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ABSTRACT

A parallel processing technique for adaptive estimation
is investigated. In particular, for the case of unknown system
or statistical parameters denoted by the vector ¢ belonging to
a finite set {el,ez,...,eN}, the maximum likelihood ¢ is
determined and denoted é, and the minimum mean square error
state estimate conditioned on this é, namely ;(tlt,a) is
taken to be the state estimate. Using this approach new estimators
are derived which require less computational effort and have less
limitations than previous adaptive estimators using parallel

processing techniques described in the Titerature. Results for the

case of time-varying unknown parameters are also derived.

An example is included of state estimation for a known signal
model but with unknown noise statistics. The filter banks are
constrained to be time-invariant and so only appropimate maximum

likelihood parameter estimation is achieved.



1. Introduction

The Kalman-Bucy filter [1,2] for the estimation of the states of a
linear dynamical system requires an exact knowledge of the system
parameters and noise covariances. We consider the adaptive estimation
problem of estimating the states when the dynamical and/or statistical

model is specified up to a set of unknown parameters, denoted by the

vector 6.

Parallel processing techniques have been applied by a number of
authors [3-5] to the adaptive estimation problem and in fact adaptive

estimators requiring one hundred or so Kalman filters can be
implemented using mini-computers. In essence, tue standard Bavesian
approach to the adaptive estimation problem is as fcllows [5]. Assuming
tnat tne unknown parameter vector 8§ 1is discrete or suitablv quantized
to a finite number of grid points {nl,...,%w}, with known or assumed
a priori probability for each Hio the conditional mean estimator includes
a bank of I Kalman filters where the 1th filter is a standard Falman
filter designed on the assumption that fEr The filter bank is driven
by the noisy signal measurements. The conditional mean state estimate is
given by a weignted sum of the states of the Kalman filters. The weighting
coefficient of the state of the 1th Kalman filter is the a posteriori
probability of Gi’ which can be updated recursively using the noisy signal
measurements and the state of the ith Kalman filter.

Unfortunately, for systems with continucus-time measurements, the
above Layesian approach has the drawback that, first, the measurement noise

covariance R has to be known, and second, the unknown parameter vector

6 hnas to be time-invariant.



For the special case of systems with discrete measurements,
parallel processing estimation techniques have been developed when
the measurement noise covariance is unknown, at the expense of either
complexity or loss of optimality [4], [6]. In the practically important
direction of reducing the complexity of the adaptive estimator, Alspach and
Abiri [6,7] obtain time-invariant state estimators for time-invariant systems
with unknown noise covariances by considering a grid of possible time-invariant
Kalman gains directly rather than a more involved grid of possible noise
covariances in the unknown parameter space. The results can be extended
to cases when tihe noise covariances are time-varying quantities [8].
However, for the estimator of [6] to be close to optimal, it is required
that the Kalman filters have reacned steady-state and that the number of
measurements received be large. Thus, during the transient periods, the
estimator operates suboptimally.

Some parallel processing estimation techniques are also available for
discrete-time systems when 0 is time-varying. Using a combination of
digital and analogue techniques, optimal adaptive estimators for the case
when the unknown parameter is a scalar Markov sequence of known statistics
have been developed [9]. By approximating the a posteriori density of tne
state vector with a Gaussian probability density, Ackerson and Fu [10]
derived a suboptimal estimator for the particular time-varying unknown
parameter case in which the input noise or the measurement noise comes from
a group of white Gaussian noise sources, which act one at a time, with the
transition from one noise source to another being described by a discrete
Markov transition matrix.

It is clear from the above survey of existing adaptive estimators using

parallel processing techniques that it would be



worthwhile to investigate any adaptive estimation approacn using
parallel processing techniques suitable for botn continuous-time
and discrete-time problems, and which can handle unknown time-varying
parameters and unknown measurement noise parameters with but a small
addition in complexity over the case of time-invariant unknown parameters and
known measurement noise covariance. In this paper, such an approach is
investigated. This approach can be briefly described as follows.

