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1 Exercise 1 

This exercise deals with the approximation of functions by neural networks. The so called function 
approximation (regression), is to find a mapping f ’ satisfying || f ’(x) - f(x) ||< e, (e is the tolerance; 
||·|| can be any error measurement). In general, it is enough to have a single layer of nonlinear 
neurons in a neural network in order to approximate a nonlinear function.The goal of this exercise is 
then to build a feedforward neural network that approximates the following function: 
 

f(x,y) = cos(x + 6*0.35y) + 2*0.35xy  x,y∈[-1 1] 
 

 Fig. 1: Parametric surface and contour of the target function 

1.1 Data Preparation  

For this function approximation problem, three kinds of data sets are prepared, namely the training 
set, the validation set and the test set. The training set is set of value pairs which comprise 
information about the target function for training the network. The validation set is associated with 
the early stopping technique. During the training phase, the validation error is monitored in order to 
prevent the network from overfitting the training data. Normally, the test set is just used to evaluate 
the network performance afterwards. But, in this exercise the root mean-square error (Erms) on the 
test set is used as the performance goal of the network training. 
 
For the current problem, the training and the test data are taken from uniform grids (10x10 pairs of 
values for the training data, 9x9 pairs for the test data). As shown in Fig.1 the range of the function 
output is already within the interval [-1 1]. So, it is not necessary to scale the target function. For the 
validation data, in order to make it a better representation of the original function, it is taken 
randomly from the function surface.  

1.2 Network Design 

Theoretical results indicate that given enough hidden (non-linear) units, a feedforward neural 
network can approximate any non-linear functions (with a finite number of discontinuities) to a 
required degree of accuracy. In other words, any non-linear function can be expressed as a linear 
combination of non-linear basis functions. Therefore, a two-layer feedforward neural network with 
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one layer of non-linear hidden neurons and one linear output neuron seems a reasonable design for a 
function approximation task. The target function as defined above has two inputs (x, y), and one 
output (z = f(x,y)). Thus, as shown in Fig.2, the network solution consists of two inputs, one layer of 
tansig (Tan-Sigmoid transfer function) neurons and one purelin (linear transfer function) output 
neuron.  
 
The number of the hidden neurons is an important design issue. On the one hand, having more 
hidden neurons allows the network to approximate functions of greater complexity. But, as a result 
of network’s high degree of freedom, it may overfit the training data while the unseen data will be 
poorly fit to the desired function. On the other hand, although a small network won’t have enough 
power to overfit the training data, it may be too small to adequately represent the target function. In 
order to choose a reasonable amount of hidden neurons, three different networks with 2, 8 and 50 
hidden neurons are examined. The training result (see Fig.3) shows the network with 8 hidden 
neurons outperforms the other two networks after they are trained with the same training 
parameters.  
 

 
 
 

Fig.3: Function Contours  Fig.2: Network Architecture 

1.3 Network Training 

In general, we can train a network in two kinds of styles: batch training or incremental training. In 
batch training, weights and biases of the network are only updated after all of the inputs are 
presented to the network, while in incremental (on-line) training the network parameters are 
updated each time an input is presented to it. I choose to apply the batch training to the current 
network, because it is a static network (has no feedback or delays), and the batch training is 
supposed to work faster and reasonably well on a static network. 

1.3.1 Training Functions 

There are a number of batch training algorithms which can be used to train a network. In this 
exercise, the following four training algorithms are examined.   
 

 trainbfg implements BFGS (Shanno) quasi-Newton algorithm, which is based on the Newton's 
method (xk+1 = xk-Ak

-1gk, Ak
 : second derivatives of the performance). This training algorithm 

computes the update of approximated Ak (Hessian matrix) as a function of the gradient. 
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Generally, it converges in a few iterations. However for very large networks trainbfg may not 
be a good choice because of its computation and memory overhead. For small networks, 
however, trainbfg can still be an efficient training function. 

 
 traingd implements a basic gradient descent algorithm. It updates weights and biases in the 

direction of the negative gradient of the performance function. The mayor drawback of traingd 
is that it is relatively slow (especially when the learning rate is small) and has a tendency to get 
trapped in local minima of the error surface (where the gradient is zero.). 

 
 traingdm improves traingd by using momentum during the training. Momentum allows a 

network to ignore the shallow local minimum of the error surface. In addition, traingdm often 
provides a faster convergence than traingd. 

 
 trainlm implements the Levenberg-Marquardt algorithm, which works in such a way that 

performance function will always be reduced at each iteration of the algorithm. This feature 
makes trainlm the fastest training algorithm for networks of moderate size. Similar to trainbfg, 
trainlm suffers from the memory and computation overhead caused by the calculation of the 
approximated Hessian matrix and the gradient. 

 
In order to examine the performance of the training functions mentioned above, they are applied to 
the two-layer feedforward network respectively with the performance goal (MSE= 0.02 for the 
training set), maximum number of epochs to train (100) and the learning rate (0.02) being the same 
(without using early stopping). Within 100 epochs, trainbfg and trainlm achieve the performance 
goal while traingd and traindm fail. Table 1 provides detailed information on the training 
performance of these four functions. It shows that trainbfg and trainlm spend more time in each 
epoch than the gradient descent algorithms, which is the result of their computation overhead. 
Although more time is spent in each epoch, the total time spent by trainbfg and trainlm to reach the 
goal is less. As indicated by the correlation value (see Fig.4), trainlm produces the highest 
correlation between targets and network outputs. Fig.5 shows that trainlm is the best choice for the 
current problem. 
 

