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On Robustness to Noise of Least Squares Based

Adaptive Control*

J. B. MOOREt and G. CASALINO~

Glohul convergence results are presented for the .wfftuning regulator based on least
squares parameter estimation and minimum variance control. These results are also

generalized to the udaptioe pole assignment case, andjticus on robustness to untnodelled
colored noise.
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Abstract Current engineering practice for adaptive control
schemes is to base the design on globally convergent schemes
for simple plant models, An important class of such schemes
uses least squares estimation of assumed simple input–output
models and constructs the controller using the parameter
estimates. This paper studies the robustness of such schemes to
the presence of unmodelled plant colourcd noise. Such noise is
sometimes an adequate model for unmodellcd plant dynamics.

The theory of the paper makes a connection between the least
squares parameter error equations and those associated with
extended least squares us]ng (1 posferiori noise estimates for
which there are known global convergence results. For the case
of adaptive minimum variance control of minimum phase plants,
this connection permits stronger convergence results than those
hitherto derived from the theory of extended least squares based
on u priori noise estimates.

1. INTRODUCTION

THE PURPOSE of this paper is to provide the crucial
first stages towards a global convergence theory
for recursive least squares (RLS) based adaptive
control schemes applied to autogressive moving

average exogenous input (A RMAX) models. The
main results show connections to known converg-

ence theory for extended least squares (ELS) sch-
emes with a posteriori noise estimates- --these giving

stronger results than for ELS schemes based on a
priori noise estimates.

Consider as a plant the autoregressive moving
average exogenous input (ARM AX) scalar variable
signal model

Apyk = ~pUk + C%~ (1.1)
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where Uk is the control input sequence, y~ is the

output and w~ is a zero mean, bounded variance
“white” noise disturbance. Here u~, y~ are measur-
able and w~ is nonmeasurable. Also, with q- 1 the
unit delay operator, Ap = 1 + aj’q - t + afq-n,
I?p=bfq-l +...~~mandnd Cp= 1 +Cfq-l +...

Cf’q“. Without loss of generality, assume CP is

minimum phase. In the first instance assume also

that Ap, I?p are coprime,
One class of adaptive controller for models

such as (1.1) implements on-line an extended least
squares (ELS) recursive estimation of Ap, Bp, C’Pand

implements a controller with parameters calculated
on-line from the parameter estimates ~[, @, ~f!
(Kumar and Moore, 1982; Moore, 1983, 1985). The
controller can be designed based on the certainty
equivalence principle, or better using central tend-
ency adaptive control (Ryan et al., 1985). In the
convergence theory for such schemes, the noise

model is restricted as

[(cP)-t – }]

which is satisfied if
white (Moore, 1982),

strictly positive real (1.2)

the noise Cpw~ is “close” to
Simulation studies show that

failure of ( 1.2) typically results in the ELS scheme
giving drifting parameter estimates. Techniques
have been devised to side-step the above positive

real condition by adding dither signals within the

calculations (not necessarily within the control

loop), and performing on-line spectral factorization
(Moore, 1982).

In current practice, engineers tend to avoid
ELS based schemes, being more comfortable with
recursive least squares (RLS) schemes constructed
with deterministic signal models in mind, or stoch-
astic models (1. 1) driven by white noise as when
Cp = 1. It is known that adaptive control schemes

so designed are frequently robust to the presence

203
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of colored noise CPw~, The self-tuning regulator

(STR) of ~strom and Wittenmark (1973), designed
to tune to a minimum variance controller when

applied to minimum phase plants, is such a scheme.

Existing global convergence theory for the STR
applied to ARM AX models (1,1) (Moore and

Bitmead, 1984) views the STR as an ELS scheme

for the reorganized model

Ayk = Buk + (c – l)(w~ – y~) + w’~

A=l+AP– CP, B = BP, C=cp. (1.3)

The ELS scheme has a priori noise estimates }$~1~- ~
which satisfy ti~,~_ ~ = y~ under the control action

Bkuk = (/lk – I)yk. (1.4)

Here ~~, ~, are the recursive least squares (RLS)

parameter estimates which are calculated recurs-
ively in terms of a regression vector, defining
r = max(n, /):

ii=[yk-,yk-,... Yk-ru, -,u, -,... u,m]. (1.5)

