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Abstract

Much of engineering is concerned with the topic of optimization, and at the
heart of much of our optimization is dynamical systems. Dynamical systems

can be thought of as either non-linear continuous-time differential equations
or difference equations. Chaos occurs in dynamical systems, and frequently
in engineering we seek to avoid chaos. At times chaos becomes the central

fascination.
This paper first introduces a situation in signal processing for neural systems

in which chaos is the perhaps unexpected phenomena and the object of study.
The focus then shifts to the topic of optimization of systems via dynamical
systems, where traditionally chaos is avoided as much as possible. The essential
dynamical system should converge in a very smooth manner to an optimal
solution to some problem of interest. Our technical approach is summarized to
optimization via dynamical systems is illustrated by an application in the area

of robotics.

The key questions motivating this research are: Does the human brain ex-
ploit chaos for generating intelligence? Can our computing machines and control
systems enhance their intelligence by a clever introduction of chaos?

1 Introduction

A Nobel prize-winning experiment in neurophysiology extracts very faint signals from
synapses. A patch of the cell membrane with a gate molecule is studied. The one

molecule acting as a gate opens and closes to allow various chlorine or potassium
ions to flow through the cell membrane and activate the cell. The current flow is of
the order of Femto amps. At these signal levels it is not surprising that noise due
to thermal agitation of the molecule can dominate the measurement process. It is
important to study these very small channel currents in order to not only understand
signal processing in the brain in normal behaviour, but to study the effect of drugs
for anesthesia, epilepsy and other conditions. A key question of interest is: Are the
underlying processes at the cell membrane and synapse level governed by chaotic
equations?

This paper points to research results which suggest that the underlying processes
and synapse levels are in fact chaotic, see [9], and background material [3, 4, 6, 8, 10].

It is very difficult to be absolutely sure of such a conclusion because the signals are
so much buried in noise. However, through experiments and signal processing, one
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can assess the self-similarity of the underlying signals at different resolution scales,

and indeed estimate the fractal dimension of the underlying signals. Recall, that the
fractal dimension is really a measure of the ruggedness of the underlying signals.

In the case of cell channel currents, the underlying signals appear to be currents
which switch between a number of levels according to some transition probability

law. The transition probabilities depend in a exponential manner on the time to the

last transition. The longer the time since the last transition, the less likely there will
be another transition. In cell channel currents, transitions occur in pico-seconds. It
is clear that the inertia of the protein molecules forming the cell channel would be
very small indeed.

It appears that in the process of evolution, there has been some advantage in
exploiting chaos for the underlying processes within the human brain. Usually, chaos
is avoided in performing a system design or optimization. The challenge before en-
gineers is to somehow exploit the fascinating properties of chaos to enhance their
system designs, and to further their ability to optimize and control their systems.

At this stage in our understanding of optimization, we do in fact exploit dy-

namical system behaviour, in particular discrete-time (recursive) systems for system
optimization. The dynamical vector or matrix equations may be quite elegant and
with the ability to flow on a constraint manifold towards an optimal solution. In

the first instance, one is content that such dynamical systems converge to an opti-
mal solution in a well-behaved manner. Subsequently, the motivation is to enhance
the convergence capabilities of such algorithms by introducing non-smooth behaviour.
There may be a deliberate introduction of ill conditioning into the equation or random
perturbations to ensure the final desired outcome.

In Section 2 of the paper, we review the technical approach for investigating chaos

in so called hidden Markov models for discrete-state systems and its application to
study cell channel currents. In Section 3 we review the technical approach for system
optimization via dynamical systems with an illustration from the application area of

robotics. In the final Section

2 Discrete-State

4, we discuss areas for current and
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future research.

Let us consider dynamical systems which switch between discrete states, denoted

S1, S2, . . . . SN. In discrete-time, the state of the system can be indicated by an

indicator-vector X~, where k = O, 1, and usually denotes a discrete-time sequence.

The state X~ belongs to a discrete-set {el, ez, . e~} where ei is the unit vector with
unity in the ith element and zero otherwise. See Figure 1.