Table 1: Training performance of 4 different training functions 

training function epochs time per epoch(sec) total time (sec) Correlation 
trainbfg 
traingdm  
traingd  
trainlm 

30 
100 
100 
6 

0.0253 
0.00851 
0.00871 
0.055 

0.761 
0.8510 
0.8710 
0.330 

0.962 
0.739 
0.443 
0.998 

 
 
 
 
 
 
 
 
 
 
 

Fig.5: Function Contours Fig.4: Linear Regression Analysis 
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1.3.2 Early Stopping 

As mentioned in section 1.2, the number of hidden neurons has a large influence on the behavior of 
the network. If the size of the network is too large it may run a risk of overfitting the training set 
and looses its generalization ability for unseen data. One method for improving network 
generalization ability is to use a network that is just large enough to provide an adequate fit to the 
target function. But sometimes it is hard to know beforehand how large a network should be for a 
specific application. One commonly used technique for improving network generalization is early 
stopping. This technique monitors the error on a subset of the data (validation data) that does not 
actually take part in the training. The training stops when the error on the validation data increases 
for a certain amount of iterations.  
 
In order to examine the effect of early stopping on the training process, a randomly generated 
validation set is used during the trainlm training (Maximum validation failures=10, Erms=0.02 for 
the test set). As indicated by Fig.6, the early stopping mechanism is not triggered during the training. 
That is because the validation error keeps decreasing during the whole training process. In Fig.7, we 
can see that both networks (trained with and without early stopping) work equally well on the 
current approximation problem. This result also indicates that 8 hidden neurons is a good choice for 
the current problem.  

1.3.3 Test Error Monitored 

Normally, the test set doesn’t take part in the training process. However, in this exercise, it is 
required that the network should be trained until Erms = 0.02 for the test set. The training process 
then goes as followings. Initially, the performance goal for the training set is set to be a relatively 
large value (MSE=0.02). Then, after each training process, the network is simulated and Erms on 
the test set is monitored. If Erms is larger than 0.02, the training is resumed for a lower performance 
goal for the training set (e.g. decreases by a factor of 0.5). Otherwise, the training stops. In current 
Matlab program, the performance of the trained network is evaluated by using the test set. Actually, 
it may introduce some bias on the result, because the test set is virtually used in the training phase. 
So, it would be better, if some other randomly generated data can be used for testing the network 
performance. 
 

 

Fig.7: Function Contours 

 

Fig.6: Evolution of the MSE 
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1.4 Network Testing 

After the training process, the performance of the trained network will be evaluated by applying 
unseen data to it and checking whether its outputs are still relevant to the targets. We can use Matlab 
routine postreg to measure the network performance, which implements a regression analysis 
between the network response and the corresponding targets. Fig.8 (a) is the graphical output 
provided by postreg. The best linear fit is indicated by a dashed line. The perfect fit (output equal to 
targets) is indicated by the solid line. In Fig.8 (a) it is difficult to distinguish the best linear fit line 
from the perfect fit line, which indicates that the trained network has a good performance. 

1.5 Conclusion 

A two-layer network with two inputs, eight tansig hidden units and one purelin output unit is built 
for the approximation problem mentioned above. The network is trained by trainlm until the 
performance goal Erms=0.02 is achieved for the test set. No early stopping is used during the 
training. The maximum number of epochs to train and the learning rate are set to be 5000 and 0.02 
respectively. As shown in Fig.8 (b) and Fig.8(c) the network can approximate the original function 
well, as a result the error surface (error = test_target - network_output) is low. 

 
 
 

 

Fig.8 (a): Linear Regression Analysis
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Fig.8 (b): Level Curve of the error
Fig.8 (c): Parametric Surfaces of the original and the approximated functions 



 

2 Exercise 2a  

The task of this exercise is to build a multilayer feedforward network for pattern recognition. The 
network is trained as a character classifier for a collection of characters given as 7x5 black- white pixel 
maps. Ideally, the trained network can recognize characters it has learnt even when some of them are 
distorted.  

2.1 Data Preparation  

In general, there are two kinds of data prepared for training and testing the network. One is the collection 
of thirty-one 35-element input vectors, which represent the target patterns (see Fig.9): 26 capital 
characters and 5 lower case characters of my name: jinyu. Another part of the data is collected by 
randomly reversing three bits of original characters (see Fig.10). This time, in stead of using early 
stopping to improve the generalization ability of the network, the network is trained on both parts of the 
data mentioned above, which enables it response correctly to both ideal and partially corrupted patterns. 
 

Fig.9: Target Patterns Fig.10: Distorted Patterns 

2.2 Network Design 

In principle, two-layer networks with sigmoidal hidden units can approximate arbitrarily well any 
functional continuous mapping from one finite-dimensional space to another, provided the number 
of hidden units is sufficiently large. As the target patterns defined in this exercise is relatively 
simple, which are defined by only 35 Boolean values. Therefore, a two-layer feedforward network 
is supposed to be power enough for this character recognition task. As 31 target characters are 
represented by 35-element input vectors, the neural network needs 35 inputs and 31 output neurons 
(see Fig.11). The network receives 35 Boolean values, which represents one character. It is then 
required to identify the character by give an output vector, the element of which with highest value 
indicates the class of input character. The logsig (Log Sigmoid) is chosen as the transfer function for 
both hidden and output layers. This is because it has a suitable output range ([0 1]) for the current 
problem.  
 