An unknown parameter vector 6 1is defined in such a way that there
is one and only one Kalman filter corresponding to a particular grid point
6, 1in the 0 space. The states of the Kalman filters are denoted
;(tlt,oi). By comparing the relative magnitudesof the likelihood functions
of tne b:'s evaluated using tne measurement data and ;(t|t,uj) for all
i, the most likely 0, at time t, denoted é(t), is determined. The
state ;[tit,é(t)] is taken as the estimate of the signal model state x(t)
Mote that since the 1ikelihood functions of the unknown parameters are used
instead of their exact a posteriori probabilities, it is not necessary to
assign a priori probabilities to the different Oi's

The advantages of using the approach just outlined can be summarised
as follows. First, for continuous-time systems, in contrast to the standard
Bayesian approach, our approach does not require that the measurement noise
covariance be known exactly. Second, for the discrete-time case, our
estimators require less computational effort than alternative known estimators
using parallel processing techniques. Third, for both the continuous-time
case and the discrete-time case, the various results can be extended in a
simple manner to give useful adaptive estimators for the case of time-varying

0.



1.4

The above advantages are of course useless unless the estimators
using the above approach perform satisfactorily. Monte Carlo simulations
show that they work very well in minimizing the mean square estimation
error when compared to the more complex adaptive estimator for discrete-
time problems described in [8].

An outline of the subsequent sections of this paper is as follows.
In section II, we present the discrete-time results for time-invariant
unknown parameters. In section III, the results of section II are
extended to the case of time-varying unknown parameters. In section IV,
the results of sections II, III are extended to systems with continuous-

time measurements.



1. DISCRETE-TIME RESULTS FOR TIML THVARIANT UNKNOUIL PARAMET RS

In this section, we first review appropriate discrete-tine ontimal
adaptive estimator results from [3]-[5] and then we apply these results
to achieve an alternative adaptive estiwator which in most anplications
is simpler and thus more attractive. A simulation exanple is qiven to
demonstrate the pertormance characteristics ot the alternative estimator.

Consider the system

Kty p) = sty ot (L) + 6061 ult,) ()
Py ) = Mg b 1y y) (2)
Z(tk+1) :y(tk+])+V(tk+1) (3)

where u(+), v(+) are independent zero-mean Gaussian white noise sequences
with covariance matrices I and R respectively. The positive definite
matrix R will be assumed known in some instances, and not known in others,
The initial state x(ty) 1is a Gaussian random vector with mean xg(y)
and variance P{tylt,,v) and is independent of wu{-) and v(-). The
entities ¢(t, q.t o)y Glt fe), Hit 41u), x (), Pl e, ) are
completely specified by the parameter vector ., 1i.e. they ave known if
i 1s known, possibly unknown if . is not known. This farmulation
effectively allows an unknown input noise covariance {although we have
assumed E{u(tk)u‘(tk)} = I) through the intervention of G(tk[;) in {1).
If ¢ and R are specified, the conditional mean state estimate

x(tkjtk,w,R) is of course given from the familiar Kalman filter equations:
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Xyt wR) = x(y g Tt wsR) + K(E 10aR) z(t 1 [5R) (4)

x(tk+]|tk,W,R) = J)(tk*]]tk’W) X(tk|tk,w,R), X(tolto,w,R) = XD(K\“) (5)

2t [0R) = 2(t,1) - Hlty [0) Xty 16000R) (6)
Kty loaR) = POt [E0R) B (g T0aR) PL (8 1 205 R) (7)
Pyt g 1t s0sR) =t 0P (Tt o0s RN L, 10) + R (8)

Pltpaq ItowsR) = ot at ToPLE e usR)e7(t sty [u) + Gl [9)67(t, [¢) (9)

PUty [y 0sR) = Pt Tt 0sR) =Kt 4 [0RIP [ty T o0 RVKT(E  [w,R) (10)

