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Optimum Detection and Signal Design for
Channels With Non- but Near-Gaussian

Additive Noise
ADISAI BODHARAMIK, JOHN B. MOORE, AND ROBERT W. NEWCOMB

Absrract -The Gram-Charlier series representation of the noise-
probability density function is used to determine an optimum detector
for signals in norr-Gauaaian but near-Gaussian (NGNG) noise. Solutions

are obtained for coherent and incoherent detection. Optimal detectors
for several typical transmitting systems are determined. Generally these

detectors consist of the standard detector for Gaussian noise with the

addition of a few, not too sophisticated, nonlinear elements. The
performance of a detector, specified by the upper bound on the

probability of error, is assessed and is seen to depend on the signal

ahape, the time-bandwidth product, and the sigml-to-noise ratio. The
optimal signal to minimize the probability of error is determined and is
seen to result as a solution to Duffing’s aecondarder nonlinear differ-
ential equation.

1. INTRODUCTION

AT THE present time there is likely to be an increasing

interest in digital data transmission, which in some re-

spects is more effective than analog transmission, especially

for long distance communication. Considerable work has been

done [1] - [3] on designing the optimum detector for digital
data transmission systems in the presence of interference, but
most of the effort has been devoted to the case of Gaussian
interference. In this case the solutions for both coherent and
incoherent reception schemes have been well analyzed and the
optimal detector in the presence of white Gaussian noise is
well known to be a matched filter [1] . Under the Gaussian
assumption the receiver performance can be analytically eval-

uated [4] and in some situations it seems to agree rather well

with the results for many physical systems [5, p. 286] , How-
ever, the performances of some practical communication
channels are not in close agreement with the predicted values
[6] based upon the Gaussian noise assumption. Thus there is

an obvious need to consider the detection of signals in non-
Gaussian noise, as a closer investigation [7] , [8] reveals that
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for some communication circuits the major source of additive
disturbance may be non-Gaussian.

Several authors h?ve evaluated the system performance for
some digital systems in the presence of non-Gaussian noise
utilizing the detector that is optimum under the Gaussian

assumption [9] -[1 3]. However it should be noted that this
detector is not optimum for non-Caussian interference. A deri-
vation for an optimal nonlinear detector for non-Gaussian
noise is given in [ i 4] , but the treatment is limited to large
variance noise specified by the Cauchy distribution. Although
these results are quite interesting many other distributions than

the Cauchy may occur in practice.
In this paper we introduce another model of non-Caussian

interference, which uses a series expansion, consisting of a sum
with a Gaussian multiplier, to represent the probability density
function. We assun,e that the first few terms of the series are
sufficient to represent the noise probability density.

We shall discuss the detection problem for coherent and in-

coherent detection for various types of transmitting. As seen
in Section 111 the detector consists of a standard detector, the
matched filter of the Gaussian case with a few nonlinear ele-

ments added. We can observe (Section IV), from the upper
bounds on the probability of error that the receiver perfor-
mance depends upon the signal-to-noise ratio, the time-band-
width product, and the particular signal used. Consequently,
a solution for an optimal signal to achieve the minimum prob-

ability of error is derived in Section V, this resulting as the

solution of the second order nonlinear equation (66). We

begin in the next section with a development of the series ex-
pansion used to describe the probability density functions.

II. NOME SPECIFICATIONS

We introduce the expression of a non-Gaussian noise-prob-
ability density function (pdf) by the Gram-Charlier series
[15, p. 156], [16, p. 222]. This is a representation involving
orthonormal functions and a normal reference function.

Let ~(rr) be a pdf of non-Gaussian noise having zero mean
and let

fV(O, u2, rr)= (l/@o) exp (-rr2/2CJ2)

be a Gaussian reference function.
If an expansion exists of the form

f(n) = : c2jh2j(n)fwo, u’ , n)
j=o

(1)
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having

h*~(~)= (1/W) 112j(t7/”) H2j = Hermite polynomial

(2)

then this series (1) is called a modified Gram-C’harfier series

and we have

c2j = (’ Ilzj(rr)f(n) (in (3)
-00

J“ {
1, i=j

h~ij(n)h~(n)N(O, 02, N)dn =
—Cu o, i # i. (4)

