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ABSTRACT

Two classes of systems are considered for the application of the multi-
variable Popov criterion. The first is obtained from a linear, finite-dimen-
sional system with a state feedback law derived from a quadratic loss function
minimization problem. It is shown that a non-critical part of the system
is the set of transducers producing the inputs to the system, in the sense that
stability is retained even when the transducers are far from ideal.

The second class of systems is derived from linear, finite-dimensional
systems which are stable. It is shown that it is always possible to tolerate in
general a small amount of non-linearity at virtually any point in the system
without impairment of stability.

§ 1. IxTRODUCTION

Maxy so-called linear systems are in fact not so, and it is the aim of
this paper to indicate situations where non-linearity may be tolerated
in a system, with this system remaining stable if the linear one from which
it is derived is also stable. The technique used for establishing stability
of the non-linear system is the Popov theorem (Popov 1961) in multi-
dimensional format (Anderson 1966 a, b, Tokumaru and Saito 1965).

Two classes of systems are considered. The first is obtained from a
linear, finite-dimensional system with a state feedback law derived from a
quadratic loss function minimization problem. Non-linearity is then
permitted in the transducers producing the input to the linear system.
As is shown below, and as is known for the single input case (Kalman,
private communication) a substantial amount of non-linearity can be
tolerated with stability being retained. In practical terms, this means
that a non-critical part of a regulator system is the transducer driving
the system.

The second class of systems is derived from linear, finite-dimensional
systems which are stable. It isshown that it is always possible to tolerate
in general a small amount of non-linearity at virtually any point in the
system. Moreover, it is possible to apply a sufficiency test to determine
whether a non- -linearity lying within prescrxbed bounds will not affect
the stability of the system.

+ Communicated by the Authors.
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may be made strictly non-negative definite for all w. The other
requirements to guarantee positive realness (Newcomb 1966), can be
shown to be satisfied in a straightforward manner.
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System to which Popov theorem applies.
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Restrictions on memoryless non linearities.

§ 3. NON-LINEARITIES IN OTHERWISE OPTIMAL SYSTEMS

We shall consider the system of fig. 4 described by the equation :

&=Fz+ Gu. (2)
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Linear finite-dimensional system.
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blocks labelled transducers. In a practical situation, the realization
of the block M’ may well be done with electronics, while the generation
of system inputs may require devices of large power-handling capability,
e.g. motors, which inherently tend to contain non-linearities. Thus
the transducers of fig. 6 are a generic representation of such devices.
Ideally, the transducer transfer characteristics should lead to identical
input and output (fig. 7(«¢)). But in practice, some non-linearity in
each transducer will always exist, and we shall demonstrate that any
non-linearity lying in the shaded sector of fig. 7 (b) will lead to a stable system.

Fig. 7
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(a) Ideal transducer characteristic. (b) Region of permissible transducer
non-linearity retaining stability.

In order to prove this fact, it is necessary to transform the non-
linearities so as to be amenable to the theory of §2. This may be done
by observing that the non-linearity of fig. 7 (b) is equivalent to the sum
of a linear transmission characteristic of slope 1, and a non-linear
transmission characteristic restricted to lying in the entire first and third
quadrants. Taking the number of separate inputs to the system as =,
this permits re-drawing of the system as in fig. 8.

Fig. 8
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Nominally optimal non-linear system.
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to be specified. Note that (10) forces, for positive x;, the real «; to be
always greater than the ideal u; of (9). The situation where a non-
linearity causes the real «; to be smaller than the ideal one can be covered
as follows.

Because the eigenvalues of F —@GJ[’ are continuous functions of the
entries of F. ¢/ and J/, it is true that if some of the entries m;; of . are
replaced by my; + ¢;;, where ¢; may have to be chosen sufficiently small,
the eigenvalues of the modified F — G’ will still be in the left half plane.
But then the ideal u; is now:

W= *ijixj—Zeji;rj (11)
7

2
and the real u; is:

U; = —ijixj+Z[V’ji(xj)—ejixj]' ' (12)

By still restricting the r.;; to be first and third quadrant functions, we
can, by the artifice of introducing a linear transformation with the e,
arrange to consider non-linearities that result in values of u, which are
smaller than the ideal. All that is required is that v.;(x;) — €;;x; be negative!

Because of the above remarks, we shall henceforth restrict attention
to feedback laws as in (10), with the p;; first and third quadrant functions.
Figure 9 illustrates the closed loop system incorporating the non-linearities.

To discuss the stability of the system with the aid of the Popov criterion.
it is necessary to construct the pn x pn matrix W(s), the transfer function
matrix associated with the linear part of fig. 9, which maps the outputs
of the non-linearities into the corresponding inputs, just like the W(s)
of fig. 2.

Neglecting the minus sign associated with the — & block, W(s) can be
calculated explicitly by straightforward means as:

P r
| (T L0000 .0
» 00...011...10...
W) = | . | (s, -F+GM)GE 00 ...000...01 ... (13)

LU

» L -

Stability of the closed loop non-linear system will follow if for some set of
slopes ki, k;...k,, restricting the p;, these are non-negative constants

% and B for which:
Z(s)=aK + (. + Bs) W(s), (14)
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§ 5. CoxcLUSIONS

The results presented here, though constituting two useful applications
of the multidimensional Popov theorem, do apply to differing practical
situations. The range of tolerable non-linearities are quite different,
and it is perhaps fortunate that the situation where a large amount of
non-linearity can be tolerated, the nominally optimal feedback system,
is also the situation wherein large amounts of non-linearity may be
experienced.

The result on nominally linear stable systems is reassuring, in that
it shows such systems are structurally stable. But it does go further
than this, for, at the expense of the difficult calculations necessary to
check positive realness, it gives a sufficiency test to see whether components
of prescribed specifications can be satisfactorily incorporated in a system.

Both results illustrate the often experienced fact that saturation-type
non-linearities can lead to trouble. Such non-linearities of course fall
well outside a sector non-linearity in general.
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