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ABSTRACT: A criterion for the stability of control systems which contain an arbitrary jinik

number oj memoryless nonlinearities is considered. The criterion is such that the degree oj
stability may be specijied, and such that for the case when the absolute stability of a control

system having one memoryless nonlinearity is considered, it reduces to the original Popov
criterion.

Introduction

The formulation and proof of absolute stability criteria applicable to systems
having many memoryless nonlinearities is given in (1) and (2). The significant
contribution of (1) is the demonstration of the existence of a frequency response
stability criterion for multiple nonlinearityy systems. The contribution of (2) is
that means of constructing system Lyapunov functions are given. Also, the
convenient application of the network theory concept of a positive real function
to the control theory concept of a minimal realization of a transfer function (3)

to proving the system stability criteria is indicated. However, consideration of
the degree of stability of such systems is not given except in the single non-
linearity case (4).

This paper gives an application of the theorem of (3) to establish a stability
criterion for control systems containing an arbitrary finite number of memoryless
nonlinearities that is more general than either of those considered in (1) and
(2), and states clearly the conditions for which it maybe applied. The criterion
is such that the degree of stability may be specified.

When the absolute stability of a control system having one memoryless non-
linearity is considered, the criterion reduces to that given originally by Popov (5).

Stability Criterion

The nonlinear systems considered are those where the system is of the form
(or may be arranged to be of the form) of that shown in Fig. 1. Lyapunov sta-
bility is considered, hence, the inputs are not indicated, The matrix ?$’(s) is an
n X n matrix of stable rational transfer functions, assumed to be such that

w(m) = o. (1)

The nonlinearities ~i(~i) (i = 1,2, 0.., n) are assumed to satisfy the conditions

O < ~i(~i)~i < kiyiz for ki>O(i=l,2, ”.., n). (2)
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FIG. 1. System with multiple nonlinearities.

The k< define the matrix K = diag {kl, k,, . . . . km], and the /./i the vector P =
(PI, W, ● ●•, A)’. The stability criterion for the above system is given as follows:

Theorem.

Part (a). If there exist real diagonal matrices, A = ding {q az, s””, an),
B = diag {bl, b,, . . . . b~], with ai 20, bi 20, ai + bi >0, and -a;/bi not a
pole of any of the ith row elements of W(s), such that

z(s) = AK-l + (A + Bs)W(S) (3)

is positive real, then the system shown in Fig. 1 is stable,
Part (b). For some real aO <0, suppose that the same conditions apply on

the elements of A and B as in Part (a), except that _ai/bi must not be a pole
of the ith row of W (s + ao); suppose further that the poles of W(s) lie in the
region Res < Uo.If for some A and B,

ZI(S) = AK-l + (A + Bs) W(S + ~0) (4)

is positive real, then the system is stable. Moreover, if the nonlinearities satisfy

/

vi

/Ji(Yi)Vi 2 #Ji(Pc) @i
o

there exists a Lyapunov function V for which

v/v < (70

and if the nonlinearities satisfy

/

I/d

/Ji(’!4i)Yi ~ 2 Pi(Pi) dPi
o

i =1,2, ”*., ?Z (5)

(6)

~=1, z,. ... n (7)
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there exists a Lyapunov function V for which

P/v < 2U0 (8)

We comment that condition (2) implies condition (5) for sufficiently small
vi, and for all monotonic nonlinearities. Condition (2) implies condition (7) for
any nonlinearity which is concave upwards. Certainly, for any given nonlinearity
the range of y values for which condition (5) or (7) is satisfied can be determined
and the theorem applied (in a limited way, admittedly) in this range.

We further comment that the conditions on A and B ensure that the degree
of Z(s) [21(s)] (6) is the same as that of W(s) [W(s + uO)], i.e. that the di-
mensions of minimal realizations of Z(s) [Zl (s)] and W(s) [W (.s + Uo)] are
the same.