We comment that our zero mean assumption allows us to
consider only even order terms for (1). The conditions under

which the Gram<harlier expansion is valid have been discussed
by Cramer [16] where it is pointed out that finite sums of the
form of (1) are of most use. Indeed, for our purposes we will
assume that the noise can be represented by a P + 1 term
truncated version of the Gram-Charlier series. Thus

f(n) = f c2j~2j(n)N(0, 02,rZ).
j=o

(5)

Then we define non-Gaussian near-Gaussian (NGNC) noise as
that for which P = 2 and either C2 or Cq nonzero, i.e., NGNG

noise is that which can be adequately represented by the first
three terms of a modified Gram-Charlier series. For NGNG
noise we will rdso choose the U2 of the normal multiplier equal
to the second moment of the noise process.

Equation (5) can be written in an alternate form, which will
be more useful for detection problems, as

(6)

Here ~zi is a function of various noise moments and the

Hermite polynomials as follows

%j=k~oa2k,2jq2k7 j=0,1,2,. ””, P (7)

with

L 2 “yr’p”v“k= (2k)! ,=0
k=0,1,2,. s., P (8)

in which j.12I is the 2 Ith moment of the noise process. The co-
efficients azk,’ I can be generated from the recurrence formula
[16, p.156]

Hi(x) = xHi_l (X)- (i - l)Hi_2 (X), i =2,3,4,”.. (9)

given HO(x)= 1 and HI (x) =x. Therefore

P
H2j(x) = ~ azj,zkx’k, j=0,1,2, ””. ,P, (lo)

k=o

where a2j,2k = O for all k)j.

Itis important to note that the sum of a finite number of

terms of the series (6) may give a negative density function,

particularly near the tails. Furthermore, the series may behave
irregularly in the sense that the sum of j terms may give a worse

fit than the sum of ( j - 1) terms [15]. It is also true that for

a fixed number of terms in the series many different normal

functions can be chosen. However, there exists an optimum

normal function such that the mean-square error is mini-

mized [17].
In order to simplify the problem we shall assume from this

point on, unless otherwise stated, that the noise is NGNG. We
would comment that this representation has never given us a
negative density function in the range of a satisfactory
approximation.

This type of noise model includes the contribution of a

Gaussian term that is always present in any physical system
and results for the Gaussian case can be obtained by setting
CO=l, C2=C4 =0.

In general, it has been known that in order to optimize the

detection process a knowledge of all the higher order prob-
ability density functions of the interference are required [2] .
If the interfering noise is Gaussian, a second-order statistic

implies all the higher order statistics, so that solutions for
optimal detection are quite simple. This is not true for non-
Gaussian noise. Moreover, in practice when one meets non-
Gaussian noise it is in general nonstationary, for example its
statistics may depend on many factors including geography
and the time of day [18] . Here we make the assumption that
the noise is considered to be quasi-stationary with statistics
that remain unchanged over a period that is long compared to
the signal interval. This allows us to use stationary results.
Another assumption is that the correlation time of the noise
is small compared to the duration of a signal to be detected.
In other words the noise bandwidth is large compared to the
signal bandwidth. Then successive noise samples are considered
to be independent.

III. DETECTION PROBLEMS

We shall formulate the optimum receiver or detector under
the optimality criteria of minimum average probability of
error. We assume that data to be transmitted is presented to
the transmitter in the form of a sequence of binary digits that
can be denoted by zeros and ones appearing at a rate of one
every T seconds. During the interval mT< f <(m + 1) T, if
the mth position of the sequence is 1, the system transmits a

signal S1(t); if it is a O, the transmitted signal is S2(r). Having
observed the received waveform during the signal duration

T, the detector is to choose between two hypotheses,

Hj: y(f)= sj(t) + n(f) j=l,2:O<t <T, (11)

where n(t) denotes stationary NGNG noise.
The detector observes the received waveform by uniformly

sampling the waveform with sampling interval 8. If B is the
system bandwidth, then due to the sampling theorem [19] we
choose the sampling interval 8 as

6 =(1/2B) (12)

in which case the maximum number of independent samples
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during the duration Tis

M= 2TB. (13)

The optimum receiver for these M samples is specified by the
log likelihood functional that is given by [2, p. 91 ]

in/,(Y)=lnF1(Y)-lnF2(Y), (14)

whe r?