The number of hidden neurons is initially set to be 10. But, the network with 10 hidden neurons has 
trouble recognizing distorted patterns even if it has been trained on noisy patterns. The percentage 
of recognition errors is about 21% when it is tested on patterns with 3 bits noise (see Fig.12). 
Therefore, 5 neurons are added to the hidden layer. As shown in Fig.12, the recognition error rate 
decreases to an acceptable value (12%). Thus, 15 is chosen as the number of the hidden neurons  
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 Fig.11: Network Architecture Fig.12: Percentage of Recognition Errors 
 

Another important design issue is the choice of the initial weights and bias. In general, weights and 
bias should be initialized to small values so that the active region of each neuron is not close to the 
irresponsive (saturate) part of the transfer function; otherwise the network won’t be able to learn. 
When using the Matlab routine newff to create a network, each layer's weights and biases are 
initialized automatically. In the program, the automatically created layer weight from the hidden 
layer to the output layer and the bias of the output layer are scaled down by a factor of 0.01.   

2.3 Network Training 

After the network is created, it is then ready for training. A gradient decent training function with 
momentum and adaptive learning rate (traingdx) is chosen to train the network. For the pattern 
recognition task, it is important that the noisy patterns can still be correctly classified. Thus, in order 
to make the network insensitive to the presence of noise, it is trained on not only ideal patterns but 
also noisy patterns. In the program, a three-step training process is implemented. In the first step, 
the network is trained on the ideal data for zero decision errors (see Fig.13 (a)). In the second step, 
the network is trained on noisy data as shown in Fig.10 for several passes (e.g.10 passes) for a 
proper performance goal (0.01 is used in the program). Unfortunately, after the network is trained 
for recognizing noisy patterns, it will probably “forget” those noise-free patterns it has learnt before. 
Therefore, in order to recall the network of these non-distorted characters, in the final step, it is 
trained again on just ideal data for zero decision errors (see Fig.13 (b)). The three-step training 
process mentioned above enables the trained network to identify both noise-free and noisy 
characters (within certain error tolerance).  

 
 
 

Fig.13 (b): Evolution of the MSE in Step 3 Fig.13 (a): Evolution of the MSE in Step 1 
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2.4 Network Testing 

Once the network is trained, the test data which consists 
of both noise-free and slightly distorted patterns are fed to 
the network to check the training result. Here, the average 
recognition error rate is used as the performance measure. 
As shown in Fig.14, the network trained with noise works 
perfectly on noise-free patterns. And, it outperforms the 
one trained only on the noise-free data when input 
patterns are distorted to certain levels. 

Fig.14: Percentage of Recognition Errors
2.5 Conclusion 

In this exercise, a two-layer feedforward network, which has 35 inputs, 15 hidden logsing units and 
31 logsig output units, is built for the character recognition task. In order to make sure the network 
has the ability to identify both noise-free and distorted input patterns. The three-step training 
method as described in section 2.4 is implemented. The trained network works excellently on 
noise-free patterns (almost 0% error rate is achieved.). In addition, about 90% of noisy patterns can 
also be correctly classified. As can been seen in Fig.15 (b), when noisy patterns are presented (see 
Fig.15 (a)) to the network, it can still recognize most of these distorted patterns. 
 

Fig.15 (a): Distorted Input Patterns Fig.15 (b): Network Output 

3 Exercise 2b 

For the same character recognition problem, in this exercise a Hopfield network is designed to store 
these patterns so that they can be retrieved from noisy cues. The Hopfield network does this by creating 
an energy surface (see Fig.16) which has attractors (local minimum of energy function) representing 
each of the patterns. The noisy cues are states of the system which are close to the attractors. As a 
Hopfield network evolves it slides from the noisy pattern down the energy surface into the closest 
attractor - representing the closest stored pattern. 

3.1 Data Preparation  

Hopfield networks learn by being presented with target patterns. So those noise-free patterns as 
used in exercise2a are prepared as the target stable states of the network. For testing purpose, noisy 
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patterns are also prepared. Moreover, inputs patterns are encoded by binary values {-1 1} (instead 
of Boolean values {0 1}). 

3.2 Network Design 

In Matlab, a Hopfield network can be created by calling newhop. newhop creates a Hopfield 
network with stable points at the target vectors, which are presented to it as the argument. But, 
Theoretical results indicate that if we require almost all the required patterns to be stored accurately, 
then the maximum number of patterns Pmax is N/(2*lnN) (N: the number of neurons). Therefore, 
theoretically, the storage capacity of the network created here is about 5 patterns (35/(2*ln35)). But, 
it is found that for the character problem defined here 8 patterns (stable states) can be stored 
accurately by the current network. As can be seen in Fig.17, the network trained for 8 patterns can 
successfully converge to the designed stable states even when there is noise present in input 
patterns.    
 
