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ABSTRACT

A parallel processing technique for adaptive estimation

is investigated. In particular, for the case of unknown system

or statistical parameters denoted by the vector o belonging to

a finite set {01,62, ....eN}. the maximum likelihood o is
.

determined and denoted 8, and the minimum mean square error
A

state estimate conditioned on this e, namely ;(tlt,j) is

taken to be the state estimate. Using this approach new estimators

are derived which require less computational effort

limitations than previous adaptive estimators using

processing techniques described in the literature.

and have less

parallel

Results for the

case of time-varying unknown parameters are also derived.

An example is included of state estimation for a known signal

model but with unknown noise statistics. The filter banks are

constrained to be time-invariant and so only approximate maximum

likelihood parameter estimation is achieved.
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1. Introduction

The Kalman-Bucy filter [

linear dynamical system requ

,2] for the estimation of the states of d

res an exact knowledge of the system

parameters and noise covari antes. Me consider the adaptive estimation

problem of estimating the states when the dynamical and/or statistical

model is specified up to a set of unknown parameters, denoted by the

vector 0.

Parallel processing techniques have been applied by a number of

authors [3-5] to the adaptive estimation problem and in fact adaptive

estimators requiring one hundred or so Kalman filters can be

Implemented using rmini-cornputers. In essence, tliestandard hayesiclr]

approach to tile~daptive estimation problem is as follows [5]. Assumlno

tnat tjleunknown parameter vector 6 is discrete or suital,lv quantized

to a finite number of grid points {l,...,,l;

a priori probability for each ,,1. the condit

a bank of
tll f

:1 Kalman fi1ters where the 1

\]ittl!<nown or assumed

onal Imecinestimdtor includes

lter is a standard I’alman

filter designed on the assumption that =7 . T!~e filter bank is driven

by the noisy signal measurements. Tile conditional mean state estimdte is

given by a weignted sum of tilestates of tile Kalman filters. Tileweighting

.tll
coefficient of the state of the I Kalman filter is the a posterior

probability of i, which can be updated recursively using the nois/ signal

th
measurements and the state of the 1 Ka]man filter.

Unfortunately, for s:jstems with continuous-time measurements, the

above Cayesian approach has the drawback that, first, the measurement noise

covariance R has to be known, and second, the unknown parameter vector

O has to be timeinvariant.
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For the special case of systems with discrete measurements,

parallel processing estimation techniques Ihave been developed when

the measurement noise covariance is unknown, at the expense of either

complexity or loss of optimality [4], [6]. In the practically important

direction of reducing the complexity of tne adaptive estimator, Alspacl\ and

Abiri [6,7] obtain time-invariant state estimators for time-invariant SyStWIS

with unknown noise covariances by considering a qrid of possible time-invariant

Kalman gains directly rather than a more involved grid of possible noise

covariances in the unknown parameter space. The results can be extended

to cases when tilenoise covariances are time-va~ying quantities [8].

However, for the estimator of [6] to be close to optimal , it is required

that the Kalman filters have reacned steady-state and that the number of

measurements received be large. Thus, during the transient periods, the

estimator operates suboptimally.

Some parallel processing estimation techniques are also available for

discrete-time systems when O is time-varying. Using a combination of

digital and analogue techniques, optimal adaptive estimators for tileca$e

when the unknown parameter is a scalar Markov sequence of known statistics

have been developed [9]. By approximating the a posteriori density of tne

state vector witk a Gaussian probability density, Ackerson and Fu [10]

derived a suboptimal estimator for the particular time-varying unknown

parameter case in which the input noise or the measurement noise comes from

a group of white Gaussian noise sources , which act one at a time, witil the

transition from one noise source to another being described by a discrete

Markov transition matrix.

It is clear from the above survey of existing adaptive estimators using

parallel processing techniques that it would be
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worthwn

Daralle

le to investigate any adaptive estimation approacn using

processing techniques suitable for botn continuous-time

and discrete-time problems, and which can handle unknown time-varying

parameters and unknown measurement noise parameters with but a smal 1

addition in complexity over the case of time-invariant unknown parameters and

known measurement noise covariance. In this paper, such an approach is

investigated. This approach can be briefly described as follows.