Denoting A = 1 +alq-l + .aHq-r, B=bl q-l +
. . b~q-m, @ = [a1u2 a,b1b2 h~] then estimates
Zk, L2kare given from

ok = ok-~ + Pk~k(J’k – f’klk- ~), .fklk- 1 = @i”k- 1

Pk = Pk., – Pk-, *k*~Pk-l/(l + l//;Pk-l*k)
(1.6)

with suitable initial conditions PO >0. The ELS
convergence results of Moore and Bitmead (1984)
assume the noise condition (1.2) and that the
variance a;, of w~ satisfies o;, >0, In essence they

tell us that the closed-loop system achieves the
characteristic polynomial qBPCp for arbitrary Cp

satisfying ( I .2).
The convergence results for ELS schemes based

on a priori noise estimates k~l~ ~ are not as strong

as those for ELS schemes based on a postwiori
noise estimates tiklk. In the latter case, for example,
convergence rates can be guaranteed but not so in
the former case,

One contribution of this paper which emerges as
a by-product of the main theory is to demonstrate

a connection of the STR scheme above with an
ELS scheme based on a po.stwiori noise estimates.
With such a connection, stronger convergence
results can be obtained than in the present theory
(Moore and Bitmead, 1984), in that convergence

rates can be established,
What then about more general RLS based adap-

tive control schemes assuming models (1. 1) with
Cpw~ white, but applied when Cpw~ is colored? In

this paper a natural generalization of the STR
concept of ~strom and Wittenmark (1973) is consid-

ered. The objective is to achieve closed-loop poles
at the zeros of QCP, for some minimum phase
polynomial Q, invariant of the noise color Cp of

the model (1. 1). The polynomial Q may be specified

a priori as in adaptive pole assignment. Altern-

atively, as in adaptive linear quadratic Gaussian
(LQG) schemes, there can be on-line calculations

which in effect assign closed-loop poles depending

on the performance index and plant parameter
estimates. The theory of Casalino et al.(1985)
is pertinent to such schemes and is now briefly
summarized, and some aspects made more precise.

Consider a feedback control law applied to (1.1),
with R, S polynomial finite in q- 1, as

Ruk = S~’k, R monic. (1.7)

An important subclass is when the closed loop

system has an autoregressive exogenous input
(ARX) “implicit” representation of the form

Ayk = Bu~ + \v~, Ru~ = Sy~ (1,8)

with A= 1 +alq-l + , B= blq-l +b2q-2

+ . . polynomials in q- 1 of finite dimension.

Theorem 1.1 (See Casalino e( c~l., 1985). The con-

troller (1.7) applied to the plant (1.1) allows a closed-
loop ARX “implicit” representation ( 1.8) iff there
exists a polynomial operator in q- 1, denoted Q,
such that Q(q - 1 = O) = 1 and

APR – BPS = QCP, (1.9)

AR– BS=Q. (1.10)

Moreover, under ( 1.9) and (1. 10) the closed-loop

system achieves the closed-loop poles given from

the zeros of QCV.

Remurk 1. From a theory of Diophantine equations,
given in the Appendix, it is straightforward to show
that for arbitrary Q of degree A(Q) and m > 1, then
a unique solution R, S of (1.9) exists and can be
determined with d(R) < m + i, (>(S)< r + j, for any
positive integers i, j satisfying (i + j) = max {0,

i5(Q) + / – (r + m) + 1). Moreover, any R,S solu-
tion of (1,9) allows a solution for (A, B) of (1.10) if
common factors of R, S are also factors of Q. With
R, S coprime, then a unique A, B solution
of (1. 10) exists and can be determined with

b(A) < d(R) + I + i., A(B) < d(S) + 1 +j* for any
positive integers ix, jx satisfying (ix + j.J = max
IO,6(Q) — (8(R) + J(S) + 2) + 1]. Generic solutions
give (in the usual case with i, j. ix, jx = O) d(A) =
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6(R) = m – 1, ii(B) = 6(S) = r – 1 with (R, S) co-

prime and (,4, 1?)coprime. The above degree bounds

for the regulator R, S and implicit representation
A, B are mildly stronger than the bounds given in

Casalino et al. (1985) in terms of max{d(R), d(S)}
and max{6(A), 8(B)}.