 
 

Fig.17: Recognition Error Rate 
(8 patterns stored)  

Fig.16: Energy Landscape 

3.3 Network Testing 

For Hopfield network, there is no need to perform iterative training on it. That is because Hopfield 
networks learn patterns in a one-shot style. So, once the network is created by supplying target 
vectors, or pattern vectors, stable equilibrium points at these target vectors are store in the network. 
As indicated by Fig.17, the network stores 8 patterns can achieve 0% recognition error rate. 
However, if more patterns are stored (e.g. 20 patterns), the recognition error may increase a lot 
when there is noise present in input patterns (see Fig.18). In addition, as shown in Fig.19 the 
network converges to some stable states, which are not related to any of the original patterns. These 
unexpected stable states are referred to as spurious states, which are of three types:  
 

 If y is stable, then –y is stable due to the ± symmetry of the network dynamics  
 “Mixtures” of an odd number of stable states are stable (y = sgn(y1+y2+y3)) 
 Spin glass states (random uncorrelated states) 
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A Matlab Code 

A.1   Exercise 1 

A.1.1   main_exe1.m 

% Main script for problem_1: Function Approximation 
 
% clear the memory of the workspace 
% clear all 
% clear the command window 
clc 
% close all the figures 
close all 
 
fprintf ('\t-------------------------------------\n'); 
fprintf ('\t- Problem 1: Function Approximation -\n'); 
fprintf ('\t-------------------------------------\n\n'); 
 
% >>>>> STEP 1: Generate training and test data <<<<< 
fprintf ('Step 1: Generate training and test data...\n'); 
fprintf ('===========================================\n'); 
[train_input,train_target,test_input,test_target,val_input,val_target] = generate_data; 
fprintf ('Data generation is finished ! \n\n'); 
 
% >>>>> STEP 2: Create a two layer feedforward network <<<<< 
fprintf ('Step 2: Create a two layer feedforward network...\n'); 
fprintf ('=================================================\n'); 
net = create_network; 
fprintf ('Network creation is finished ! \n\n'); 
 
% >>>>>STEP 3: Train the network for Erms=0.02 for test set <<<<< 
fprintf ('Step 3: Train the network...\n'); 
fprintf ('============================\n'); 
[error,network_output]= 
train_network( net,train_input,train_target,test_input,test_target,val_input,val_target); 
fprintf ('Network training is finished ! \n\n'); 
 
% >>>>>FINAL step: Plot the result... <<<<< 
fprintf ('FINAL step: Plot the result...\n'); 
fprintf ('==============================\n'); 
plot_result(test_input,test_target,network_output,error); 
fprintf ('Hope the training result is good : )');  

A.1.2   generate_data.m 

function [train_input,train_target,test_input,test_target,val_input,val_target] = generate_data() 
% GENERATE_DATA - Generate training and test data 
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%             
%   Returns: 
%          train_input - 2 x R matrix of training data for R number of x 
%          and y combination in the form of [x y]' 
%          train_target - row vector holding values of z (z = f(x,y)) 
%          test_input  - 2 x R matrix of test data for R number of x and 
%          y combination in the form of [x y]' 
%          test_target  - row vector holding values of z (z = f(x,y)) 
%          val_input   - 2 x R matrix of validation data R number of x 
%          and y combination in the form of [x y]' 
%          val_target   - row vector holding values of z (z = f(x,y)) 
 
 
train_x = -1:2/9:1; % training data [-1 1] 
train_y = train_x; % training data 
test_x = (-1+1/9):2/9:(1-1/9); % test data [-1 1] 
test_y = test_x; % test data 
val_x  = premnmx(rand(1,50)); % validation data [-1 1] 
val_y  = val_x; % validation data 
 
[train_X, train_Y] = meshgrid(train_x, train_y); 
[test_X, test_Y]   = meshgrid(test_x, test_y); 
[val_X, val_Y]     = meshgrid(val_x, val_y); 
 
% Studentcard number : s0105853, coefficient a = 35/100 
a = 35/100; 
 
% functin output is within [-0.8 0.8],so no need to sacle the function 
train_Z = cos(train_X + 6*a*train_Y) + 2.0*a*train_X.*train_Y; % training target 
test_Z = cos(test_X + 6*a*test_Y) + 2.0*a*test_X.*test_Y; % test target 
val_Z = cos(val_X + 6*a*val_Y) + 2.0*a*val_X.*val_Y; % validation target 
 
% plot the function  
[X,Y] = meshgrid(-1:.2:1,-1:.2:1); 
Z = cos(X + 6*a*Y) + 2.0*a*X.*Y; 
 
figure, 
subplot(1,2,1); 
surfc(X,Y,Z); %  plot parametric surface  
xlabel('X'); 
ylabel('Y'); 
zlabel('Z'); 
title('Target Function Surface'); 
 
subplot(1,2,2); 
[C,h] = contour(X, Y, Z); % plot level curve  
title('Level curve of the target function'); 
set(h,'LineWidth',2); 
clabel(C,h); 
xlabel('X'); 
ylabel('Y'); 
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% Return inputs [-1 1] and outputs[-0.8 0.8] 
train_input = [train_X(:)'; train_Y(:)'];    
train_target = train_Z(:)';    
 
test_input = [test_X(:)'; test_Y(:)'];    
test_target = test_Z(:)';   
 
val_input = [val_X(:)'; val_Y(:)'];    
val_target = val_Z(:)';   

A.1.3   create_network.m 

function net = create_network() 
% CREATE_NETWORK - Create a feed-forward backpropagation network with 2 
%                  inputs, one hidden layer and one output.MSE is chosen as 
%                  the performance function   
%  
%   Returns: 
%          net  -  Network object created 
%  
 
% ask the user for the network parameters  
num_h    = getInput('Size of the hidden layer[8] -> ',8); 
transFcn_h = getInput('Transfer function of the hidden layer[tansig]-> ','tansig','s'); 
transFcn_o = getInput('Transfer function of the output layer[purelin]-> ','purelin','s'); 
 
% create the network based on the user's choice 
net=newff([-1 1; -1,1],[num_h 1],{transFcn_h,transFcn_o}); 