Two important properties of such indicator states X are as follows. Nonlinear
functions of X are linear in X as

()f(X) =f fei.Y(’) = ~ .f(el)X(2) = Fx. (1)
i=l 1=1

where F = [f(el ), f(e2) -f(eN)] and where X(i) denotes the ith element of X. This
is readily checked since Xii) = O for all z’save some value j when X(j) = 1 (i.e.
X = ej) and thus ~(X) = ~(ej).
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Figure 1: Depiction of state sets.

E [X(i)]= ‘jjejeiP(X=ej) = P(X =ec)
j=l

Here E [] is the expectation operator and P(.) denotes the probability
immediate since e; ei = O for c # j and e~ei = 1.

vertices Sx

(2)

This result is

Consider that’the system switches between states according to a probability law

x~+l = AXk + ft’fk+l, (3)

where A is a matrix of transition probabilities, That is, E [Xk+l] = All [Xk]. It is
immediately clear that ~k+l is a martingale increment process with the property

~[~k+llxo, xl,.. .Xk] = O (4)

The transition matrix A of interest to us here will also depend upon the time to
the last transition, denoted ~k. of course, ~k+l = r~ + 1 in the event that there has

been no transition, and rk = O in the event that there has been a state transition.
The vector consisting of xk and rk is seen to be first-order Markov, in that it depends
only on the previous vector, Xk- 1, ~k- 1, and not on any earlier such states. Thus
the augmented state model is

[%-:1=[f”k):I+[MTI
{ o

P=~

The measurement process yk belongs

take

~k=cxk+~k,

if Xk+l # xk
otherwise

(5)

to continuous range, namely IR1. Here we

C=[cl, cz, . ..cn] (6)

where wk is a discrete-time, identically and independently distributed noise process
in a continuous range IR1; here take wk as zero mean, white and Gaussian with
density IV [0, a;]. In fact, we can think of the system switching between the IV
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states Si = Cea = c; for i = 1, 2, . . N with the measurements of the state of the
system contaminated by the additive noise process Wk.

The above equations taken together denote what is termed a hidden Markov
model. The word hidden refers to the fact that the states are hidden in noise. The
term Markov indicates that there is an underlying state vector which summarizes all
that we need to know about the past of the system in order to proceed in predicting

its future. A simple situation is depicted in Figure 2.

1 1 1 1 1

I Markov chain

I Noise

o 50 100 150 200
Time

Figure 2: Binary Markov chain in noise.

A key signal processing task is to estimate the states of a
given the measurement data yO, yI, . Yk. Ideally one would

250 300

hidden Markov model
prefer a recursive sig-

nal processing scheme, which updates an estimate of the states at time k — T given
data up to time k, where T represents a delay in the processing so as to achieve
improved estimates from future. In the first instance, signal processing algorithms as-

sume knowledge of the transition probabilities A, the discrete-set states (parameters),

namely Si = Ci, and the statistics of the measurement noise process ‘UIk- N [0, a;].
More sophisticated signal processing can simultaneously estimate both the parame-
ters and the states of the model. In our situation where the transition probabilities
can conceivably depend upon the time to the last transition, then one has to estimate
this dependency from the noisy data.

Of particular interest here is when elements of A = (aii) depend in an exponential
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manner on ~~, as for example when for all i

a~~(r) = a;:(0) +(1 – a~i(0)) [1 – e-D’] (7)

Here D is taken as the fractal dimension of the signal g~. Clearly, when D = O, then

aia(r) = ail(0) is independent of ~, and as D increases aii(~) ~ 1 in an exponential

manner. That is, as D increases there is a greater tendency for X~ to stay in the same
state ea as r~ increases, and conversely there is more likelihood of a state transition
if rk is small.

With knowledge of the model {A(rk), C, a:} then the state estimates

i~l~=~[~~lx~, x~,....~k]=~(~~lxo, x~,...,~~)

which evolve as illustrated in Figure 3, are given from

where J.’ = [1, 1, . ..1]. Here a~ is an unnormalized version of the conditional density

p (X~lXO, Xl, . . X~) so that CYO is the a priori density p(XO).
Maximum likelihood estimation of D involves multi-passes, both forward and

backwards, through the data [9, 10].
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Figure 3: Evolution of state estimates.

On-line suboptimal methods based on recursive prediction error techniques can
also be devised, see [6, 5]. The details are beyond the scope of this overview presen-
tation.