Hext we consider that R 1is known but ¢ s unknown. Assuming that
¥, the space of admissible values of 1y, is discrete or suitably quantized *-
a finite number of grid points {w,,...,wp}, with known or assumed a priori
probability D(Wilto,R) for each ¢, the conditional mean state estimate

;(tk\tk,R) is given by [3]-[5]:
A P/\
x(t [t ,R) = 1.Z]x(tkltk,w,.,R>p(nb,-ltk,R) (M)

(01t sR) = P (t, [t 1a0soR) ] Fexplak| |2(t, [0, R)]] %o
POOIYGR) = P (tlty qavq R exp okl 20ty vy oR)|| P2ty 1ty g0 oR)

where ¢ s a normalizing constant independent of Y; S0 that

pluglt,,R) = 1.

1

#H1~170

1

Now consider the more general case where R is unknown with a
continuous range R of admissible values. An obvious approach for
extending the above results is to first approximate R with a suitable

finite set of quantized points {Rx,...,RM}'
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Then with known or assumed a priori probability p(yi,RJ}to) for each

(“1’Rj>’ the conditional mean state estimate would be given from [4]
p

x(t lt,) = 121 x(ty [tamRy ) pligsRyfty) (13)

[
nr~1=
—

.- Vot ol 1 -
P(wi,Rj]tk) =c Pz(tk[tk_],yﬁ,kj) | “Fexp{ f(lz(tkt;i,Rj)ll Pz‘(tkltk-]’wi’Rj)}

p(’@‘i’Rj'tk_]) (14)

where ¢’ is a normalizing constant independent of vy and RJ'

To implement equation (13),P x i1 Kalman filters are required compared
to the requirement of P Kalman filters for the implementation of equation
(11). This represents a large increase in the number of parallel processing
units when R is unknown.

As a first step towards reducing the filter complexity, we replace the
above discretization of the Cartesian product ¥ x R with the discretization
of an alternative set which we now describe. Through equations (7) - (10),
the product space V¥ x R defines a (continuous) space « of hypotheses of
possible Kalman filter configurations, specified by the quadruples
{K(-[w,R),@(-)w),;g(w),H(-|w)}. (In many cases, the various time-varying
Kalman gains have to be approximated by time-invariant gains to simplify
calculations). For each 9 1in 0, we have the following equations in

Tieu of equations (4)-(6).

;(tk+]]tk+],8) = ;(tk+]ltk,e) + K(tk+]lo)‘z(tk+]|0) (4)°

Xty 1108) = 0l 1 18)x(E18,.0)  x(talte,d) = xol0) (5)°

2(t,4q10) = 2(tyq) - Kt 10) x(t,,, 1t .0) (6)
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ilote that while equations (4)-(6) can be re-written in terms of
 as above, it is not possible to do so with equations (7)-(13). Thus
the mapping + = x ~ 0O incurs some loss of information as the specification

of 4 alone determines only the Kalman filter configuration but not the

error covariance of the state estimate associated with that Kalman filter.

It turns out that if  1is to be approximated by a set of I grid
points {wl,...,w”}, then in many cases N can he much smaller than P » M.
As an illustration of the above statement, we point out that in [6], a
numerical example for state estimation of a linear time-invariant system with
unknown noise covariances is given whereby 2500 grid points in the space of
unknown noise covariances can be adequately replaced by 100 grid points in

the space of possible steady-state Kalman gains.