A.1.4   train_network.m 

function [error,network_output] = 
train_network( net,train_input,train_target,test_input,test_target,val_input,val_target) 
% TRAIN_NETWORK - Train the network 
%  
%   Arguments: 
%           net   -  Neural network. 
%          train_input  - Network inputs in the form of [x y]. 
%           train_target - A row vector of desired target z. 
%          test_input   - test inputs in the form of [x y]. 
%           test_target  - A row vector of test target z. 
%          val_input    - Validation inputs in the form of [x y]. 
%           val_target   - A row vector of validation target z. 
%   Returns: 
%          error          - Erms for the test set 
%           network_output - Network output 
%              
%  
 
val.P = val_input; 
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val.T = val_target; 
 
test.P = test_input; 
test.T = test_target; 
 
% ask the user for the training parameters  
epoch = round( getInput('Maximum number of epochs to train [5000]: ', 5000)); % maximum number of 
epochs to train 
Lr = getInput('Learning rate [.02]: ', .02); % learning rate 
trainFcn= getInput('Training function [trainlm]-> ','trainlm','s'); % training function (Automated 
Regularization (trainbr)) 
 
net.trainFcn = trainFcn; 
net.trainParam.lr = Lr;       
net.trainParam.epochs = epoch;   
net.trainParam.show = 40;     % Epochs between displays 
net.trainParam.goal = 0.02;     % Mean-squared error goal 
stop_crit = getInput('Use early stopping ? y/n [n]:', 'n', 's'); 
erms = 1; 
% Training... 
if(stop_crit=='n')% no stop criteria 
    tic, % start a stopwatch timer. 
    while erms > 0.02 
        net = train(net,train_input,train_target,[],[],[],test);  
        network_output = sim(net,test_input); 
        error = test_target - network_output; 
        erms = sqrt(mse(error)) % root mean-square error 
        net.trainParam.goal = net.trainParam.goal*0.5;  
    end 
    toc; % prints the elapsed time since tic was used 
else % use early stopping 
    tic, 
    net.trainParam.max_fail  = getInput('Maximum validation failures [10]:', 10); 
    while erms > 0.02 
        net = train(net,train_input,train_target,[],[],val,test);  
        network_output = sim(net,test_input); 
        error = test_target - network_output; 
        erms = sqrt(mse(error)) % root mean-square error 
        net.trainParam.goal = net.trainParam.goal*0.5;  
    end 
    toc; 
end 

A.1.5   plot_result.m 

function plot_result( net,input,target,network_output,error) 
% DISPLAY - Create displays of function surface and level curves 
%  
%   Arguments: 
%           net            - Neural network 
%           input          - Neural network input in the form of [x y]' 
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%          target         - A row vector of desired output. 
%           network_output - A row vector of network output. 
%           error          - error  
%  
 
X  = reshape(input(1,:),9,9); 
Y  = reshape(input(2,:),9,9); 
Z  = reshape(target,9,9); 
No = reshape(network_output,9,9); 
E =  reshape(error,9,9); 
 
% plot function surface 
figure, 
subplot(1,2,1); 
surfc(X,Y,Z); 
xlabel('X'); 
ylabel('Y'); 
zlabel('Z'); 
title('Target Function Surface'); 
 
subplot(1,2,2); 
surfc(X,Y,No); 
xlabel('X'); 
ylabel('Y'); 
zlabel('Z'); 
title('Approximated Function Surface'); 
 
% plof level curves... 
 
% create level curves of error 
figure, 
[C,h] = contour(X, Y, E);  
clabel(C,h); 
xlabel('x'); 
ylabel('y'); 
title('level courve of the error') 
 
figure, 
[C,h1] = contour(X, Y, Z,'k'); % create level curve of target 
set(h1,'LineWidth',2); 
% clabel(C,h); 
hold on 
[C,h2] = contour(X, Y, No,'m'); % create level curve of approximation 
% clabel(C,h); 
set(h2,'LineWidth',2); 
hold off 
legend([h1(1);h2(1)],'target','approximation'); 
xlabel('x'); 
ylabel('y'); 
title('level courves of the target and approximation functions') 
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% M - Slope of the best linear regression.M=1 means perfect fit. 
% B - Y intercept of the best linear regression.B=0 means perfect fit. 
% R - Regression R-value. R=1 means perfect correlation. 
 
figure, %create a new figure for displaying the performance  
[M,B,R] = postreg(network_output,target); % check the quality of the network training 
 
fprintf('\n\tThe slope of the best linear regression[1]: %6.5f\n',M); 
fprintf('\tThe Y intercept of the best linear regression[0]: %6.5f\n',B); 
fprintf('\tThe coorelation between the network output and the target[1]: %6.5f\n',R); 
 

A.2   Exercise 2a 

A.2.1   main_exe2a.m 

% Main script for problem_2a: Character Recognition using MLP 
 
% clear the memory of the workspace 
clear all 
% clear the command window 
clc 
% close all the figures 
close all 
 
fprintf ('\t----------------------------------------------------\n'); 
fprintf ('\t- Problem 2a: Character Recognition (MLP) -\n'); 
fprintf ('\t-----------------------------------------------------\n\n'); 
 
% >>>>> STEP 1: Generate alphabet image <<<<< 
fprintf ('Step 1: Generate alphabet matrix...\n'); 
fprintf ('===================================\n'); 
[alphabet,targets] = generate_chars; 
fprintf ('Data generation is finished ! \n\n'); 
 