An unknown parameter vector d is defined in such a ‘way that there

is one and only one Kalman filter corresponding to a particular qrid point

ei in the u space. The states of the Kalrnan filters are denoted

X(tlt,fli), By comparing the relative Imagnituci=of the likel ihood functions
.

of tile tji‘s evaluated using t~e measurement data and X(tlt,l+i) for all

i, the most likely

state ;[tlt,;(t)]

Note that since the

~i at time t, denoted e(t), is determined. The

s taken as the estimate of the signal model state x(t).

ikel ihood functions of tileunknown ~ararneters are used

instead of their exact a posteriori probabilities, it is not necessary to

assign a priori probabilities to the different Oi’S

The advantages of using the approach just outlined can be summarised

as follows. First, for continuous-time systems, in contrast to the standard

Bayesian approach, our approach does not require that the measurement noise

covariance be known exactly. Second, for the discrete-time case, our

estimators require less computational effort than alternative known estimators

using parallel processing techniques. Third, for both the continuous-time

case and the discrete-time case, the various results can be extended in a

simple manner to give useful adaptive estimators for the case of time-varying

e.
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The above advant~ges are of course useless unless the estimators

usjnq the above approach perform satisfactorily. Monte Carlo simulations

show that they work very well in minimizing the mean square estimation

error when compared to the more complex adaptive estimator for discrete-

time problems described in [8].

An outline of the subsequent sections of this paper is as follows.

In section II, we present the discrete-time results for time-invariant

unknown parameters. In section III, the results of section II are

extended to the case of time-varying unknown parameters. In section IV,

the results of sections II, 111 are extended to systems with continuous-

time measurements.



II. 1)

In tills section, V)e first rE?vle\/d~;lr’[)~lrldtediscre~e-tllw ()!)tllldl

aclaptive ~stiiiidt,or results from [3]-[5] and then ~~e epply these t.e$~llts

tu acl]ieve dt;alternative ddaptive estlmatar wllicll]n most \wpllc~tiol~s

1s Sll]lplerand tnus Imcrreattractive. ,Asimuldt,lon eXdIII!IICis (Iiv[fltc

clellmnstrdtethe pertomdnce cl]ardcteristics ot the dltetwdtive estil,kitot

Consider t!lesystw

‘(tk+, ) L ;(tK+, >t&. )x(th) + ‘(t~) ‘(ti) (1)

Y(tk+, ) = Il(tk+, l’f) X(tk+, ) (z)

Z(tk+l) = Y(tk+l) + V(tk+]) (J)

wilere U(o), v(”) are independent zero-mean Gaussian white noise sequences

with covarldnce Imatr ices I and R respectively. Tne positive detinite

,Tldtrlj:R ~Jill be assumed known in some lnStdnLcS, arid not krlown in others.

The initial state x(tO) is a Gaussian random vector wltll mean XJ(P)

and variance P(tolto>u) and is inrwenderlt of u(”) and v(.). TFle

entities :(t k+l*tkl~)J ‘(tkl~’), H(tk+, l:’)> ~ ( )> p(t, it,, ) 11’C

completely specified by the parameter vector , i.e. they are knoi!rlIf

w is knov,n, possibly unknown if ; is not known, This formulation

effectively allows dn unknown input noise covdrliince (alttloullll\/e tl,tve

assumed E{u(tk)u’(tk)} = 1) througil the lrrterventiorlof G(tAj,) 111(l).

If $ and R are specified, the corlditlondlrneafl state estimte
..

I R) is of course given from tbe familiar Kalllldrlfilter equations:‘(tklt~>y,
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.
‘(tk+]Itk+] ,IJ,R)= X(tk.

‘(tk++k,$,R) = (J](tk+,

R = z(tk+l) -‘(tk+llt, )

.
‘k>~) hkltk,M), x(t(j[tg,$,~) = XO(QJ)(5)

H(j,+l[tJ) hk+,ltk>wR) (6)

K(tk+, /O,R) -- p(tk+, [tk,~, R) H’(tk+, {$,R) p;l(t.~+,ltk,~>R) (7)

pz(tk+,ltkw,R) = tl(tk+,l$)p(tk+,ltk,$,R)Htt~+,)$) + R (8)

P(tk+lltk,$, R) = @(tk+, ,tk14)p( tkltk,ti,R)$’(tk+,, tklU) + G(tk14)G’(tk[V) (9)