In comparing how well various models and parametrizations fit the data, the key
measure is simply the conditional probability p (mbdel I data). In the absence of
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a priori information, the related probability p (data I model) is equivalent. in the
neurophysiological model study, fractal models with fractal dimension in the range
D = 1.2 to 1.6 were found to be most likely on the data tested, see [9].

3 Optimization via Dynamical Systems

In engineering applications, and in particular control applications, there is usually
some underlying dynamical system description of a plant which has to be controlled
by some control variable which, along with the states of the dynamical system, must
satisfy certain constraints. For example, the control signals may be constrained so
as not to exceed a certain magnitude. Since hardware is common to many indus-
trial plants, the only competitive advantage of one plant over another is its control

software. At the heart of this software are dynamical systems (recursive algorithms)
which perform on-line optimization. These algorithms are driven by measurements
from sensors placed on the process and their outputs drive the various actuators of
the process. Contemporary research areas such as robotics, have brought to the fore
novel control tasks. For example, in robotic dextrous hand-grasping, there are many
fingers which must be co-ordinated so that in grasping and manipulating an object
there is a balance of forces, excessive force is not used, and yet slipping is prevented

Focusing on robotic hand-grasping, the existing optimization algorithms tend to
use standard linear programming or non-linear programming techniques. Also, there

are many ad-hoc devices supplied in the algorithms to achieve practical results. The
challenge is to devise an on-line optimization which achieves well-conditioned optinlal

results, and rapid on-line calculations. For this task, we have proposed in [2, 1] that
the friction constraints be viewed as the positive definiteness requirement of a certain
matrix, while the force balancing constraints can be viewed as linear constraints on
the elements of the positive definite matrix. The picture we have in mind then is of a
cone, being the class of positive definite matrices, sliced by a hyper-plane, being the
force balancing constraints, see Figure 4. The task is then to optimize the balancing
of forces on this intersection of the cone and hyper-plane. Starting from an initial

feasible solution at the intersection of the cone and hyper-plane, algorithms in the
form of dynamical systems have been devised to converge to an optimal solution. It
is important that the optimization be formulated so that there is a unique global
minimum, and that the optimization is in essence a convex optimization task.

One of our first proposals for the dextrous hand-grasping problem requires a so-
lution of a discrete-time Riccati equation modified to ensure projection of its solut ion
into the constraint manifold, The index optimized is very similar to that Yvhich has
been well studied for balancing controllability and observability in linear syst,enls
theory. It involves a term which penalises the forces at the fingertips, and a bar-
rier function which prevents the constraints fronl being violated. There is a balance

between these two requirements achieved in the optimization.

The optinlization approach employed as expounded in [7] is to implement gradient
flows of penalty functions on the smooth constraint manifolds of interest. Four key
steps are forrrlulat ions of the lnanifold, selecting cost function, choosing a Riemannian
metric (or descent angle), and in discrete-time designing a step size. The “right”
combination can result in elegant flow equations with linear (exponential) convergel]ce
properties to a global minimum. The “wrong” combination can result in “messy”
equations which flowI to local minima not, the global minima.
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Figure 4: Object grasped by dextrous hand.

Decomposing the downhill search into two-dimensional geodesic searches, where
step-size selection to achieve a minimum in the descent direction can be calculated

analytically, results in highly efficient algorithms which are quadratically convergent.
This is an area of current fruitful research.

To be more precise, consider the grasping situation depicted in Figure 4, with
ci,j denoting the ith figure contact wrench (force) resolved in the j’ direction, then
friction constraint requirements for IV fingers are

JC;2 + cf,3 < ~ici,l for i=l,2, . ..iV (9)

Here pi is the coulomb fraction coefficient and the -j

the finger contact. These inequalities are equivalent to
P = blockdiag{P1, P2, . . . PN} where

[

Pici,l o Ci,2
Pi= O Pici,l ci,3

1

for
c~,a Cz,3 /Jici,l

The eigenvalues of Pi are

—

= 1 direction is normal to

the positive definitiveness of

i=l,2. ..N (lo)

Ai = ~iCi,l, 4A2,3= /4iCi,l* C~,~+ C~,~ (11)