% >>>>> STEP 2: Create the network <<<<< 
fprintf ('Step 2: Create the network...\n'); 
fprintf ('=============================\n'); 
net = create_network(alphabet,targets); 
fprintf ('Network creation is finished ! \n\n'); 
 
% >>>>>STEP 3: Train the networks using either original data or noisy data<<<<< 
fprintf ('Step 3: Train the networks using \both ideal data and noisy data...\n'); 
fprintf ('=================================\n'); 
[net, netn] = train_network( net,alphabet,targets); % net: no noise, netn: with noise 
fprintf ('Network training is finished ! \n\n'); 
 
% >>>>>STEP 4: Test the network <<<<< 
fprintf ('Step 4: Test these two networks...\n'); 
fprintf ('==================================\n'); 
[error,errorn,noise_range,noisy_input,outputn] = test_network(net,netn,alphabet,targets); 
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fprintf ('Testing is finished ! \n\n'); 
 
% >>>>>FINAL step: Plot the result... <<<<< 
fprintf ('FINAL step: Plot the result...\n'); 
fprintf ('==============================\n'); 
plot_result(error,errorn,noise_range,noisy_input,outputn); 
fprintf ('Hope the training result is good : )'); 

A.2.2   generate_chars.m 

function [alphabet,targets] = generate_chars() 
% GENERATE_CHARS – Create target patterns 
%             
%   Returns: 
%          alphabet       - 35x31 matrix of 5x7 bit maps for each letter. 
%          targets        - 31x31 target vectors. 
 
[alphabetC,targets] = prprob; % capital characters 
 
% add 5 lower case characters of my name: jin yu 
letter_j = [0 0 0 1 0 ... 
            0 0 0 0 0 ... 
            0 0 0 1 0 ... 
            0 0 0 1 0 ... 
            0 1 0 1 0 ... 
            0 1 0 1 0 ... 
            0 0 1 0 0 ]'; 
     
letter_i = [0 0 1 0 0 ... 
            0 0 0 0 0 ... 
            0 0 1 0 0 ... 
            0 0 1 0 0 ... 
            0 0 1 0 0 ... 
            0 0 1 0 0 ... 
            0 0 1 0 0 ]'; 
     
letter_n = [0 1 1 1 0 ... 
            1 0 0 0 1 ... 
            1 0 0 0 1 ... 
            1 0 0 0 1 ... 
            1 0 0 0 1 ... 
            1 0 0 0 1 ... 
            1 0 0 0 1 ]'; 
     
letter_y = [1 0 0 0 1 ... 
            1 0 0 0 1 ... 
            1 0 0 0 1 ... 
            0 1 0 1 0 ... 
            0 0 1 0 0 ... 
            0 1 0 0 0 ... 
            1 0 0 0 0]'; 
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letter_u = [1 0 0 1 0 ... 
            1 0 0 1 0 ... 
            1 0 0 1 0 ... 
            1 0 0 1 0 ... 
            1 0 0 1 0 ... 
            1 0 0 1 0 ... 
            0 1 1 0 1]'; 
 
     
name = [letter_j,letter_i,letter_n,letter_y,letter_u]; 
     
alphabet = [alphabetC,name]; 
targets  = eye(31); 
 
% show the image of alphabet 
figure; 
for i=1:size(alphabet,2) 
    subplot(4,8,i); 
    colormap('summer'); 
    imagesc(reshape(alphabet(:,i),5,7)',[0,1]); 
    axis off; 
end 

A.2.3   generate_charsn.m 

function noisy_alphabet = generate_charsn(alphabet,noise_level) 
% GENERATE_CHARSN – Create distorted patterns 
%  
%   Arguments: 
%          alphabet       - 35x31 matrix of 5x7 bit maps for each letter. 
%          noise_level    - Number of bits which will be changed . 
%   Returns: 
%           noisy_alphabet - Alphabet with noise 
 
% add noise to the original alphabet 
noisy_alphabet = alphabet; 
 
if noise_level~=0 
    size_image = length(alphabet(:,1)); 
     
    % choose noise_level amount of random positions for each letter matrix 
    for i=1:size(alphabet,2) 
         
        R(i,:) = round(rand(1,noise_level)*(size_image-1)+1)+(i-1)*(size_image); 
        while length(unique(R(1,:)))< noise_level % prevent same random numbers to be generated 
            R(i,:) = round(rand(1,noise_level)*(size_image-1)+1)+(i-1)*(size_image);  
        end 
         
    end 
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    % randomly change noise_level number of bits in each letter image : 0->1 and 1->0 
    noisy_alphabet(R) = imcomplement(alphabet(R)); 
end 

A.2.4   create_network.m 

function net = create_network(input,target) 
% CREATE_NETWORK - Create a feed-forward backpropagation network with one 
% hidden layer. 
%  
%   Arguments: 
%           input   - Network inputs. 
%          target  - Target value. 
%   
%   Returns: 
%          net -  Network object created 
%  
 
[S2,Q] = size(target); 
 
% ask the user for the network parameters  
S1  = getInput('Size of the hidden layer[15] -> ',15); 
S2  = getInput(['Size of the output layer[',num2str(S2),'] -> '],S2); 
TF1 = getInput('Transfer function of the hidden layer[logsig]-> ','logsig','s'); 
TF2 = getInput('Transfer function of the output layer[logsig]-> ','logsig','s'); 
 
% create the network based on the user input 
 
net = newff(minmax(input),[S1 S2],{TF1 TF2}); 
 
% scale down weights and bias 
net.LW{2,1} = net.LW{2,1}*0.01;  
net.b{2} = net.b{2}*0.01; 