‘(tk+l ltk+]’$>R) = P(tk+, ltk,~,R)- K(tk+, /v,R)pz(tk+, ltk,lD>R)K'(tk+1 Io,R) (lo)

!Iextwe consider that R is known but v is unknown. ),ssumincjthat

Y, the space of admissible values of lb, is discrete or suitably quantized ‘-

a finite number of grid points {$1, ...,Vp} , with known or assumed a priori

probability p(vilto, R) for eacil 4Ji, the conditional mean state estimate

~(tk\tk, R) is given by [3]-[5]:

P

~(tkltk,R) = i~,~(tkltk>*i >R)P($iltk>R) (11)

>

‘%exp{-%[lz(tk(vi~~ ( ~1 k-l)$i,R)}P(Vi\tk, R) = clpz(tk/t~-]>~j,R)l R)llzp-l t ~

p(~iltk-l,R) (12) I

where c is a normalizing constant independent of $i so that

i~,p(Viltk>R) = 1.

Now consider the more general case where R is unknown with a

continuous range R of admissible values. An obvious approach for

extendinu the above results is to first approximate R with a suitable

finite set of quantized points {R1, ....RM].
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Then with known or assumed a priori probabi

(,i,Rj), the conditional mean state estima

ity p(.J1,RJ to) for eac!l

e would be g ven fronl [4]

P

‘(tkltk) = i~l ~l; (tk[tkti~,,Rj)p(,i,Rjltk) (13)

P(!Ji,Rj]tk) = “p~(tklt~-lJ~i~Rj) [“exp{-’[(z(tkl(i,RJ)112p~1(tk]tk_,,4i,Rj)]

P(’ii,Rjltk-]) (14)

where c’ is a normalizing constant independent of ii and Rj.

To implement equation (13) ,P x ;1 t.alman filters are required compared

to the requirement of P Kalman filters for the implementation of equation

(11). Tilis represents a large increase in the rIUmber of parallel processing

units when R is unknown.

As a first step towards reducing the filter complexity, we replice the

above dis~retization of the Cartesian product j’ x }? with the djscretjzatjon

of an alternative set which we now describe. Throuqh equations (7) - (10),

the product space Y x R defines a (continuous) space ,’ of hypotheses of

possible Kalman filter configurations, specified by the quadruples

{K(. IO,R),O(. IO),XO(V), H(. IV)}. (In many cases, the various time-varying

Kalman gains have to be approximated by time-invariant

calculations). For each 6 in O , we have the fol

lieu of equations (4)-(6).

A

kk+]hk+] ,0) = x(tk+, ltk,e) + K(tk+l

.
‘(tk+, ltk,‘) = ~(tk+l, tk[o)x(tkltk,~)

.
mk+,le) -- ‘(tk+l) - H(tk+l/~) X(tk+,

0) ;(
.
X(to

tk,e)

gains to simplify

owing equations in

k+l 1°

to,o)

(4)’

‘ ;.(0) (5)’

(6)-
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ilote tl)d

Lj as above,

while equations (4)-(6) can he re-written in terlus of

t is not possible to do so with equations (7)-( lG). Thus

the mapping ; ~ ii . 0

of ) alone determines

error covariance of the

incurs some loss of information as the specification

only the Kalman filter configuration but not the

state estimate associated with that I[alman filter.

It turns out that if ~~ is to be approximated by a set of ;! grid

points {1~,....IIrl}. then in many cases N can be [much smaller t~’an p ‘ ~~.

As an illustration of the above statement, we point out that in [~1, a

numerical example for state estimation of a linear time-invariant systeol with

unknown noise covariances is given whereby 2500 grid points in the space of

unknown noise covariances can be adequately replaced by 100 arid points in

the space of possible steady-state Kalman gains.