Y= [,1’ I,,lJ*,~3 ,””” ,,Vm] (Is)

is used to denote a vector consisting of M samples received
during the interval T and Fk(Y) is used to denote the joint pdf
of the sampled waveform assuming that hypothesis Hk of

(ll)is true.

A. Coherent Detection

The binary signals in digital communication systems are
usually of the narrow-band type. The signal consists of a high-
frequency sinusoidal carrier modulated in amplitude or phase
by a slowly varying function of time. Such signals can be
written as

sk(~) = Ck(t) COS (d + @k(t)), k=l,2 (16)

where Ck(t) and ok(t)are called the amplitude modulation

and the phase modulation, respectively.

By definition coherent detection means that the functions
Ck(t) and ok(t) of the received signal are precisely known, so
that sk(t) is known exactly. From (6) it is clear that the pdf

zk(Yi) of a received sample under the hypothesis Hk is given
by

%k(~i) ‘.f(~i - ‘ki)

‘:”,,[wlz’e’p(-[(y;.:ki)’l’-)
i=l,2,3, ””. ,M (17)

where O* is the average noise energy and ski denotes the ith
sample of signal Sk(t).

Since the joint pdf ~k(y) is equal to the product of the
pdf’s of individual samples,(14) yields

(18)

It is interesting to notice that the first two terms of (18)
represent the optimum detector for the white Gaussian noise
case (matched filter or correlator) [2] , [20] and the third

term adds a nonlinearity in which the nonlinear element is
specified by the statistics of the NGNG noise. If we were to

assume the additive noise is Gaussian then the third term in

(18) is absent. Here we show that if the noise parameters
could be adjusted during the detection process (adaptive re-
ceiver) the receiver performance would appear optimum for

non-Gaussian as well as Gaussian interference.
When the sample size M is large enough, the sums of (18)

can be approximately represented by integrals yielding the

detector structure shown in Fig. 1 where No/2 denotes the

power spectral density of the noise process. We are using(13)
and the Fact that the average noise energy is o’ = fVOl?. This
structure consists of a linear matched filter in parallel with a
nonlinear portion in which the nonlinearity is specified by the
NGNG noise parameters. When the transmitting signals are
specified, for instance as in ON-OFF (ASK), frequency shift

keying (FSK), or phase-shift keying (PSK) systems, the re-

ceiver structure can be obtained from a reduction of Fig. 1.
Here we do this for the simplest transmitting system, which is
the ASK system. For this case the transmitting signals are

s, (t) = s(t)and sz(t) = O. The receiver structure is readily
obtained by substituting s, (t) and S2(t) into the integral form
of(18) and is shown in Fig. 2.

For future reference we recall that the FSK system has

Sl(t) = cl(r) Cos (CJ, r + p)

and

s’(t) = c, (t) Cos (U* f + p)

while the PSK system is defined by

S,(t)=cl(t) Cos(u, t+ q)

and

B. Incoherent Detection

For this case it is presumed that the phase of the transmitted

signal is distorted during transmission through the channel.
We assume the carrier phase is totally unknown to the receiver,
thus the received signal can be expressed in the following form

.$~(t,e) = C,k(f)COS(d + @k(t)+ 6), k=l,2 (19)

where 0 denotes the random phase assumed to be uniformly
distributed between O to 2rr.

Under the hypothesis Hk(k = 1, 2) and fixed random phase
0 the joint probability density function of the received wave-

form samples becomes

M

~/c(y/~) = ~ ‘i(,Yi - ski), (20)
i=]

where

.[ 1exp ‘(Yi - ‘/ci(0))2
2

s

–“ (21)
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Fig. 1. kth branch of optimal nonlinear detector for deterministic signals in NGNG noise
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Fig.2. (a) Opttial detector for ASKsystem (coherent reception). (b) Nonlinear elements indetection of Fig. 2(a).

Averaging (20) over O results in will operate under not unreasonably large signal-to-noise ratios.