Proof of Theorem. A transfer function W(s) satisfying (1) possesses a
minimal realization {F, G, H} which is a set of three constant matrices, (F being
p X p, G and H being p X n where p is the degree of W(s)), satisfying

W(s) = H’(s1 – F)-’G. (9)

An expansion of ZI (s) in terms of F, G and H gives

21(s) = AK-l + (A + Bs)W(S + Uo)
= AK-’ + AH’(sI – F + UOI)-lG

+ BH’[(sI – F + crJ) + F - UOI](SZ– F + UOI)-lG
= (AK-1 + BH’G) + [AH’ + BH’(F - .,1) ](s1 – F + aoI)-’G

and we see that since 21(s) is positive real, the theorem of (3) may be applied
to the triple /F – uoI, G, HA + (F’ – ud) HB }, which is a minimal realization
of 21(s) - 21( @). Thus, there exist a positive definite symmetric P, and matrices
L and W. such that

P(F - d) + (F’ – uOZ)P= –LL’ (lOa)
PG = HA + (F’ – U07)HB - LWO (lob)

Wo’ Wo = 2AK-1 + BH’G + G’HB (1OC)

Consider as a tentative Lyapunov function for the system of Fig. 1:

/

u

v(x) = X’PX+ 2 M’(p)B d~ (11)
o

where x is the state vector of the system. Observe that the positive definiteness
of P, the positive semidefiniteness of B, and the restrictions on Mof (2) ensure
that V is positive for all nonzero z. Differentiating (11) gives

v(x) = X’px + X’PX + 2!4’(y) y. (12)
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The time derivatives may be expressed in terms of F, G, H’ and Y(v) by noting
that the system of Fig. 1 may be represented as a linear system using state space
notation, i.e., from (9)

Thus,

V(z) = [z’F’ – J(y) G’]Pz

i = Fx – Gg(y) (13a)
y = H’z. (13b)

+ x’P[Fx – Gp(v) ] + 2LJ(Y)BH’[Fx – GA(u) 1.

Applying (10) and arranging terms, gives

l’(z) = –[dL – J(~)lv,’][L’x – W,#(y)] – 2#’(y)A[y – K-’p(~)]
+ 2u,[x’Px + P’By].

The first term is plainly nonpositive, and the nonnegative nature
together with the nonlinearity condition (2) ensure the nonpositivity of the
second term.

Consequently for the case UO= O, V(x) is, in fact, a Lyapunov function and
the first part of the theorem is proved. In order to prove the second part, con-
sider the ratio of V(z) to V(z) :

( 14)

(15)

of A

(16)

Since ~(z) /V(z) 1~,~<0, for the more general case (16) yields

V(z) /V(x) < 2a0[x’Pz + JBy] /(xPx+2~~1Bd~). (17)

Applying condition (5) gives

v(z) /v(x) < u, (6)

and applying condition (7) gives

v(z)/v(z) < 2U,

thus proving the second part of the theorem.

(8)

concluding Remarks

For the single variable case, Part (a) of the theorem reduces to the original
Popov criterion (5) and Part (b) reduces essentially to the result of Yakubovich
(4) .
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For the special case when the matrix A is taken as the identity matrix 1, the
criterion reduces to that given in (1), and when A is CYIand B is 131 (a and P
being real positive numbers), the criterion reduces to that used in (2). Note
that if, as in (2), the nonlinearities are permitted to be coupled, the integral in
(11) is, in general, dependent on the path of integration (and thus is not well
defined); hence, the stability criterion cannot be valid for this more general case
using the above theory.

For the special case when W (s + uO) is itself positive real, B may be chosen
as a zero matrix and A the identity matrix, and it may be concluded that the
system is stable for any memoryless nonlinearities bounded within the first and
third quadrants. An application of this particular case is used to consider the
effects of nonlinearities in the transducers of linear optimal control systems, (7).

As remarked in (2), the asymptotic stability of the closed loop system, as
distinct merely from its stability, depends on ~. Various conditions ensure
asymptotic stability, for example, nonsingularity of A and inequality signs in
(2), or any other condition that forces V to be not identically zero along a tra-
jectory.
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