Using the set of grid p

estimate is now given from

PJ.,
htkltk) = i~,x(tk

ints {ul,

tk,oi)p(u

...)4}, tileconditional mean state

Itk) (15)

where P(iJiltk) is t?e a posteriori probability that ~ = u .

observe thatA crude approach for calculating p(Oiltk) is to first

the joint a posteriori probability that o = Oi and R =

updated recursively using the following equation

p(fji,Rjltk) ‘c’’lpz(tklt~_l,~i,Rj)l-i’exp{-$ll~(tkl~i

P(oi, Rj

Rj can be

112p;(tkltk_l, )i,R,j))

‘k-l ) (16)

where c“ is a normalizing constant independent of 6i,Rj; and

‘z(tkltk-l> , ~IU.,R.) = E{~(tklOi )~’(tklOi)lRj} is related to [l~(tkloi),Rj]

through the following relation (cf. equations (7),(8)), which holds when
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P( i,~jito) +~

Pz(tkltk.,,’:i,Rj) = [1 - Il(t; i)t:(tkl i)]- l:, (17)

Then by approximating the C~rtes ian product sl)ace .!/b’ltll,1

set of qriO points ( ,,R,) i=l,.,.,’l; j=l,...,il dnd ,pplylnc tl]e
J

theorelu of total probability, we c~n express 1)( i’t~) ds ,3vklr~)ln,,l

probability, viz,

,Rj~tk)

This ai)proach of using equations (16)-(

considerable on-line calculations ds we have

separate quantities to obtain a single p( 1

off

P(

(1;)

however. reclult-es

store (and upddtf’ 11

Moreover, 7 lot of

line calcoldtions may be retiuired to obtairl the ? pri or-iprnhdlllitles

,Rilt, ).

An alternative approach is to Find an approximate expression tot.

p(li]tk). For example, using the techniques described in [6], it c,]n [be

shown that for scalar measurements and dssulllinqthat for each tl;e r:rlqe

of admissible values of ‘Z(tkltk-l,c’i,R) is the interval (O,;, ther \;e

have the followinq approximate expression

k 2-k——

p(Jiltk) = c[~j~lz’(tjli)] 2 (19)

where c is a normalizing constant independent of i and A is a

large even number (greater than about 10!)0).

Ne now propose a simple estimation scheme to yield a suboptimal

minimum mean square error estimate for the case when R is unknown with a



2.6

continuous range of admissible values. Our approach is based on the

observation (shown below) that under a simplifying assumption on the

range of admissible values of R, then given the measurements up to

time tk, it is relatively easy to find [~(tk), R(tk)], which we

shall denote simply as (;,R), that maximizes the likelihood function

P(ZklfJ>R) of (o,R), where Zk = {z(t, ),... ,z(tk)}. Using the estimate
.
0 so obtained, our proposed simple estimator is one yielding the estimates

. .
;(tkltk, e). (Note that R is not required other than as a step to find

0).

Using the fact that E{~(tjl Oi)~’(tjl Oi)l R} = [l-ll(tjl~i)K(tjl~i)]-’R,

the likelihood function p(Zkl Oi,R), which is the conditional probability

density of Z as a function of Oi
k

and R, can be established as

= ; {12rR(-511-H(tj \oi)K(tj l$i)l’”exP{-:j~,llp(zk\~Jj~R) j=,

(20)
~(tjloi )112R-l[l-}l(tjlUi)~(tj Ii}l)l}

[lowwe make the simplifying assumption (quite similar to that made in

[6] when the measurements are scalars) that for each hi , R can take any

value provided it is a positive definite symmetric matrix. For each ~~= Oi
,,

let R(oi) denote the value of R which maximizes p(ZklOi,R). If
A
R(oi) exists, it can be obtained by setting 2p(7k10i,R)= g, which rrives

:

for k>l,
aR

(21)

(22)
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Substituting the above value of R(i) into the expression fot

p(lkl”i,ll) gives

k

P[zk!’Ji,R(ui)] ~ c ii {l; (ii) l-ll-tl(tjl i)K(tjli)l’ (23)
j=l

whsre c is a constant independent of [,i,Ri)].