Using the set of grid points {01,...,bN]. the conditional mean state

estimate is now given from

R N
x(t 1t ) = 12] (t 1t ,05)ploslt,) (15)

where p(Uiltk) is the a posteriori probability that 6 = vy
A crude approach for calculating p<01’tk) is to first observe that
the joint a posteriori probability that o = 0; and R = Rj can be

updated recursively using the following equation

PO} R [E,) =c”\PZ(tk|tk~],oi,Rj)|'é’exp{—{n]\z(tklei)Hzp;l(tk‘t )

k=127
PLORs Ity ) (16)

-

where ¢”” 1is a normalizing constant independent of ei,Rj; and
PZ(tk|tk_],ui,Rj) = E{z(tk|61)z (tkiei)le} is related to [K(tk|81),Rj]

through the following relation (c.f. equations (7),(8)), which holds when
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. = [1 - RS TE TRV N B (1
Pt It psgsRy) = T =ity k(e 01y (17)

Then by approximating the Cartesian product space SR Owith a
set of grid points (- R} i=1,...,005 j=1,...,M: and applying the
theorem of total probability, we can express p(~1jtk) as a marqinal

probability, viz,
ploglt) = £ plegsRot,) {(1s)

This approach of using equations (16)-(18) however requires
considerable on-line calculations as we have to store and update M
separate guantities to obtain a sinole pf 1th)‘ Moreover, a lot of

off-line calculations may be required to obtain the a priori probabilities

An alternative approach is to find an approximate expression for
P(Ujltk)- For example, using the techniques described in [6], it can be
shown that for scalar measurements and assuming that for each i the range
of admissible values of Pz(tk‘tk_],ﬂj,R) is the interval (0,-), then we
have the following approximate expression
2-k

2

kK .
p(o;1t,) = cﬂka 24 (t510)])

1

where ¢ is a normalizing constant independent of vy and k is a

large even number (greater than about 1000).

We now propose a simplie estimation scheme to yield a suboptimal

minimum mean square error estimate for the case when R 1is unknown with a



2.6

continuous range of admissible values. Our approacih is based on the
observation (shown below) that under a simplifying assumption on the
range of admissible values of R, then given the measurements up to
time t, it is relatively easy to find [8(tk), ﬁ(tk)], which we
shall denote simply as (6,&)’ that maximizes the likelihood function
p(zkle,R) of (8,R), where Z, = {z(ty),...,z(t )}, Using the estimate
6 so obtained, our proposed simple estimator is one yielding the estimates
;(tk|tk,g). (Note that ﬁ is not required other than as a step to find
8).

Using the fact that E{;(tjlei);’(tjlei)iR} = [I-H(tjloi)K(tj|ﬁi)]_lR,
the Tikelihood function p(Zkloi,R), which is the conditional probability
density of Zk as a function of 85 and R, can be established as

k :
p(Z, ]u,,R} = 1 {}2aR|7?
k!9 j=1

H

HE e D
—

I-H(t je, )K(tjuj)t"exp{-;j
(20)

. .
z2(t5105)11% M- oK (g 0,0 )

How we make the simplifying assumption (quite similar to that made in
[6] when the measurements are scalars) that for each 0 R can take any

value provided it is a positive definite symmetric matrix. For each @ = b5

Tet R(Oi) denote the value of R which maximizes p(Zkloj,R). If

- 7

R(0.) exists, it can be obtained by setting ap(*k|oi’R): 0,
—_—

aR™

5 which aives

for k> 1,

=
=
~
1
b

(s2427) (21)

where

2(t (07027 (07 [T-H(t;]0,)K(t 5]8,)]7 (22)
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Substituting the above value of R(wi) into the expression for
7 |6 i
p(_k]\j,R) gives

k

pLz, o R(6;)] = ¢ -__z]{y?e(u].)|'1|1-u(tj‘ Kt ) (23)

1 J 1

J

where ¢ is a constant independent of [mi,Rf*<)L

j
Equations (21) and (22), though useful in a number of cases, have to

be used with caution because they apply only when R(uj) so obtained 1s

positive definite. (Hence they are not applicabie for k=1). In order to

~

ensure a positive definite R(Oj), we need further assumption on the range

of R for each & = 01. Let us assume that for - = 5 LR s of tne form
R = &iRi where Ri is a known positcive definite matrix and » is an
unknown scalar which can take any value in (0,:}. Then setting
P 5R) g gives
Oz,gj
R1 k .
R(:.) = +— Z [lz(t v )] - } (24)
1 k . 1 1 - . i .
i1 J R, (I H(tj{ ])K(tj{(,1)]