2rr
Accordingly we can keep the first two terms using(21 ) of the

Fk(Y)= +
([ 1 expansion of lri Ai in (23). We then write (23) in integral

exp ~ lnAi(~i - Ski) ~t?. (22) f
o i=1 orm; on some computation after substituting sk(t, 0) of (19)

into the integral form of (23) we obtain

Equation (22) can now be applied to the log-likelihood func-
tional, which from (14) is given by

lnL[y(t)] =2B(KI -K2)+ln
[

f. (<~)

10 (~R~ )1,(24)
.

n’[y]=’nlfi$~~~:iJT,2d+ti
where l.(.) denotes the modified Bessel function of the first

(23)

To evaluate (23) we make the assumption that the receiver

•~ 74 374

J

T

2 (NOB)2 ‘k + (NOB)2 o
y2(f)C;(f)dr (25)
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COMPARATOR

L___ TO SECOND BRANCH

Fig. 3. First branch of the optimal detector for FSK system. (Incoherent reception. )

{1
T

Rk=-’2B %
NOB o

y(f)c~ c ](t)dr

J374 T

+ (NOB)’ ~
y(t) C; (t) C/cJ (t)d/

J“
T

+ (N~B)2 ~ }
y 3(t) C~c} (t)dt (26)

and

{J
T

Qk=zB3_
NOB ~

y(f) C~sl (f) dt

J“

374 T

+ (NOB)’ ~
y(t) C;(t) C~s] (t)dt

J

T

‘(NVB)’ o
y 3(f) C~s] (t)dt

}

~’ =:.; ~4=9_4
LX(J 2a:

Ek .
~

s;(r, O)dr = ;
o ~o

rT ~T

C;(t)dt

cl” (t)= c~(t) Cos(o~f + d~(l))

CY’ (t)= C~(t) sin (ukt+ h(t)).

C$(t) dt

(27)

(28)

(29)

(30)

(31)

In general (24) describes the structure of the optimum

receiver for narrow-band random phase signals. It should be
noticed that the receiver for this case is similar to the standard

detector for Gaussian noise [21 ], [22, p. 217] except for
some additional nonlinear elements. Just as with the Gaussian
noise case, the optimum receiver correlates the sine and cosine
demodulator outputs against each of the Iowpass signals
Ck(t).For each received Sk(t)the receiver forms the sum of
the square of the cosine correlation and the sine correlation

with the results obtained then fed to a comparison device.
At this point, we look at optimum receivers for the different

signaling systems. For an ASK system the log-likelihood
functional becomes, from (24)

J2y2E 374 G ● 674 T
lnL[y(t)]=~+— —

N:B N;B o
y2(t)C2(t)dt

+ in 10 [/Ri]. (32)

For an FSK system with orthogonal signals of equal energy,
the receiver consists of two similar branches each of which is to

generate R; + Q? for k = 1, 2. One branch of the structure of
the receiver is shown in Fig. 3.

IV. SYSTEM PERFORMANCE

In the previous section we have been concerned primarily
with the structure of the optimal detection system. In this
section we shall investigate the receiver performance that is
completely specified by the probability of detection error Pe.

In many cases of interest, the test likelihood ratio can be
derived but an exact performance calculation is sometimes im-

possible. For our noise model we encounter this difficulty.
Therefore, it is useful to search for another measure that may
be weaker than the probability of error but that is easier
to evaluate.
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We shall use the upper bound given by Chernoff [23] . Let

Pemax designate the upper bound on Pe, and let the signals

be equally likely, then

p,< pemax = ;
([

~; [F,(y)] m [F2(Y)]‘‘m dY,

JJ

O<m<l, (33)

where Fk and Y are defined as at (1 5).

It can be shown that PemaX is a convex function of m for
0< m <1 [24]. Therefore, a true minimum PemaX exists by

a proper choice of m. For simplicity we choose m to be
one-half, thus our bound is

Substituting (17) into (34) and taking logarithms of
sides yields

in (2PemaX) = ~ in
[J- d 1.Zl(.Yi)Z2(Yi) 4’i .

i=1 -.W

(34)

both

(35)

Before proceeding further to evaluate (35) we must specify
the transmitting system as well as the reception scheme. We

first develop the performance bound for ASK systems with
coherent detection. For this particular case we have, from

(17)withs2 =0,

[Z1(Y)Z2(.Y)I “2 = [d+ @ (Y,s)l 1’2 ~

(38c)

Using the fact that goao X1 and ln(l+x)~ x-x2/2 for
x < ] , (37) reduces to

It should be noticed that the higher order terms become
negligible for the case of interest when Pe is in a reasonable
range such that the signal-to-noise ratio, e.g., the integral of
S2 divided by NO, is not very large. Equation (39) is the upper
bound on P, of an ASK system with coherent detection.
Similarly, the upper bounds for FSK and PSK systems can be
obtained. The results are shown in (40) and (41), respectively:

and

‘XR++:)21‘3’)‘emax=’exp{-(’-%)il’s’(’)d’
where @ ( y,s) is a polynomial in y ands.