Equations (21) and (22), though useflJl in a number of cases, hwe to

be used with caution because they apply only when R(, i) so o~tained is

positive definite. (Hence they are not applicable tor k=l ). In orler tCJ

ensure a positive definite R(oi ), we need further assuinp~iollor] ttle i,]ngc

of R for each . = (.. Let us assume that fot- = i , R is of t;le forlli
1

R = >iRi where Ri is a known positive definite matrix and j is atl

unknown scalar wtlich can take any value in (9, :. Then settinq

u~(Zkl~ji,R) = ~ gives

Jli

R(i) ‘:L j Ilz(tjlli)ll= (24)
R.l[l - tl(tjli)K(tj!j)]}j=l 1

This

Substitut

equation

equation (24 gives a positive definite R(dl) for all ,2,3, ...k=

ng this iR( ) into the expression for P(ZLI’’l>R) 3rjair o ves

23).

that max {lIIZkl {Ji, R(IJi )]}
i

res~ect to i and R.

f;ote that R(i)i) and p[Zkl[Ji,R(t;i)] can be updated recursively, dnd

s in fact tkleglobal maxi(num of p(Zkl ,i,R) v~ith

Our proposed estimator consists of a bank of UI Kalman Filters. The

conditional innovation processes of the l~alrnanfilters are used to update

recursively p[z~lei>i(oi)l> by means of equation (23). Then o is c!losen

to maximize P[z~l LJi>~(ei)l> and ~(tkltk,~}) is chosen as the state estimate.
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Such an estimator is sketched diagrammatically in Figure 1.

Under certain circumstances, the computations can be further

ified. For example, if the measurements are scalars, then as maybe

from equation (23), the problem of maximizing p(Zkl O,R) with respect

o,R) reduces to the simpler problem of minimizing { f z’(tjli)l i=l,. ..rl)
j=l

Application to state estimators in unknown noise environment.

It is interesting to compare the performance of our proposed estimator

with the estimator proposed by Alspach and Abiri in [6] for state estimation of

a linear time-invariant system when both the plant driving noise covariance Q

and the measurement noise covari ante R are unknown. In [6], to reduce the

complexity of the filter structure, the [Q,R] space is mapped to the space

of Kalman gains (assumed to be time invariant). The simplifying assumption

that the Kalman gains are time invariant leads to suk-optimal performance

during the transient period but is still a very useful assumption to make. In

order to provide conditions for compari son purposes we wi 11 also make tl]is

assumption for our proposed estimator. Thus we consider the grid {01, ....ON]

to be the arid of passible time-invariant (sub-optimal) Kalman gains,

!./enaw consider the state estimation of a first-order system where the

noise covariances are unknown. The system equations are

(25)x(tk+l) = 0.8x(tk) + G u(tk)

z(tk) = x(tk) + J v(tk) (26)

where u(. ), v(. ) are zero-mean independent white Gaussian seGuences with

unity covariances and G, J are ‘unknown’ quantities.

The unknown Kalman gain for the abave system can take a value between

Oandl. L!econsider the fallowing simple Kalman gain space consisting of
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N grid points {O1,. .,IIJI} as the unknown parameter space. The ith

Kalman filter (that is the filter conditioned on = i) has Kalman !!ain

l<(Ji) = li where ui = (i-.5 )/i,.

For the simulation results, the signal generating system 1s fit-st run

until steady-state can be assumed. Then measurements z(k) are processed

for estimation of X(tk) for k=O,l, ....2l. Typical performances (the nlean-

square-error of the state estimates at each tk) are shown in figures 2,3

using 302 sample paths and 10 grid points in the Kalman gain space, The

results show that our estimator actually performs slightly better than that

of [6].

To conclude this section we comment that not only does our scheme qive

better performance than that of [6], at least for the somewhat random examples

chosen, but it is certainly considerably less complicated to implement.
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111 DISCRETE-TIME R[SULTS FOR TIME-VARYIIIG U!IKNO!I!IPARAMETERS——

In this section, we show that the esti[maticn scheme described

in the last section can be extended ~n a simple but suboptimal manner

to handle unknown time-varying (but not slowly varyinq) paraw?tevs and

unknown measurement noise parameters. The addition in com!~lexity, whictl

involves feedback fronl the estimator output to the individual Kall~lan

filters, 1s very small relative to thdt required for an optimal lminimur

square error estimation scheme.

For our problem, equations (4)’ - (6)’ generalize to

‘[tk+]ltk+l,O(tk+l)] = ;[tk+lltk>fl(tk)]~ ~[~k+lis(tk+ )]~[tk+,/’(tk)] (27)

toX[tk+.

.
Z[:k+.

