Logic and Bayesian Networks

Part 4: Variable Elimination

Jinbo Huang

Elimination

Elimination

$$
\operatorname{Pr}(D, E) ?
$$

D	E	$\operatorname{Pr}(D, E)$
true	true	.30443
true	false	.39507
false	true	.05957
false	false	.24093

Sum out variables A, B, C from network

Elimination

A	B	C	D	E	$\operatorname{Pr}()$.
true	true	true	true	true	0.06384
true	true	true	true	false	0.02736
true	true	true	false	true	0.00336
true	true	true	false	false	0.00144
true	true	false	true	true	0.0
true	true	false	true	false	0.02160
true	true	false	false	true	0.0
true	true	false	false	false	0.00240
true	false	true	true	true	0.21504
true	false	true	true	false	0.09216
true	false	true	false	true	0.05376
true	false	true	false	false	0.02304
true	false	false	true	true	0.0
true	false	false	true	false	0.0
true	false	false	false	true	0.0
true	false	false	false	false	0.09600
false	true	true	true	true	0.01995
false	true	true	true	false	0.00855
false	true	true	false	true	0.00105
false	true	true	false	false	0.00045
false	true	false	true	true	0.0
false	true	false	true	false	0.24300
false	true	false	false	true	0.0
false	true	false	false	false	0.02700
false	false	true	true	true	0.00560
false	false	true	true	false	0.00240
false	false	true	false	true	0.00140
false	false	true	false	false	0.00060
false	false	false	true	true	0.0
false	false	false	true	false	0.0
false	false	false	false	true	0.0
false	false	false	false	false	0.0900
fren					

Summing out variables A

A	B	C	D	E	$\operatorname{Pr}()$.
true	true	true	true	true	0.06384
false	true	true	true	true	0.01995

B	C	D	E	$\operatorname{Pr}()$.
true	true	true	true	$0.08379=0.06384+0.01995$

Do it for all instantiations of B, C, D, E

Repeat to eliminate B, C

Elimination

A	B	C	D	E	$\operatorname{Pr}()$.
true	true	true	true	true	0.06384
true	true	true	true	false	0.02736
true	true	true	false	true	0.00336
true	true	true	false	false	0.00144
true	true	false	true	true	0.0
true	true	false	true	false	0.02160
true	true	false	false	true	0.0
true	true	false	false	false	0.00240
true	false	true	true	true	0.21504
true	false	true	true	false	0.09216
true	false	true	false	true	0.05376
true	false	true	false	false	0.02304
true	false	false	true	true	0.0
true	false	false	true	false	0.0
true	false	false	false	true	0.0
true	false	false	false	false	0.09600
false	true	true	true	true	0.01995
false	true	true	true	false	0.00855
false	true	true	false	true	0.00105
false	true	true	false	false	0.00045
false	true	false	true	true	0.0
false	true	false	true	false	0.24300
false	true	false	false	true	0.0
false	true	false	false	false	0.02700
false	false	true	true	true	0.00560
false	false	true	true	false	0.00240
false	false	true	false	true	0.00140
false	false	true	false	false	0.00060
false	false	false	true	true	0.0
false	false	false	true	false	0.0
false	false	false	false	true	0.0
false	false	false	false	false	0.0900

Summing out variables A

A	B	C	D	E	$\operatorname{Pr}()$.
true	true	true	true	true	0.06384
false	true	true	true	true	0.01995

B	C	D	E	$\operatorname{Pr}()$.
true	true	true	true	$0.08379=0.06384+0.01995$

Do it for all instantiations of B, C, D, E

Repeat to eliminate B, C

Exponential in number of variables

Elimination

A	B	C	D	E	$\operatorname{Pr}()$.
true	true	true	true	true	0.06384
true	true	true	true	false	0.02736
true	true	true	false	true	0.00336
true	true	true	false	false	0.00144
true	true	false	true	true	0.0
true	true	false	true	false	0.02160
true	true	false	false	true	0.0
true	true	false	false	false	0.00240
true	false	true	true	true	0.21504
true	false	true	true	false	0.09216
true	false	true	false	true	0.05376
true	false	true	false	false	0.02304
true	false	false	true	true	0.0
true	false	false	true	false	0.0
true	false	false	false	true	0.0
true	false	false	false	false	0.09600
false	true	true	true	true	0.01995
false	true	true	true	false	0.00855
false	true	true	false	true	0.00105
false	true	true	false	false	0.00045
false	true	false	true	true	0.0
false	true	false	true	false	0.24300
false	true	false	false	true	0.0
false	true	false	false	false	0.02700
false	false	true	true	true	0.00560
false	false	true	true	false	0.00240
false	false	true	false	true	0.00140
false	false	true	false	false	0.00060
false	false	false	true	true	0.0
false	false	false	true	false	0.0
false	false	false	false	true	0.0
false	false	false	false	false	0.0900
fren					

