the characterizations of this
section are more elegant than those in the

Youla–Kucera formulation of the previous sec-

tion.
(2) The introduction of an arbitrary bounded

signal w will not disturb stability of the system.
This follows since N is BIBO stable, and using
arguments as in the remarks to Lemma 3.2.

(3) Further to the remarks to Lemma 3.1, we
may now show that BIBO stability of Q implies
Q, BIBO stable as given by (3.3). When Q is
BIBO stable, then K~ will (bounded-input) stabi-

lize G, and by Lemma 3.1 the Q, given by (3.3)

will ensure K~, = K~. Hence K~, will (bounded-
input) stabilize G, and so Q, will stabilize T.

Application of the theorem gives BIBO stability of

Q,.
(4) This result specializes directly to known

linear results, since in the linear case the bounds

on w,, w* may be arbitrarily large.
(5) In the case that the mappings ~, ~, N and

~ satisfy a Lipschitz condition instead of satisfy-
ing the differential boundedness constraints, the

theorem results again, although the bounds on the
inputs w~, w z will be different. Proof details on

this result are straightforward, following closely
the above proof, and are therefore omitted.

4. Conclusion

In this paper we have extended earlier nonlin-

ear factorization results to achieve a characteri-
zation for the class of all (bounded-input) inter-

nally stabilizing controllers. The results are more

closely aligned to certain formulations of the exist-
ing linear theory. The main result in this direction
is given by Theorem 3.1. We have shown that for a
plant G, (bounded-input) stabilizable, with left

differentially bounded stable coprime factoriza-

tion, the class of all controllers such that the
closed-loop system is stable for all inputs suitably

bounded, is parametrized in terms of a single

BIBO stable map Q,. Moreover the controller

class KQ, can be implemented in the arrangement
of Figure 3.3. This work is readily extended to

show similar results for plants with stable right
coprime factorization which satisfy a Lipschitz
condition. In this case we get the same result as in
Theorem 3.1, except the bounds on the inputs will
be different.

The new characterization is more elegant than

earlier versions, see Section 2, which implicitly
restrict the parameter Q by differential bounded-
ness assumptions. Our results are rather technical

and advance the current theory by but a small
step. Even so, this step appears to us to be a

significant one in the process of developing con-
venient formulations of nonlinear factorization

theory. One possible application of these results is
towards developing adaptive control techniques
for nonlinear systems. It would be particularly
interesting to characterize classes of systems

stabilized by adaptive controllers. Of course to
achieve such objectives, time-varying versions of

the results of this paper would be required.
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