This equation (24) gives a positive definite R(ei) for all k=1,2,3,...
Substituting this R(ﬂj) into the expression for p(Zk[nj,R) again aives
equation {23).

tiote that R(Ui) and p[zkl”i’R(”i)] can be updated recursively, and

with

that max {”[Zkibi’R(”i)]} is in fact the global maximum of p(Zklwi,R)
; (

respect to i and R.

Our proposed estimator consists of a bank of ! Kalman Filters. The
conditional inncvation processes of the Kalman filters are used to update
recursively p[Zklei’R(ei)]’ by means of equation (23). Then & is chosen

to maximize p[zkloi’R(ei)]’ and x(tkltk,o) is chosen as the state estimate.
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Such an estimator is sketched diagrammatically in Figure 1.

Under certain circumstances, the computations can ke further
simplified. For example, if the measurements are scalars, then as maybe

seen from equation (23), the problem of maximizing p(Zk|0,R with respect

)

k -

to (0,R) reduces to the simpler problem of minimizing { zz(tj]hi)[izl,...N}
j=1

Application to state estimators in unknown noise environment.

It is interesting to compare the performance of our proposed estimator
with the estimator proposed by Alspach and Abiri in [6] for state estimation of
a linear time-invariant system when both the plant driving noise covariance Q
and the measurement noise covariance R are unknown. 1In [6], to reduce the
complexity of the filter structure, the [Q,R] space is mapped to the space
of Kalman gains (assumed to be time invariant). The simplifying assumption
that the Kalman gains are time invariant leads to sub-optimal performance
during the transient period but is still a very useful assumption to make. In
order to provide conditions for comparison purposes we will also make this

1

assumption for our proposed estimator. Thus we consider the grid {01,...,0N

to be the grid of possible time-invariant (sub-optimal) Kalman gains.

Ye now consider the state estimation of a first-order system where the

noise covariances are unknown. The system equations are

x(tkH) = 0.8x(tk) + G m(tk) (25)

z(tk) x(tk) +J V(tk) (26)

where u(-}, v(+) are zero-mean independent white Gaussian sequences with
unity covariances and G, J are ‘unknown' quantities.

The unknown Kaiman gain for the above system can take a value between

0 and 1. e consider the following simple Kalman gain space consisting of
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MNoogrid points {81,...,0N} as the unknown parameter space. The ith
Kalman filter {that is the filter conditioned on : =w1) has Kalman gain

K(Oi) =0 where 0. = (1—.5)/H.

For the simulation results, the signal generating system is first run
until steady-state can be assumed. Then measurements z{(k) are processed
for estimation of x(tk) for x=0,1,...,21. Typical performances {the mean-

square~error of the state estimates at each ¢t are shown in figures 2,3

W)
using 300 sample paths and 10 grid points in the Kalman gain space. The
results show that our estimator actually performs slightly better than that

of [6].

To conclude this section we comment that not only does our scheme give
better performance than that of [6], at least for the somewhat random examples

chosen, byt it is certainly considerably less complicated to implement.
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111 DISCRETE-TIME RESULTS FOR TIME-VARYING UNKNOWN PARAMETERS

In this section, we show that the estimaticn scheme described
in the last section can be extended in a simple but suboptimal manner
to handle unknown time-varying (but not slowly varying) parameters and
unknown measurement noise parameters. The addition in complexity, which
involves feedback from the estimator output to the individual Kalman
filters, is very small relative to that required for an optimal minimum
square error estimation scheme.