Generally for NGNG noise the noise parameters satisfy

lcrol> 1%1> Iul, in which case @ (Y, s)<rx; , in a reason-
able range of signal-to-noise ratio. Using the series expansions
for the square root, keeping the first two terms, and substitu-

. ting (36) into (35) yields the following result in integral form.

{[

T Sz(t)

J

T

Pemax =+exp -+ —dt+2B in (gOao )dl
o No o

T

+ 2B
J(

~n ~ +& Sz(t) +~ s.(t)

o go NOB go (NOB)2

+& Sb(t) +~ so(t)

)
— dt, (37)

go (NofJ)3 go (NoB)4

where go, gz, g.., etc., are functions of the ~i. It can be shown
from (7), (8), (10) that

()~o=l +:5-3 LY2=2(1 - (YO) 3a4=a13- 1.
(38a)

Defining also

~ = (&o -1 )/al) (38b)

where the hi and bi are functions of noise parameters, i.e.,

~ =2-g2 l+g.
2 h4=—

2go ( )
h22= l+:~+;132 /g.

go
(42)

and

b. =go b2=4(6+gz) b~=l’g~. (43)

It is important to emphasize that the upper bound P,m,X

does not only depend on the signal-to-noise ratio as in the case
of Gaussian noise but also depends on the particular signal
used as well as the time bandwidth product (2 TB).

For the case of incoherent detection the upper bound on
probability of error is given by

J

211

P&emax = Pemaxp do ~ (44)
o

where Pem,,lo denotes the upper bound on Pe given the
random phase O. We observe that for narrow-band and equal-

energy signals the two integrals in (41) are independent of O.
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Therefore, for narrow-band signals PemaXle is independent of
0 and the upper bound for incoherent detection becomes the
same as the one for coherent detection.

For the later purpose of choosing optimal signals we rewrite
the equations of P,~aX, (39), (40), and (41) in a general form,
i.e.,

{1Dl T
T

F’emax = + exp - — cqf)dt+~
2N0 ~ {]8BN; o

Cq(f)dt ,

(45)

where D1 ,D2 depend on the transmitting system used as shown
for the three cases in Table 1.

As illustrations, some plots of bounds on the probability of
error versus signal-to-noise ratio are shown in Fig. 4. This

pern~~ requires the knowledge of the optimal signal (to be
shown in Section V). Upon examining the curves of Fig. 4

we see first of all that by increasing the time bandwidth

product 2TB a better detector performance is obtained;

secondly among the three transmitting systems the perfor-

mance of the PSK system is the best, whereas the ASK system
gives the highest probability of error. This result is the same

as for the case when the noise in the system is Gaussian [4] .
We have covered a wide range of detection problems includ-

ing the implementation of optimum nonlinear detectors, as
well as evaluation of the system performance for some typical
transmitting systems. Perhaps one could say that the main
difference between optimum signal detection in Gaussian noise

and NGNG noise is that the performance of the latter case
could be improved by the selection of a proper signal, whereas
for the Gaussian noise case the performance depends only on

signal energy regardless of its shape.

V. SIGNAL DESIGN

We shall consider the problem of minimizing the upper
bound on the probability of error by a choice of transmitting
signal, since it is known that the signal that minimizes the

upper bound is also the signal that minimizes the actual

probability of error [25].
For convenience, we assume the observation interval is

[- T/2, T/2]. We shall develop the optimal signal design (to
minimize PemaX) subject to some physically meaningful con-
straints. As a preliminary case to these, we minimize the

p~~~~ with no constraint. The second case is to minimize
~enrax subject to an energy constraint. The third case is the
most meaningful since we will introduce both signal energy
and signal bandwidth constraints in the minimization process.

Here we define the mean-square bandwidth of the envelope

signal as

f

T/2
~z . [c(t)] 2 dt, (46)

-T/2

where d(t) is the time derivative of C(t) and W2 is measured in
H:. As shown in [26] , the mean-square bandwidth is the
bandwidth that contains the major part of the signal energy.