Itk,w(tk)]=

p(tk+, )] = z

[t~+,, tkl[]tt~)l;[t~lt~,((tk)

.
‘k+, ) - ‘;[tk{., ;q!t~+; )]x[t~+

where O(tk) = {O(to), ....o(tk).

Here we have to assume that for

R(tk) for v(tk) is of the form R

.
x
.

‘X[

Itk,o(tk

to,’(to)l

(to)] (28)

1 (29)

se Covariance

u(tk) is an

~=ei the measurement no

‘k) = “(tk)Ri(tk) where

unknown scalar and Ri(tk) is a known matrix. Ne assume that ‘I(tk)> ‘f(tk),

‘(tk_, ) are independent of eacil other and that u(tk) can take ally value in

(0,0). The extimator structure that we are going to propose can be slightly

Imodified to include the case where there is a particular range of admissible

values of ti(tk-,) for each El(tk). However, simulation results so fa;-

indicate that very little improvement in performance can be gained by imposing

such restrictions.
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(t-),, [t,)
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t), (t), (l )] tllr(?.lch (L ) .!11

i,j=l, ....!l}. P[z]l(t)),’<(t ),(t)] ‘ IIIIA 11~., (t.),

I
(t,,

be fcu~d vid a pair 0: equations Sil]liIdr to thdt Of (P[ludt

.
Second, d(to) is chosen such that p[Z,l (t,), (t ), [t

(L,),(L )] II

Orls (23) ,111’1(<’.l)

)1

= ;~~ ~{p[Zllb(ti ),O(tO),~(t,)]l vilere (t!) [an illqenerdl be cllffcreot

for different [(tl). Having thus found (t-) ft]~each (t,), ttl( 00?

step ahead prediction state estimate qlvf,n by I.,.‘ ilt,fir)fl lter [-or)dl+.io!leci

on each (t,) is then T-to >[tlt,, (T )], \tle)e dqairl x[t ,( , (t)]

can be di Fferent for different (t,),

in the last section and Iunder some sillllllity,ll~

O(tl) at t= tl, all tilecomt)ind?inns of
.
[t(to),~(t~)] which rrlaximizesthe li~ellh~od

In general, at t = tk, Illsx [’[~,
I(t~.l)>(tk)

for each J(tk) can be f~und in twu staqe<, slrIllct.to these de~crll,(>d,ib(v)c

for t=tl. Here ~(tk-2) = {(t ), (t ),,,,, (tk_2 ) and

i(tk-,) = {,(tI ),.. .,:l(tk-,)) and the,+ two ~et!,~cncescan In qener.[ilt~e

different for different (t.!<_l). Hdvinq thos obt~iled ::(tk_l) f~,l~a(-l)

,.

(L,)].

“{(t )
k-i

fl(tk), the one step ahead prediction st,lt[?estillimteqiven by the Kalluan filtet-

conditioned on each o(tk) is then rese L to YrtA[tk-,, ‘(tk_, )].
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Resetting the states of the Kalman filters as described above allows

tisto limit the number of Kalman filters to a finite number N although

the number of grid points for [l(t.k) grows exponentially with k.

As an illustration of the above procedure, we shall describe the

derivation of the various quantities in more details for the case of scalar

measurements (i.e. R(tk) = a(tk)) and H[tkle(tk)] = H(tk) independent of

~~(tk), which qives particularly simple results.

At t = t), we have

p[zllf~(tl),ti(ta),,y(tl)] = {2na(t#{l-H(tl)k[tl lo(t])]}%ex p{-
*
I[tl@ tl ]1

where (30)

k[tllfj(tl)] = {l-H(tl )K[tllo(tl )]};2[tl) C)(tO)] (31)

z[tllt(to)] = z(tl) - H(tl)~[t&,@O)] (32)

Observe that, for each [O(tl),tl(to)], p = p[Z1lO(tl ),O(tO),,(tl)] is

a unimodel function of a(tl). Setting
a
F% t,) = O gives

. ,.
a(tl) = ![tllO(tl)] and p[ZllG(tl ),~(tO),a(tl)] = clz[tllfl(to)]l. Choosing
.
fJ(to) to maximize {l~[tlje(to)]l, the one step ahead prediction state

estimate given by the N Kalman filters arethen reset to ~[t, lt,,e(to )].