A.2.5   train_network.m 

function [net,netn] = train_network( net,input,target) 
% TRAIN_NETWORK - Train the network 
%  
%   Arguments: 
%           net          - Neural network. 
%          input        - Input matrix. 
%           target       - Desired output matrix. 
%   Returns: 
%          net - New network trained by input 
%           netn - New network trained by noisy_input 
 
% ask the user for the training parameters  
epoch      = round( getInput('Number of epochs to train [5000]: ',5000)); % maximum number of 
epochs to train 
trainFcn   = getInput('Training function [traingdx]-> ','traingdx','s'); % training function  
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net.trainFcn = trainFcn; 
net.trainParam.epochs = epoch;   
net.trainParam.show   = 40;   % Epochs between displays 
net.trainParam.goal = 0;      % Mean-squared error goal 
net.trainParam.mc = 0.95;     % Momentum constant. 
 
% Training... 
 
% 1: train a network without noise 
tic, % start a stopwatch timer. 
[net,tr] = train(net,input,target); 
toc; % prints the elapsed time since tic was used 
 
fprintf ('Strike any key to train the network with noise...\n'); 
pause  
%    A copy of the network will now be made.  This copy will 
%    be trained with noisy examples of letters of the alphabet. 
netn = net; 
 
% 2: train another network with noise 
tic, 
% netn will be trained on all sets of noisy letters 
netn.trainParam.goal = 0.01;  
for pass = 1:20 
% create noisy inpupt by distording 3 bits 
% of every original character matrix 
noisy_input = generate_charsn(input,3); 
[netn,tr] = train(netn,noisy_input,target);  
end 
 
% netn is now retrained without noise to 
% insure that it correctly categorizes non-noizy letters. 
netn.trainParam.goal = 0;    
[netn,tr] = train(netn,input,target); 
toc; 

A.2.6   test_network.m 

function [error,errorn,noise_range,noisy_input,outputn] = test_network(net,netn,alphabet,targets) 
% TEST_NETWORK - Evaluate the performance of the trained network by 
% average errors. 
%  
%   Arguments: 
%          alphabet - 35x31 matrix of 5x7 bit maps for each letter. 
%          targets  - Target value 
%   Returns: 
%           error       - Average error of the network trained without noise  
%           errorn      - Average error of the network trained with noise  
%           noise_range - Noise levels 
%           noisy_input - Distorded patterns with the highest noise level 
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%           outputn     - Output given by netn 
%  
 
% SET TESTING PARAMETERS 
noise_range = 0:3; 
max_test = 100; 
error = []; 
errorn = []; 
T = targets; 
 
% PERFORM THE TEST 
for noise_level = noise_range 
    fprintf('Testing networks with %d bits of noise\n',noise_level); 
    e = 0; 
    en = 0; 
     
    for i=1:max_test 
         
        P = generate_charsn(alphabet,noise_level); 
        noisy_input = P; 
         
        % TEST NETWORK WITHOUT NOISE 
        A = sim(net,P); 
        AA = compet(A); 
        e = e + sum(sum(abs(AA-T)))/2; 
         
        % TEST NETWORK WITH NOISE 
        An = sim(netn,P); 
        AAn = compet(An); 
        en = en + sum(sum(abs(AAn-T)))/2; 
    end 
     
    % AVERAGE ERRORS FOR max_test SETS OF ALL TARGET VECTORS. 
    error  = [error e/size(T,2)/max_test] 
    errorn = [errorn en/size(T,2)/max_test] 
end 
 
% output of netn when input patterns are distorted with the highest noise_level 
result = full(AAn); 
outputn = alphabet; 
for i = 1:size(result,2) 
    index = find(result(:,i)); 
    outputn(:,i) = alphabet(:,index); 
end 

A.2.7   plot_result.m 

function plot_result( error,errorn,noise_range,noisy_input,outputn ) 
% PLOT_RESULT - Create displays of recognition error rate 
%  
%   Arguments: 
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%           error       - Average error of the network trained without noise  
%           errorn      - Average error of the network trained with noise  
%           noise_range - Noise levels 
%           noisy_input - Distorded patterns with the highest noise level 
%           outputn     - Output given by netn 
 
 
%    Here is a plot showing the percentage of errors for 
%    the two networks for varying levels of noise. 
figure, 
plot(noise_range,error*100,'--k',noise_range,errorn*100,'r','LineWidth',2); 
xlabel('Noise Level'); 
ylabel('Percentage of Recognition Errors'); 
legend('trained without noise','trained with noise'); 
 
% give a plot of noisy inputs and outputs  
% given by the network trained on noisy data 
figure, 
for i=1:size(noisy_input,2) 
    subplot(4,8,i); 
    colormap('summer'); 
    imagesc(reshape(noisy_input(:,i),5,7)',[0,1]); 
    axis off; 
end 
figure 
for i=1:size(outputn,2) 
    subplot(4,8,i); 
    colormap('summer'); 
    imagesc(reshape(outputn(:,i),5,7)',[0,1]); 
    axis off; 
end 

A.3   Exercise 2b 

A.3.1   main_exe2b.m 

% Main script for problem_2b: Character Recognition using Hopfield network 
 
% clear the memory of the workspace 
clear all 
% clear the command window 
clc 
% close all the figures 
close all 
 
fprintf ('\t----------------------------------------------------------\n'); 
fprintf ('\t- Problem 2b: Character Recognition (Hopfield)-\n'); 
fprintf ('\t-----------------------------------------------------------\n\n'); 
 