TABLE 1

Pemax

10-’

Id2

10=

.4
10

.s
10

--–- 2TE.100

u

0.1 I.0 10.0 100,0 E/t&

Fig. 4. Bounds on the probability of error (coherent and incoherent
receptions).

Before proceeding to the solution, we define the index

[

T/2

I[rq = [C4(r) - ~C2(t)] dt (47)
-T/2

where

‘T‘TI/T2 (48)

and

71 = (D1/2No) (49)

T2 = (D2/8BN~). (50)

Therefore, Pemax in (45) can be written as

Pemax = + exp {~2Z[C] }. (51)

From (51 ) it is obvious that to minimize Pemax we need to
minimize the performance index 1 [ Cl.

We first consider the simplest case when the mean-square
bandwidth W2 is allowed to take any value and the signal
energy E is required to be finite.
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To carry out the minimization, using the calculus of varia-

r-1-l

c. (t)
tions [27] , [28, p. 659] we let m

c(t) = co(t)+ ec~ (?), (52)

where Co(t) is the optimum signal envelope and CA(t) is an ~
T/2 t

arbitrary function. We require that
Fig. S, Optimal signal with no restriction on energy and bandwidth

dI

z .=0
= o. (53)

l%(t)

Substituting (52) in (47) and carrying out the step indicated
in (53) yields

n

J

T/2 - T/2 T/2 t

CA(t) [4 C;(t) - 2T] dt = O. (54) Fig. 6. Optimal signal with energy constraint.
- T/2

Since CA is arbitrary, the terms in the brackets must be By arguments similar to those of the first case this integral

identically zero in which case equation requires that

4c:(t) - 2T = o, -T/2 <t< T/2 (55) Al Co(t) + 2c:(t) = o, -T/2 <t< T/2. (62)

or

[
co(t)= ;, -T/2 <t <T/~. (56)

Equation (56) indicates the optimal signal that is shown in

Fig. 5. Observe that the optimum signal for this case turns out
to be a rectangular signal with infinite mean-square bandwidth
JV2 and finite energy determined by noise in the system. The

result is obviously logical due to the fact that without any re-

striction on energy the best signal-in the sense of minimum
P,–should have energy proportional to the noise energy.

The second case of more practical interest is the signal
design problem with specified energy

J
T/2

&= C2 (t)dt. (57)
- T/2

From (47) the index that we have to minimize becomes

J
T/2

I, [q = C4 (t)dt.
-T/2

(58)

Using a standard technique in constrained minimization
theory [27] , we define the function

[f

T/2

J= I,[C]+A, 1C2(t)dt-(i , (59)
-T/2

where kl is a Lagrange multiplier, and & is the energy. Then
on substituting (52) in (59) and carrying out

(dY/de) Ie=o = O (60)

We use the given constraint on & of (57) to evaluate the
constant Al as - 2Ci(t). Finally the solution for optimal signal,
found by integrating Xl = -2 C: (t)and substituting for Xl into
(62) becomes

co(t) =
r

6
7’

-T/2 <t< T/2. (63)

The optimal signal for this case, once again, is a rectangular
signal with infinite mean-square bandwidth and given energy

&. It is shown in Fig. 6.
Although the optimal signal shapes of the first and the

second case appear to be the same, actually the design con-
cepts are different. For the first case, the signal amplitude
depends upon the noise energy whereas the amplitude of the
signal in the second case is constrained by the energy &.

The problem of signal optimization is more meaningful if
we constrain both the energy and bandwidth of C(f). We
define the bandwidth as in (46) and the energy as in (57) and
then assume that both are bounded by fixed finite values.
We require in addition the end point assumption

c(f774 = () (64)

in order to avoid discontinuities at the end points.
Then for this case the index .l for minimization is

U
T/2

J=/[q +Al C2(t)dt-&
-T12 1

[f

T/2

+ h2 1C2(t)dr-W2, (65)
- T/2

the final result becomes where Xl and k2 are Lagrange multipliers.