Remark 2. Consider the closed-loop system (1.1),

(1.7) with R, S coprime under (1.9) and (1.10) so
that the implicit representation of the closed loop

system is (1.8) with w~ zero mean, white and with
o; >0. Consider that (A, B) is coprime with d(A),

6(B) known as in the generic case. Consider also
that QCP is (strictly) minimum phase so that the
closed-loop system with poles at the zeros of
QCP is asymptotically stable, Then recursive least
squares (RLS) estimates ~~, E~ of appropriate
dimension as in (1.6) will globally converge to A, B

as k ~ x. [These results can be viewed as a special
case of the ELS results (a posterkwi case) for the
model (1.3) with C’pE I and (1.2) trivially satisfied.]

RLS based adaptive scheme

The above Theorem 1.1 and remarks motivate
here the study of the convergence properties of an
RLS based adaptive scheme. The objective is to
achieve convergence of the closed-loop system to

an implicit representation as in (1.8). Employ RLS

estimation of A, B of (1.8) as ~~, B~ via (1.6)
of appropriate dimension. Solve for each k the

following Diophantine equation for some minimum
phase Q, or more generally some time-varying &

‘lkRk – Bk$k = Qk. (1.11)

Then implement the adaptive controller

uk = $&, Rk& = yl#. (1.12)

For the case when Q~ = Q, a constant minimum

phase polynomial, then the adaptive scheme is
in essence an adaptive pole assignment scheme

such as in Prager and Wellstead (1980). For the
case when Q~ = qb; ‘Bk, then Rk = Q~ and

$,$ = (~,k – 1), and with bl a priori specified, the
adaptive scheme is seen to be the STR scheme of
.&strorn and Wittenmark (1973). Adaptive LQG
schemes can also be viewed in this framework.

The theory of Casalino et al. (1985) also states

that should Qk, ~k, ~~ converge to some Q, Z, E,
and the residuals be asymptotically white, then the
adaptive controller asymptotically assigns closed-
Ioop poles to the zeros of QCP. It remains to study

—.

under what conditions convergence takes place.
In the next section the first steps in developing

a convergence theory for the RLS based adaptive
pole assignment scheme for AR MAX models are
taken. Connections are made to known convergence

theory for ELS schemes. We show that the noise

condition (1.2) generalizes for the RLS based pole

assignment scheme as

Kk A [(HkCp)- 1 – j] is strictly passive (l,13a)

Hk = (A~k – B& – (jk)(ApRk – Bp,$ – Cp~k)- 1

= (Bksk – 2kRk)[(2kRk – Bk,$k)cp

– (ApRk – Bpfk)] (1.13b)

where ~~=Q–Q~, l?k=R-Rk, ~k=S–~k.
Notice that for the STR of Moore (1985) when
R= Q=qb; lB, B= Bp, S=A– l=(AP– CP)

and Rk = Q~ = qb:l Bk, ,$~= ~k – 1, then ~k = ~~
and from (1. 13b), Hk = 1. The passivity condition
(1, 13a) now simplifies as the strict positive real

condition (1.2). However, in contrast to the condi-
tion (1.2) which is dependent only on the noise
model, the condition (1. 13) depends on both the
plant and (time-varying) controller parameters. It
is therefore sample function dependent. Other in-
terpretations of this condition are given in Section 3,

2. THE STRICT PASSIVITY CONDITION FOR

CONVERGENCE

Lemma 2.1. The model (1. 1) under the controller

(1. 12) has the representation

A_Yk= Bu~ + Ckwk (2.1)

Ck = (/tRk – B$k)(ApRk – Bp.fk)- ‘Cp. (2.2)

Moreover, when Rk = R, $k = S, Qk = Q and (1.19)
is satisfied then C~ = 1.