% >>>>> STEP 1: Generate alphabet image <<<<< 
fprintf ('Step 1: Generate alphabet matrix...\n'); 
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fprintf ('===================================\n'); 
[alphabet,targets] = generate_chars; 
s  = getInput('Store how many patterns out of 31 alphabet[8] -> ',8, [],'(t>0) & (t<32)'); 
 
alphabet = alphabet(:,(31-s+1):31); %  part of alphabet 
 
fprintf ('Data generation is finished ! \n\n'); 
 
% >>>>> STEP 2: Create the network <<<<< 
fprintf ('Step 2: Create the network...\n'); 
fprintf ('=============================\n'); 
net = create_network(alphabet); 
fprintf ('Network creation is finished ! \n\n'); 
 
% >>>>>STEP 3: Test the network <<<<< 
fprintf ('Step 4: Test the network...\n'); 
fprintf ('===========================\n'); 
[error,errorn,noise_range,recordn] = test_network(net,alphabet); 
fprintf ('Testing is finished ! \n\n'); 
 
% >>>>>FINAL step: Plot the result... <<<<< 
fprintf ('FINAL step: Plot the result...\n'); 
fprintf ('==============================\n'); 
plot_result(error,errorn,noise_range,recordn); 
fprintf ('Hope the training result is good : )'); 

A.3.2   create_network.m 

function net = create_network(target) 
% CREATE_NETWORK - Create a Hopfield network  
%  
%   Arguments: 
%           target - Target vectors used to define stable points. 
%   
%   Returns: 
%          net -  Network object created 
%  
 
target = imcomplement(imcomplement(target)*2); % target -> [-1 1] 
 
net = newhop(target); 

A.3.3   test_network.m 

function [error,errorn,noise_range,recordn] = test_network(net,target) 
% TEST_NETWORK - Evaluate the performance of the trained network by 
% average errors. 
%  
%   Arguments: 
%           net      - Hopfield network 
%          target  - Target vectors (35x31 matrix of 5x7 bit maps) 
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%   Returns: 
%           error       - Average error of the network tested without noise  
%           errorn      - Average error of the network tested with noise  
%           noise_range - Noise levels 
%           recordn     - Stable points evolving from the noisy start points 
%  
 
 
% check whether the target vectors are indeed stable 
% [Y,Pf,Af] = sim(net,size(targets,2),[],targets); 
% Y = (Y+1)/2; % transfor back -1 -> 0 
%  
% figure, 
% % image of stored alphabet 
% for i=1:size(Y,2) 
%     subplot(5,7,i); 
%     colormap('summer'); 
%     imagesc(reshape(Y(:,i),5,7)',[0,1]); 
%     axis off; 
% end 
 
 
% SET TESTING PARAMETERS 
T = imcomplement(imcomplement(target)*2);; % target -> {-1 1} 
noise_range = 0:3; 
max_test = 5; 
error = []; 
errorn = []; 
 
 
steps  = getInput('Simulate the Hopfield network for how many steps[20] -> ',20); 
 
% PERFORM THE TEST 
for noise_level = noise_range 
    fprintf('Testing the network with( %d bits of noise ) or without noise, please wait...\n',noise_level); 
    
    e = 0; 
    en = 0; 
     
    for i=1:max_test 
         
        Tn = generate_charsn(T,noise_level); 
         
        record  = []; 
        recordn = []; 
         
        for i=1:size(T,2); 
             
            % TEST NETWORK WITHOUT NOISE 
            [y,Pf,Af] = sim(net,{1 steps},{},{T(:,i)});  
            result = (y{steps}+1)/2; % transfor back to [0 1] 

 25



 

            record = [record result]; 
             
            % TEST NETWORK WITH NOISE 
            [yn,Pf,Af] = sim(net,{1 steps},{},{Tn(:,i)}); 
            resultn = (yn{steps}+1)/2; % transfor back to [0 1] 
            recordn = [recordn resultn]; 
        end 
         
        % accumutive recognition error 
        e = e + sum((any(record - target))); 
        en = en + sum((any(recordn - target))); 
         
    end 
     
    % AVERAGE ERRORS FOR max_test SETS OF TARGET VECTORS. 
    error  = [error e/size(T,2)/max_test] 
    errorn = [errorn en/size(T,2)/max_test] 
end 

A.3.4   plot_result.m 

function plot_result( error,errorn,noise_range,recordn) 
% PLOT_RESULT - Create displays of recognition error rate 
%  
%   Arguments: 
%           error       - Average error of the network tested without noise  
%           errorn      - Average error of the network tested with noise  
%           noise_range - Noise levels 
%           recordn     - Stable points evolving from the noisy start 
%                       points with the range [0 1] 
 
 
%    Here is a plot showing the percentage of errors for the 
%    network testedwith no noise or with varying levels of noise. 
figure, 
plot(noise_range,error*100,'r',noise_range,errorn*100,'b','LineWidth',2); 
xlabel('Noise Level'); 
ylabel('Percentage of Recognition Errors'); 
legend('tested without noise','tested with noise',2); 
 
 
%    Here is a plot showing the result given by the Hopfield  
%    network whichevolves from noisy start points. 
 
% image of recognized alphabet 
figure; 
for i=1:size(recordn,2) 
    subplot(4,8,i); 
    colormap('jet'); 
    imagesc(reshape(recordn(:,i),5,7)',[0,1]); 
    axis off; 
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end 
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