(Note that in this case O(tO) is independent of G(tl) so that the

calculations are much simplified. )

By induction, we easily obtain for each [O(tk)$o(tk-, )l

O(tk) = ~[tkl~(tk),o(tk-l)!~(tk-~ )1 (33)
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t~)!tl(t~-,),~(tk_2),A(tk)l= “lz[tkl’’(tk_]) >’(tk-~)ll (34)

where i!,[tklO(tk),b(tk-l),;(tk_2)]= (l-t{(tk)K[tkl‘k)]}z:’[t~i‘(tk.l)>(tk.z)l>
.

;[tklt)(tk_,),~(tk_2)]=‘(tk) - ‘(tk)x[tkltk_l~’’(tk

normalizing constant c’ and the sequence :(tk_2)

[“(tk), o(tk-, )].

,),’(tk-z)]. The

are independent of

From equation (34) , p[zklo(tk),[j(tk-] )>~’(tk-~)>A(tk)] 15 independent

of tl(tk). Thus, the problem of finding the global maximunl of
.

PIZklO( tk),u(tk_l), ~(tk-2), u(tk) ,A(tk-l)] with respect to [(

reduces to the problem of finding min{z’[tkl j(tk_, ), (tk_~)]
i

step ahead prediction state estimate given by the II Kallltanfl

reset to ;[tkltk_, ,a(tk_] )]. The estimator structure for this

illustrated diagrammatical

QQ!!!@Z

A modification of the

k-,), (t~)]

Tileone

ters d!e then

pt-oblew is

y in figure 4,

first-order system rriven by equations (25) and

(26) is used to compare the performances of the estimators described in the

last section and the estimator described in this section. tiere we dssumc

G,J to be uniformly distributed white noise sequences. Fiqure 5 shows a

typical set of simulation results which demonstrate that the estimator

described in this section gives superior ]erforrnance when the unknown

parameters are varying rapidly with time.

It might be thought that the scheme proposed in this section Lould be

better than that of the previous section for the example of the previous

section since the unknown parameter is really time-varying although slowly

varying in this example. Simulations showed that when the parameter variations

are slowly varying the non-resetting scheme of the previous section works best.
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CON!TI!lUOUS-1IME RESULTS.

The’lmdxiillullllikelihood’ techniqlle described in this paper has

the advantdge Lhat even for continuous-time lmedsurements, an estimator

can be obtained which does not require the exact knowledge of the

Imedsurernentnoise covariance.

Tillle-irlVdriant unknown~ra:ueters—.—

Consider the systelr

t’o~(t) - F(tl, )x(t) ~ G(LI )u(t) _ (

y(t) = ti(ti, )X(t) ,

z(t) = y(t) + v(t) I

~here (u(t)}, ,v(t)j are independent zero [mean Gaussian white noise

processes with covariance matrices I, r?(t) respectively. The initial

state X(to ) IS a G~ussian rzndom vector with mean ) andX(tol to,,

variance P(t, t~,+) and i> indeperderrtof [u(t)] and {v(t)}. The

)measurernentnoise covdriance R(t) is assulned to be ~f the forlll R(t) = ,RO(t)

where Rti(t) 1s known but . is an unknowrl scalar. The entities

(35)

(36)

(37)

) P(tt~tO, ,) are known if the parameter vectorF(tl,~),G(t~; ),ll(tiy),>(tO /tO,v ,

> is known, possibly unknown if ,1 is not known,

If ,;’and 4 are specified, the conditional mean state estimate
.
x(tlt,~,,,) is given fronl the Kalman-Bucy f~lter equations:

~(tlt,~,ci) = F(tlj&tjt,$,u) + K(tlJ@u)[z( t)-j(tlt, ),a)] (38)
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y(t

K(t

P(t

t,+,~)= H(tlq))x tit, i’,:) (39)

),(z)= p(tlt, $,L)tl’(tl;)[lRo(t)]-’ (40)

t,~,,ti)= F(tll)P(tlt,(,,) + Petit,.,,);’(tl. ) - K(tl,)

RO(t)K’(tl ~,.)+ G(tl;)G’(tl,) (41)

If U. is specified but v is unknown, then assuming ,, the $p~ce

of admissible values of $, is discrete or suitably quantized to a

finite n(

probabil
.
X(tlt,u)

mber of grid points {UI,....Up) with known or assumed a priori

tY P(tijlt>a) for each $i, the cond ional mean state estimate

is given by [5]:

>dJi>’J)P(+’jl”

@ilt>’I)}P(’!’