The equilibrium or force balance constraint is in the form ~ert = Wc, wheref,.t

is the extended force vector, c is the vector of forces ci)j and W is the grip transfor-
mation matrix describing the geometric relation between contact wrench space and
object c~ordinate frame [11]. This together with the structural constraints on P, i.e.
Pi,21 = Pi,12 = O and Pi,ll = Pi,22 = Pi,23, and the blockdiagonal constraint can be
represented as

Avec(P) = q (12)

The index selected for optimization is

#(P) = tr (P+ /?P-’) (13)
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for some scalar weighing p >0.
The first term penalizes ci,j and the second is a barrier penalty function for the

contraint (9). A very suitable Rienammenian metric for two vectors (l, <Z in the
tangent space of the positive definite constraint manifold P >0 is

(K1)(2)) = ~~(P% P-’<2) . (14)

This leads to the gradient flow in the absence of the linear constraint (12) as

P=pI– P2 (15)

and projecting into the hyperplane (12) we have the flow

vec(~) = [1 – A’(AA’)-l] vec(pl – P2) (16)

from which discrete-time flows can be derived, see [1, 2]. Figure 5 depicts the situa-
tion,

(a) Positive definite cone (b) Gradient flows

Figure 5: Positive definite hypercone with affine constraints and gradient flows on
the constraint hyperplane.

These gradient flows are appealing because of their mathematical elegance, but

this is also their limitation. The flows are smooth, yielding exponential convergence.
Quadratic convergence and faster convergence can be achieved using recursions such
as

vec(~k+l) = [Z – A’ (AA’)–l] vec (P~ – a~(pPk–l – P~))

for O < ~k < 1 which are more “violent”. The ok is selected to minimize the cost

term (13) at each iteration.
In cases where the manifolds are not compact and convergence is not guaranteed,

do flow equations exhibit chaos? Also, in more sophisticated optimization situations,

perhaps with local minima not the global minima, must we use chaos itself to effi-
ciently side-step a local minima?
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4 Conclusions

This paper has summarized some recent research in signal processing and control in
which chaos is the central fascination on the one hand and the allure to achieve im-
proved results on the other hand. It seems clear from our studies that the human brain

in its signal processing makes use of chaos for improved efficiency and performance.
The challenge is for systems engineers working in the area of control applications to

exploit the potential of chaos for enhanced control and on-line optimization. We have

a long way to go.
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Commentary by K. L. Teo

This paper first considers discrete dynamical systems which switch between states.
The states are hidden in noise and there is an underlying state vector which summa-
rizes all that are to know about the past of the system in order to proceed in predicting
its future. This situation is termed Hidden Markov model. The technical approach is

reviewed for investigating chaos in a hidden Markov model for discrete-state systems

and its application to study cell channel currents.
The focus of the paper then shifts to the topic of optimization of system via

dynamical systems. Usually, chaos is avoided in performing a system design or opti-
mization. For an optimization problem in the area of robotic is used for illustration
to a technical approach summarized in the paper.

The paper is both informative and interesting.

Commentary by T. Vincent

The author raises an interesting question in the abstract, “Can our computing ma-

chines and control systems enhance their intelligence by clever introduction of chaos?”

One computing machine of interest to the author is the brain and he points to some
results which suggest that the underlying processes and synapse levels are in fact
chaotic. Another area of interest discussed by the author is optimization. While
presenting an optimization approach, which uses gradient flows of penalty functions
on smooth constraint manifolds, the question is raised if it is possible to use chaos to
side-step local minima? Using chaos in this way to solve global optimization problems
is a very attractive idea. No doubt we can look forward to progess in this area.

Six papers in this volume do address the authors question in regard to control
systems. My own contribution uses the ergotic nature to chaos to eventually bring
the system to a point in state space where some control action will be effective. The
targeting methods discussed in the papers by Glass, Kostelich, and Ott represents a
more ‘clever’ way to use chaos to accomplish the same objective. Mareels observes
that chaotic behavior could be beneficial in achieving control objectives in adaptive
control systems. C,rantham shows that suppressing a single frequency can convert
chaotic motion into a desired periodic one. I think the answer to Moore’s question is
a definite yes, but I also agree with his assessment, “We have a long way to go.”