Summing out variables A

A	B	C	D	E	$\operatorname{Pr}()$.
true	true	true	true	true	0.06384
false	true	true	true	true	0.01995

B	C	D	E	$\operatorname{Pr}()$.
true	true	true	true	$0.08379=0.06384+0.01995$

Do it for all instantiations of B, C, D, E

Repeat to eliminate B, C
Exponential in number of variables
Solution: Elimination in factored form

Factors

B	C	D	f_{1}
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

D	E	f_{2}
true	true	0.448
true	false	0.192
false	true	0.112
false	false	0.248

Two factors: $f_{1}(b, c, d)=\operatorname{Pr}(d \mid b, c)$ and $f_{2}(d, e)=\operatorname{Pr}(d, e)$

- $f\left(x_{1}, \ldots, x_{n}\right)$: function from instantiation to number
- Can be joint or conditional probability
- Trivial factor: $n=0$

Factors: Summing Out

- Summing out $Z \in \mathbf{X}$ from $f(\mathbf{X})$, where $\mathbf{Y}=\mathbf{X} \backslash\{Z\}$

$$
\left(\sum_{Z} f\right)(\mathbf{y}) \stackrel{\text { def }}{=} \sum_{z} f(z, \mathbf{y})
$$

- Commutative

$$
\sum_{Z} \sum_{W} f=\sum_{W} \sum_{Z} f
$$

- Summing out multiple variables $\sum_{\mathbf{Z}} f$: marginalizing variables \mathbf{Z}, projecting f on variables \mathbf{Y} (other variables)
- Complexity $O(\exp (w))$, where $w=|\mathbf{X}|$

Factors: Multiplication

- Multiplying $f_{1}(\mathbf{X})$ and $f_{2}(\mathbf{Y})$

$$
\left(f_{1} f_{2}\right)(\mathbf{z}) \stackrel{\text { def }}{=} f_{1}(\mathbf{x}) f_{2}(\mathbf{y})
$$

where $\mathbf{Z}=\mathbf{X} \cup \mathbf{Y}, \mathbf{x} \sim \mathbf{z}, \mathbf{y} \sim \mathbf{z}$

- Commutative and associative
- Complexity $O(m \exp (w))$ for m factors, where $w=|\mathbf{Z}|$

Prior Marginals by Elimination

Joint probability by chain rule

$$
\operatorname{Pr}(a, b, c, d, e)=\theta_{e \mid c} \theta_{d \mid b c} \theta_{c \mid a} \theta_{b \mid a} \theta_{a}
$$

Prior Marginals by Elimination

Joint probability by chain rule

$$
\operatorname{Pr}(a, b, c, d, e)=\theta_{e \mid c} \theta_{d \mid b c} \theta_{c \mid a} \theta_{b \mid a} \theta_{a}
$$

Joint probability as Π of factors

$$
\Theta_{E \mid C} \Theta_{D \mid B C} \Theta_{D \mid A} \Theta_{B \mid A} \Theta_{A}
$$

Prior Marginals by Elimination

Prior Marginals by Elimination

Joint probability by chain rule

$$
\operatorname{Pr}(a, b, c, d, e)=\theta_{e \mid c} \theta_{d \mid b c} \theta_{c \mid a} \theta_{b \mid a} \theta_{a}
$$

Joint probability as Π of factors

$$
\Theta_{E \mid C} \Theta_{D \mid B C} \Theta_{D \mid A} \Theta_{B \mid A} \Theta_{A}
$$

			A	B	$\Theta_{B \mid A}$
A	Θ_{A}		true	true	.2
true	.6		true	false	.8
false	.4		false	true	.75
				false	false