For our problem, equations (4)}" - (6)” generalize to

Kt 1000t 10D = Xt 180080 T+ KLE ) Telt (e )] (27)

)Lt 1t 00t )] = ol oty lolt ) Ielt, e 0t QEtDJto,um)J
= x [0(t,)] (28)

25 100t )] = 20t ) = Kl 10t ) It 18,.0(t,)] (29)

where ©O(t,) = {0(t;),...,0(t

k) k)'

Here we have to assume that for 8=61 the measurement noise covariance

R(tk) for v(tk) is of the form R(t, ) = u(tk)R.

1(tk) where a(tk) is an

k)

unknown scalar and Ri(tk) is a known matrix. We assume that «o(t G(t

s olty),
e(tk_]) are independent of each other and that u(tk) can take any value in
(0,@). The extimator structure that we are going to propose can be slightly

modified to include the case where there is a particular range of admissible

values of e(tk_]) for each O(tk). However, simulation results so far

indicate that very little improvement in performance can be gained by imposing

such restrictions.



At t=t. max  oplZyplt)s (o), ol for each o {t) o
"(ti)» ‘(tA)

be found in two stages as follows. Firut, note Lhil we can express
plZi|o(ty),o(ty),{ty)] in an equation similiv to that of equation (7o) fer
p[Zk]Bj,R]. Therefore, for each of the qgrid points [ .(t.), .(t )],

i’j:1)---aH}) p[zl‘%(tl>s”(t&)a'(tl)] = IaL ‘P[;_ (t;), (t,),x(L_)I il

be found via a pair of equations similar to that of equations (23) and (1),
Second, o{ty) 1is chosen such that plZ, ] {t.), {t ),.(t.)]

= max {p[Z,[6(t,),0(ts)u(ty)]} where (t.) can in general be different
o(t )

for different 6(t,). Having thus found {t.) for ecach - {t,), the one

step ahead prediction state estimate given by t.o “alvan filter conditioned

on each +(t,) is then reset to «x{t,|t,,-(t )], where anain x{t t , (t.)]

can be different for different «{(t,)

To recapitulate, based on the ‘maximum likelihood' approach as described
in the last section and under some simplitying assumptions, wc reject, for each

0(t:) at t=t,;, all the combinations of [ (tc), (t;)] except the pair
é -

[ (to),u(t,)] which maximizes the likelihcod function p[Z,j-{ty), (t ), (t,)].

In general, at t = ts max nlz (tL)' <tk~1>’ (LL

T
”(tk~l),k(tk)

NETRRIN
PRI

for each u(tk) can be found in two stages similer to those described above

for t = t,. Here @(tk_z) = %@(L;),‘(t¢),..., (tk_q)» and

A(tk—l) = ﬂl(tl),...,u(tk_])} and thesz two sequences can in general he
different for different ﬁ(tk_]). Having thus obtained “(tk-]) for each
e(tk), the one step ahead prediction state estimate given by the Kalman filter

conditi . is then rese , ;
onditioned on each 0(t, ) is then reset to A[tk|tk~],w(tk_])].
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Resetting the states of the Kalman filters as described above allows
us to 1imit the number of Kalman filters to a finite number N although

the number of grid points for O(tk) grows exponentially with k.

As an illustration of the above procedure, we shall describe the
derivation of the various guantities in more details for the case of scalar
measurements (i.e. R(tk) = u(tk)) and H[t [e(t ] = H(ty) independent of

O(tk), which gives particularly simple results.

At t = ty, we have

pLZ,16(t,),6(te),0lt)] = (2malty)} P (1-H(t, )KLty [0t )]  expi- *[L(Jl%l;-ﬂ}

where (30)
Lty folt)] = O-HtKEE Jo(t D1zeL, lo(t (31)
;[txitﬁ(to)] = z{ty) - H(tl);[tl’tgse(to)] (32)

Observe that, for each [8(t1),0{t,)], p = plZi[6(t1}.e(t,),alty)] is

a unimodel function of af{t,). Setting 5&%273 =0 gives

alty) = ofty oty Tand plZy{o(ts),e(t,),alty)] = cjzlts]6(t,)1[. Choosing

6(to) to maximize {{2[t,|6(te)]}, the one step ahead prediction state
estimate given by the N Kalman filters arethen reset to ;[tllto,e(to)].
(Note that in this case 0(to) is independent of 8(ty) so that the

calculations are much simplified.)