Proof. From (2.1 ), Ckwk = (A~k – B$k) Rk- ‘yk. Also

from (1.12), R; lyk = (Apl?k – Bp$~)- ‘C’’w~. These

together give (2.1), (2.2). The second property fol-
lows from Theorem 1.1.
Remark. With Qk, ~k, Sk, ~k, ~k estimates of Q, R,

S, A, B satisfying (1.9), then an estimate of Ck,

denoted (?~, is ~k = Ck(R, S) = 1, and a correspond-
ing a posterior estimate of w~ is

Awkik ~ y~ — )k,k, (f’k/k = @i”k)

= (Bkuk – Zkyk) + (Ck – 1)w~ + w~

= ~kyk – fi@/,k (2.3)

where ~~ = B — E~, ~~ = A — ~k. Likewise an a

priori estimate is

ti,k/k- ~ ‘~k–~k/k-l ‘(~k-luk–zk-d’k)

+ (~k – l)wk + Wk= Ak_lyk – Bk_luk.
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FIG. 1. The error equatmns - u pf~.slerlorl form

Standard manipulations from (1.6) give

ok=ok-, –Pk-, *kkkk, (2.5)

Lemma 2.2. The parameter estimation error equa-

tions (2.5), (2.3) can be organized as two linear
subsystems back to back driven by white noise as
in Fig. 1. The subsystem with input q~,k = ~~~k and

output pk/k = jqkk – (Ck – l)~k 1S denoted Kk and
is defined in (1.1 3). The subsystem with input

(Pk,k + Wk) and output qkk is denoted Gk. Moreover,
both subsystems are linear, but time varying.

PTY@. Applying (2.1) and (1.2)

(Ck – t)wk = ~yk – Buk – Wk

= [.4fik – B,Sk – (C”)- ‘(Apfik

– Bp$J]~k

= (Cp) - ‘[Cp& – (Apfik – B“S,)<k

+ (lkRk – Bksk)]<k

= (Cp)- ‘[~; ‘ – cp](~kfk – ~k~k)~k

= [(~kcp)- l]qk,k. (2.6)

Also from (2.3)

A

Gk,k = Wk— Wk,k (2.7)

= – [qk,k + (Ck – l)w,4].

Together those yield

(Ck – 1)Wk = (1 – Hkc’)( – i’k,k). (2.8)

The relationships of Fig. 1 are now immediate.
Vvv

Remark 1, The formulation of the estimation error

equations as in Fig. 1 now makes possible the
application of known ELS convergence theory

where in the ELS schemes noise estimates are a

posferiori estimates ti’kk (Kumar and Moore, 1982;

Moore, 1983). Some aspects of this theory are

recalled in the next few remarks.

Remark 2. An important insight into the behaviour

of the error equations of Fig. I comes from the
result (Kumar and Moore, 1982; Moore, 1983 and
their references), that the subsystem Ck is passive
for arbitrary ~k. Since a passive system in feedback
with a strictly passive system driven by Lz inputs
leads to input-output L1 stability, then it makes
sense in the context here to assume in a convergence

theory that Kk is strictly passive as in (1.13). Thus
for Wkin L2, and (1.13) holding,

1 1

Also, it can be shown that ~(Pk ‘[k converges.
Of course (1.13) is not a necessary condition for
input–output stability. Although the subsystems

Gk, Kk are time varying, in general, it is helpful to
think in terms of ’’loop gains” at certain frequencies,
and “phase shifts” in Gk, Kk in frequency bands.
The assumption that Wkis white means that ~k is

colored and with most of its frequency content in
the “frequency band” of the closed-loops system.
Outside this band, the “loop gain” in Fig. I will be
“small”, so that “phase shifts” of more than 90’
could be tolerated in the subsystem Kk.

Remark 3. A more general stochastic analysis relies

on a martingale convergence theorem as in Kumar
and Moore (1982) and Moore (1983, 1985). To
exploit this theorem a modification to the least
squares algorithm is required which weights the
most recent data less in the presence of instability

as detected by ilI-conditioning of Pk. Another key
theorem tells us that for linear, reachable (possibly
unstable) systems, excitation of inputs (here t/k)
translates to excitation of states (here $k) (Moore,
1983). See also Moore and Green ( 1985) and Moore
(1987). With Uk persistently exciting, in that its
variance is bounded below by a positive value, then

CPk< 7.) as. (2. 1o)

ukll’ < x. (2,11)
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FIG. 2. The error equations (STR

Remark 4. For the case of the
Wittenmark (1973), where as

case) - u priori form.