J

T/2 The details of the minimization process are similar to the

cA(f)[~~co(t)+ Zc:(t)]dt = O. (61 ) first and the second cases. Using the calculus of variations

-T12 with the boundary condition (64) we obtain the equation that
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specifies CO(t) in the following form

co(f)-&o(f)-&(t)=o. (66)

This is the nonlinear differential equation that is known as

Duffing’s equation [29, pp. 16-22]. From (66), separating

the variables CO(t) and CO(t), then integrating both sides of

the equation yields

[co(t)]2- *c;(t) - +C:(t) = Q, (67)

where Q is the constant of integration.
For A2 <O, a real solution of Co(t) exists only when

Q >0. Observe that at do(t)= O, there exists the real roots

CO = ~r if AZ is negative, where the root is

‘=m (68)

By changing the variable such that

Co(r) = r cos v(f) (69)

(67) can be expressed in the following form

where

and

(70)

(71)

Integrating both sides of (70) and applying the boundary
condition given in (64), the final result is

where

L
$ du

f(~, k)=
o 1 - k’ sin2 u

(73)

(74)

is an elliptic integral. Equation (73) is the solution for CO(t)
in terms of Xl and Az. To complete the problem it is necessary
to evaluate II and AZ by using the constraint equations (46)
and (57). Unfortunately, (73) only gives an implicit solution
for ~. However, in practice, Al and A2 numerically can be
chosen such that CO of (60) meets the required energy and
bandwidth constraints using trial and error. Actually, it is not
difficult to evaluate limits within which Al and Az must lie
[17] . To obtain the optimal signals, a family of curves can be
tabulated for the whole range of Al and Az. Some typical

% = ENERGY Of A SIGNAL . I

w:s MEAN SQUARE BANDWIDTH

OF A SIGNAL OF DURATION T

w: . 10.12 , w:., ? 4.5

I
2

w:. 2.52 , W:, - 1.62
cJtl

w:. 1.13

-1.5 -1.0 -05 0 0.5 1.0 1,5 1

Fig. 7. Optimal signals of equal energy.

optimal signals with equal energy but differences in band-
width and duration are shown in Fig. 7.

It might be interesting to look at the general shape of the
optimal signal. The signal is time limited with duration T and
symmetrical about t = O. The slope of Co(t) takes its maxi-
mum in absolute value (Q at the end points (t = ~T/2) and
monotonically decreases reaching the minimum value of zero

att=O.

It should be noticed that the first and ,wcond cases of signal
design are impractical. This is due to the fact that the optimal
signals for both cases are rectangular types that require infinite
mean-square bandwidth. Since practical systems have finite
systems bandwidth B, the signal bandwidth W2 in the physical
system must be finite as well.

VI. CONCLUSIONS AND REMARKS

We have developed detection schemes using a three-term
truncated Gram-Charlier series to represent the probability

density function of NGNG noise. It should be understood

that the theory can be developed for an arbitrary number of

terms in the Gram-Charlier series; physically however, this is
only meaningful if the noise is near Gaussian. In such cases,
an optimal choice for U2 of the normal reference function also
exists. Since the Gram-Charlier series contains a Gaussian
term, the results obtained when additional additive Gaussian
noise is present are contained in the results.

The development of detection theory has given results in the
structure of the optimal detector, which, in general, consists

of a standard detector for the Gaussian noise case (matched
filter) in parallel with nonlinear elements. Since our detection

model is restricted to the case of near~aussian noise, it may
not be adequate for noise that considerably departs from the
Gaussian form. Nonetheless, the near-Gaussian model may

still provide useful guides to designing receivers operating in
general non-Gaussian noise. The important result su~ested by
the model is that the performance of an optimal receiver in the
presence of non-Gaussian interference is sensitive to the signal
shape. Here we developed the case of signal design only when
the signal-to-noise ratio is not very large, since, as is intuitively

true, then the signal shape is relatively insensitive to the system
performance when the signal energy is very large. On investi-

●
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gating the optimal signal design it seems that, in theory, “the
rectangular signal” might be better than the optimal signal

with both energy and bandwidth constraints in the sense of

smaller probability of error. However, it is obvious that the
rectangular signal never practically exists at the receiver, owing
to the band limited nature of any physical communication
channel. Actually, the transmitting signal appears distorted

due to loss of high frequency components. For this reason,
the results from a design subject to energy and bandwidth

constraints remain practically optimum.

The system performance was evaluated by observing PemW,

which can be calculated through (45). Fig. 4 shows F’emm as

calculated for the various cases, and, as for the Gaussian case,
the PSK performance is seen to be the best. The results are
seen to be comparable to those for the Gaussian case [30, p.
359] .
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