By induction, we easily obtain for each [G(tk),e(tk ])]

;(tk) = y[tkle(tk)’()(tk_])’O(tk—Z)] (33)
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pLZ, 190t ) 0lt, )00t o)At )] = 7 lzlt, [t y)s ()01 (34)

~

where 2t |o(t,),6(t,_1),0(t,_,)] = (-H(t KL, e (e ) 127 [t 1ot 40 (5 )]

;£tk‘e(tk-])’6(tk-2)] = Z(tk) - H(tk);[tk’tk-]’U(tk-])’h(tk—z)]‘ The

normalising constant ¢~ and the sequence S(tk_z) are independent of
[O(tk),o(tk_])]-

From equation (34), p[Zkle(tk),U(tk_]),G(tk_z),A(tk)] is independent
of o(tk). Thus, the problem of finding the global maximum of
pIZ, 1o(t, D560t 1),0(t, ,)hal(t, )AL, )] with respect to [+(t, ), .{t,)]
reduces to the problem of finding mjn{£2[tk1~j(tk_]), (tk—°)]:' The one
step ahead prediction state estimate ;iven by the I Kalman filters ave then

reset to x[t, It, _;,0(t,_;)]. The estimator structure for this problem is

illustrated diagramatically in figure 4.

Example

A modification of the first-order system aiven by equations {25) and
(26) 1is used to compare the performances of the estimatars described in the
last section and the estimator described in this section. Here we assume
G,J to be uniformly distributed white noise sequences. Figure 5 shows a
typical set of simulation results which demonstrate that the estimator

described in this section gives superior performance when the unknown

parameters are varying rapidly with time.

It might be thought that the scheme proposed in this section could be
better than that of the previous section for the example of the previous
section since the unknown parameter is really time-varying although slowly
varying in this example. Simulations showed that when the parameter variations

are slowly varying the non-resetting scheme of the previous section works best.
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The'maxTmum 1ikefihood' technique described in this paper has
the advantage that even for continuous-time measurements, an estimator
can be obtained which does not require the exact knowledge of the

medasurement noise covariance.

x(t) = F{tiu)x(t) + G(L].)ult) t-0 (38)
y(t) = H{t{o)x(t) (36)
z(t) = y(t) + v(t) (37)

where {u{t)}i, (v(t)} are independent zero mean Gaussian white noise

processes with covariance matrices I, R(t) respectively. The initial

state «{t,) 1s a Gaussian random vector with mean ;(Q)lto,w) and

variance P(tustﬂ,y) and is independent of {u(t)} and {v(t)}. The
measurement noise covariance R(t) 1is assumed to be of the form R(t) = «R,(t)
where R (t) 1is known but & is an unknown scalar. The entities
F(tjw),G(t{¢),H(t]w),}(tc[to,w),P(tc{tQ,¢) are known if the parameter vector

i is known, possibly unknown if i is not known.

If ¢ and « are specified, the conditional mean state estimate

x(tlt,y,x) is given from the Kalman-Bucy filter equations:

X(tt,,a) = F(tw);(tit,w,u) + K(tlu/,a)[z(.t)-§(trt,w,a)] (38)
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Yt taga) = HOE )Xt 0y0) (39)
K(t]w,n) = P(tIt,p,a)H (t[9)[ R ()]} (40)

i;(t\t,u»,a) = FOE[gIP{t]t,pa) + POL o E(E) - Kt , )

Ro(t)K (t]gyu)* G{t[3)67(t],) (41)

If o 1is specified but y is unknown, then assuming 4, the space
of admissible values of ¢, 1s discrete or suitably guantized to a
finite number of grid points {wl,...,wp} with known or assumed a priori
probability p(wi\t,a) for each y., the conditional mean state estimate

x{t|t,a) 1is given by [5]:

. P
x{t]t,un) = .Z] X<tlt,wi,d)9(¢i‘t’u) (42)
’]:
p(wth,u) = ¢ exp(i(wjit,w)}p(wi\to,l) (43)
t . ., it N
Y«(wilt,u) = Jtoy (Tl'l,ij)Ro (l)z(l)df‘ﬁ/{tgHY([""A]"')\\AR;ldV
(44)

where ¢ is a normalizing constant independent of = and v(;ﬁrt,l) is
the log likelihood function of ¥ given v and the measurements

{Z(T)ITQ,(to,t)}.

Again, allowing for more parallel processing effort, it might appear
to the reader that a natural extension of the above results for the case when
a 1s unspecified is 'readily achieved' using the following approach. Assume
A, the range of admissible values of «, can be approximated by the finite

set {ul,...,aM}. Then, with known or assumed a priori probability
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p(¢1,¢j|tu) for each (wi’“j)’ the conditional mean state estimate

would be given from

x(tit) = ) (45)

X(t‘tﬂq“] s“')p(wi 1@\]

J

) 7O
e~

i=1j=1

However, further difficulty arises because there is no direct and

simple technique to recursively update p(wi’“j’t)'

We now propose a simple estimation scheme to yield a suboptimal

minimum mean square error estimate for the case when « 1is unknown.
Following the approach described in section II we shall now consider directly
the space  of hypotheses of possible Kalman filter configurations. For
each & in ., the conditional mean state estimate ;(tlt,e) is given

by the following equations:

x(t]t,0) = F(t{o)x(t|t,e) + K(tjo)[z(t)-y(tit,)] (46)
y(t]t,0) = H(t]o)x(t]t,0) (47)
Again, we approximate U with a finite set of grid points {01,...,UN},

and we make the simplifying assumption that each b, allows the same range of
admissible values of «. Then, for any admissible value of «, the Tog

Tikelihood function 1(01jt,u) of 0,

i given the measurements

{Z(T)}ré(to,t)} can be expressed as

)'é(n)]-'t,u) = L(@ilt)/ (48)
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Obviously, given the measurements {z(1)|: €(ty,t)t, the most
likely ., denoted o, is the u, which maximizes L(.[t}, which
is independent of . This observation suggests that in the event that
. 1S5 not known, a very simple state estimator 1s one yielding the estimate
;(tlt,i). Such an estimator is sketched diagramatically in Fiaure 5.
Simulation results have not been obtained for this estimator since it is
not anticipated that they can extablish anv more than those for the discrete-time

results.

Time-Varying Unknown Parameters

Here we consider obtaining estimators when the unknown parameter vector
0(t) and the measurement noise intensity . are modelled as piecewise
constant functions of time with ¢(t) = H(tk), (t) = .(tk) for

tk <t o« tk+]' We further assume that e(tk) can take one of the values

{C’],...,GN}.

The estimation scheme that we propose is as follows.

At t=t;, o0(t,) is found such that L[o(te)(t,] = max(L[ni(to)Itljr. The
i R
states of all the N Kalman filters are then reset to x[t,|t,,:(ty)], viz,

the state of the Kalman filter conditioned on 5(t0). In general, at

t=tiyp, 0(t) s found such that L{o(t,)|t, .00t ;)] = sl () -
Sty 1,
where O(t, ) = {G(to)é...,é(tk_])} and t
58 [68(5 )] = [ 7T 000 ) (IR ees | 1yt
a b

O(tk_]),f)(tk))\ lzRgldt
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Simulations have not been carried out for this scheme since as
for the previous not too much additional information can be gained from
this. However, it could be stressed that the important point here is

that the ideas investigated in this paper, in contrast to the standard

Bayesian approach, can in fact be applied to continuous-time systems in

a straightforward manner.
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