STR of ~strom and
noted in Section 1,

Hk = 1 and (1.13) simplifies as (1.2), the formulation
of the error equations in Fig. I is novel. The main
contribution of this formulation is that it makes a
connection with ELS theory based on a posterior

noise estimates ti~,~ rather than on a priori estimates
ti~, ~.~. The former theory is known to give stronger

convergence results, although condition (1.2) is
required for both theories. Figure 2 shows the u
priori ELS error equations which also apply to the
STR. This can be contrasted with the a posterior
form of Fig. 1. The subtle differences are in fact quite

significant when it comes to achieving convergence
rates and setting rules for the weighting selection
scheme. (Of course, since asymptotically the control

is a linear combination of the elements in ~~, for
~~, ~~ to be consistent, one of them must be a
priori known and its value prescribed in the least

squares algorithm. Typically hl is set hi = 1 as a

scaling.)

Remark 5. In the next section the focus is the strict
passivity condition (1. 13) which is sample function
dependent, in contrast to (1.2) which is only signal
model dependent.

3. INTERPRETATION OF CONVERGENCE

CONDITION

The strict passivity of the subsystem Kk of

Fig. 1 in the convergence condition (1.13) has an
interesting interpretation when ~~ = O and either
~~ = O or ~~ = O for all k, for then

[Kkl~k=o, sk= o]= [/l(A”)-’c ”]-’ – + (3.1)

[Kkl~k = O,i?k = O] = [B(BP)-l CP]-’ – +. (3.2)

These conditions are now dependent only on the

signal model.

For adaptive pole assignment ~~ = O. Also it is

possible to contrive an adaptive scheme such that
either $~ = O or ~~ = O for all k so as to test what
happens when either of (3.1), (3.2) fail. Consider the

case when Q~ = Q and $~ = S in (1.1 1). Then the

-+-’”0 ---I-’,’”
1

(d)

FIG. 3. The convergence condition mterpretatlon.

adaptive pole assignment controller is

SR~l = S(~~S + Q)-l&. (3.3)

For this controller, the convergence condition is
(3.1). Likewise when Q, = Q and R, = S in (1.11)

then the adaptive controller is

,fkR-l = ~;’(~kR – Q)R-’ (3.4)

and the convergence condition is (3.2).

Simulation studies using the adaptive controller
(3.3) applied to the model (1.1), not reported herein
detail, show that when (3. 1) is satisfied convergence
occurs, and when (3. 1) is violated there is most
often “immediate” instability—even in the white
noise case when Cp = 1. This contrasts our simula-
tion studies for adaptive minimum variance control-
lers for (1. 1) when failure of (1.2) does not cause
instability, at least in the short term, but merely

“drift” in the estimates of parameters.
The diagrams in Fig. 3 are perhaps instructive

for more general adaptive schemes based on RLS,
at least in interpretation of (1.13). Figure (3a) shows

the case when both (3.1), (3.2) are satisfied, Fig. (3b)
when both fail, and Figs (3c, d) when one is satisfied

and the other fails. Notice that (3.1 ) fails when the
plant is unstable and (3.2) fails when the plant is
nonminimum phase. These diagrams do not give
any indication of what happens in the entire ~~,
~~ space, and indeed our simulations of adaptive
pole assignment schemes do not indicate that en-
trapment on Rk = O, or ~~ = O occurs. If Cp violates
(1.2), then our simulations show similar behaviour

to STR schemes when (1.2) is violated.

4. CONCLUSION

The theory of the paper has identified a sample
function strict passivity convergence condition as-
sociated with least squares based adaptor control
schemes for AR MAX models in the presence of
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colored noise. Prager, D, L, and P. E. Wellstead (1980), Mul~ivariable pole-

The strict passivity condition, when violated in
assignment self tuning regulators. Proc. [EL’, 128D, 9-18.