TIL,Vi,,)Rj

It,,,)

(L)zodr-(t ,,y([,i,.i,’),
~t3

(42)

(43)

d
“1?;’

(44)

where c is a normalizing constant independent of ,, and
1 (lilt>) is

the log likelihood function of {i given ,[ and the measurements

{z([) l?~(t,, t)],

Again, allowing for more parallel processing effort, it might appear

to the reader that a natural extension of t!)eabove results for the case when

a is unspecified is ‘readily achieved’ using the following approach. Assume

A, the range of admissible values of Q, can be approximated by the finite

set {CIl,....a~}. Then, with known or assumed a priori probability
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t,) for each $j, ,j), the conditional nlean state estimate

would be qiven from

P M
x(t~t) = ~ ~ x(tlt, JJi,lti)p(l#i,,.ilt)

i=lj=l

However, further cliff

simple technique to recurs

,J, J

culty arises because there is no direct and

vely update p(~i,,.,jlt).

We now propose a simple estimation scheme to yield a suboptimal

(45)

Iminimum mean square error estimate for the case when c is unknown.

Following the approach described in section II we shall now consider directly

the space , of

each N in I,

by the following

hypotheses of possible Kalman filter con
A

the conditional mean state estimate x(t

equations:

i(tlt,u)=

y(tlt,f,) =

igurat ens. For

t,13) s given

F(tlo)i(tlt,o) + K(tlti)[z(t)-~(tlt,,)] (46)

(47)H(t]O);(tlt,O)

Again, we approximate u with a finite set of grid points {U1, . . ..LI.J},

and we make the simplifying assumption that each ,(1 allows the same range of

admissible values of Q. Then, for any admissible value of U, the 109

likelihoo

{z(T)lrc

f~lnction L(Jilt,tl)of Oi given the measurements

to,t)} can be expressed as

i((]ilt,u) = L(6il t),
c1

(48)



where

4.4

/tt .

1L(ilt) = y’(
t

l,i)R~’(i)z(.)d - \~llY(I , i)\i’R;l ‘
(49)

“

Obviously, given

likely i, denoted

is independent of ~.

the Ineasurements {z(I) I E(t, ,t) I, the most

11, is the ii which Imaximizes L( it), wtich

This observation sugqests that in the event that

1’ is not known, a very simple state estimator is one yieldinq the estinwte
.
X(tl t,’). Such an estimator is sketched diagrammatically in Fioure 5.

Silnulation results have not been obtained for this estimator since it IS

not anticipated that they can extablish anv more than those for the di~crete-timr

results.

Tinle-Varying Unknown Parameters——.

Here we consider obtaining estimators when the unknown parameter vector

O(t) and the measurement noise intensity , are Inodelled as piecewise

constant functions of time with (t) = ((tk), i(t) = (tk) for

‘k~t<tk+l” We further assume that O(tk) can take one of the values

{o, ,.. ., bN}.

The estimation schenle that we propose is as follows.
. .

At t=tl, O(tO) is found such that L[!(to)ltl] = lmax{L[i(t~)lt,]~. The
\

states of all the N Kalman filters are then reset to x[tlltl, ~(tO )], viz,

the state of the Ka man filter conditioned on (tO). In general, at

t=tk+,, ;(tk) is

.
where ;(tk_l) = {e

L[~j(tk) lt>~(tk_l)]

to

ound such that L[~(tk) ltk+l,[;(tk_l)] = max{l.[i(tk)ltk+,,
i

(tk_,)]l>

,...,i(tk_, )} and
t. t
y“[rlr,6(tk_, ),O(tk)]R~l (~)Z(~)d7-!

f
IIY(I,

‘k ‘k

‘(tk_l)>(J(tk)jl12R~ld’
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Simulations have not been carried out for this scheme since as

for the previous not too much additional information can be gained from

this. However, it could be stressed that the important point here is

that the ideas investigated in this paper, in contrast to the standard

Bayesian approach, can in fact be applied to continuous-time systems in

a straightforward manner.
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