Ryan, T., J, B, Moore and L}ge Xia (1985). Central tendency
specially contrived situations, leads to closed-loop adaptive control. Proc, /EE Control Corr~,, Cambridge, July

instability. In more usual situations, simulations do 1985, pp. 116-121. See also, Proc. IEEE C’DC CorIf., Vol. 1,

not suggest that the algorithms become unstable
pp. ltX-105, Dec. 1986,

or behave in such a way that the strict passivity

condition is violated. Of course instability can
occur when the pole assignment controller is itself

nonrobust. There is clearly the need for further
research on this subject.

Perhaps the most significant result emerging
from the new theory pertains to the special case of

the STR of !wtrom and Wittenmark (1973) (adap-
tive minimum variance control based on least

squares identification). The lemmas of this paper
now allow a global convergence theory to be
expounded for the STR (or rather a mildly modified
version) using known theory based on that for
extended least squares schemes based on a posterior

noise estimates rather than a priori noise estimates
as in earlier studies, The consequent gain is to
achieve guaranteed convergence rates of 0(1/~k)

associated with parameter estimate convergence.
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APPENDIX

On Diophontirre equatiorr.s
The following result builds on those in Anderson and Bltmcad

(1977), where R,, denotes the class of rational strictly proper
transfer functions,
Theorem A, 1, Let ,4(s), B(s), Cl(,S), C2(.S) be prescribed polynomial
matrices with A, B coprime and A ‘Cl, CZB-’ ● R,,. There
exist unique polynomial matrices X(s), Y(\) satisfying AX +
YE= CIC, with XB ‘, A-’ Y~R,O.
Proof. Without loss of generality take A, B as row and column
proper, respectively, With A ‘Cl, CjB’” 1 strictly proper there
exist readily determined state-space realizations A ‘(,s)CI (,s) =
H; (s1 – F1)-l G1, and C’2(.S)B-’(S) = H;(.s/ – F,)-’G2, These
are such that any strictly proper transfer functions A- l(,S)L(.S)
and M(s) B- ‘(s) have the form H~(sl – F,)- lKI and
K~(.sI – F2)” ‘G,, Such realizations can always be found. Let P
solve PF2 – FIP = – Glffj. Since A, B are coprime F1 and F2

have no common eigenvalues so P exists and is readily deter-
mined. Now

‘l GIH; (.s-F2)-’GjA l(.s)C(.$)B - ‘(.s) = H;(,sI – F1)

= H~(.sI – F1)-’[P(sI – F,)

(s1 – F1)P](sI – F,)- ‘G,

= H;(.sl – F1)-’PG,

= A ‘(.s)Y(.s) + X(.S)B - ‘(.s)

for some X, Y with A-lX, YB-’c R$,,
Remark 1. Should A ‘Cl and C2B - ‘ not be strictly proper,
then a re-organisation such as AX + YE = CICj can be per-
formed so that Z- ‘C,, C2B-’ are strictly proper. For example,
take Z = s’A and X = .s’X and B = .s’B, Y = s’F for suitably
large integers i, j >0, In the scalar case, it suffices that
A-1 C1C2E-’ be proper, so that (i +j) = max {0, d(Cl C2) –
[6(A) + 6(B)] + 1}.
Remark 2. In applying the above results to (1.9), these equations
should be first rewritten as, noting SBP = BPS a scalar,

AD(R – 1) – ,SB” = (QCfl – An) (1.9a)

Moore, j: B. (1987), A universaiit y advantage of stochastic
excitation signals for adaptive control. Sysr. Contro/ Left,, to [:(.4 - l)](z-’R) - (Z-lS)(:B) = (Q - R) (1.9 b)’

appear.
Moore, J. B. and R. R, Bitmead (1984). On the self-tuning and then ~- I identified with ,s in the Theorem Al, so that ‘n

regulations and a priori ELS convergence, Proc, Conf, Decis. the first equation there is the identification A - A“, B - B’,
Control, FL. Lauderdale, Florida, Dec. 1984. X-(R– 1), Y= –Sandinthe second A -z(A– 1),11 -:B,

Moore, J, B, and M, Green (1985). Persistence of excitation in X- Z-l R, Y=–z- ‘S. The results of Remark 2 following
linear systems. Pi-or. America Control Conf., June 1985, Theorem 2.1 are then immediate.