A	C	$\Theta_{C \mid A}$
true	true	.8
true	false	.2
false	true	.1
false	false	.9

Marginals

B	C	D	$\Theta_{D \mid B C}$
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

C	E	$\Theta_{E \mid C}$
true	true	.7
true	false	.3
false	true	0
false	false	1

$$
\operatorname{Pr}(D, E)=\sum_{A, B, C} \Theta_{E \mid C} \Theta_{D \mid B C} \Theta_{D \mid A} \Theta_{B \mid A} \Theta_{A}
$$

Complexity still exponential in \# of variables

Prior Marginals by Elimination: Early Summation

- Don't multiply all factors before summation
- Theorem: If X does not appear in f_{1}, then

$$
\sum_{X} f_{1} f_{2}=f_{1} \sum_{X} f_{2}
$$

Prior Marginals by Elimination: Early Summation

- Don't multiply all factors before summation
- Theorem: If X does not appear in f_{1}, then

$$
\sum_{X} f_{1} f_{2}=f_{1} \sum_{X} f_{2}
$$

- For example, if X appears only in f_{n}, then

$$
\sum_{X} f_{1} \ldots f_{n}=f_{1} \ldots f_{n-1} \sum_{X} f_{n}
$$

Prior Marginals by Elimination: Early Summation

- Don't multiply all factors before summation
- Theorem: If X does not appear in f_{1}, then

$$
\sum_{x} f_{1} f_{2}=f_{1} \sum_{x} f_{2}
$$

- For example, if X appears only in f_{n}, then

$$
\sum_{X} f_{1} \ldots f_{n}=f_{1} \ldots f_{n-1} \sum_{X} f_{n}
$$

- Similarly, if X appears only in f_{n-1} and f_{n}, then

$$
\sum_{x} f_{1} \ldots f_{n}=f_{1} \ldots f_{n-2} \sum_{x} f_{n-1} f_{n}
$$

Prior Marginals by Elimination: Early Summation

- Multiply all factors that include X, sum out X from result
- Early summation reduces factor size, hence complexity of Π

Prior Marginals by Elimination: Early Summation

Compute $\operatorname{Pr}(C)$: eliminate A, then B

A	Θ_{A}
true	.6
false	.4

A	B	$\Theta_{B \mid A}$
true	true	.9
true	false	.1
false	true	.2
false	false	.8

B	C	$\Theta_{C \mid B}$
true	true	.3
true	false	.7
false	true	.5
false	false	.5

Prior Marginals by Elimination: Early Summation

A	Θ_{A}
true	.6
false	.4

Compute $\operatorname{Pr}(C)$: eliminate A, then B

Two factors mention A : $\Theta_{A}, \Theta_{B \mid A}$

Prior Marginals by Elimination: Early Summation

A	Θ_{A}
true	.6
false	.4

Multiply Θ_{A} and $\Theta_{B \mid A}$

A	B	$\Theta_{A} \Theta_{B \mid A}$
true	true	.54
true	false	.06
false	true	.08
false	false	.32

Prior Marginals by Elimination: Early Summation

A	Θ_{A}
true	.6
false	.4

A	B	$\Theta_{B \mid A}$
true	true	.9
true	false	.1
false	true	.2
false	false	.8

Multiply Θ_{A} and $\Theta_{B \mid A}$

A	B	$\Theta_{A} \Theta_{B \mid A}$
true	true	.54
true	false	.06
false	true	.08
false	false	.32

Sum out A

B	$\sum_{A} \Theta_{A} \Theta_{B \mid A}$
true	$.62=.54+.08$
false	$.38=.06+.32$

Prior Marginals by Elimination: Early Summation

A	Θ_{A}
true	.6
false	.4

Two factors left, $\Theta_{C \mid B} \&$ $\sum_{A} \Theta_{A} \Theta_{B \mid A}$, multiply

B	C	$\Theta_{C \mid B} \sum_{A} \Theta_{A} \Theta_{B \mid A}$
true	true	.186
true	false	.434
false	true	.190
false	false	.190

Prior Marginals by Elimination: Early Summation

A	Θ_{A}
true	.6
false	.4

Two factors left, $\Theta_{C \mid B}$ \& $\sum_{A} \Theta_{A} \Theta_{B \mid A}$, multiply

B	C	$\Theta_{C \mid B} \sum_{A} \Theta_{A} \Theta_{B \mid A}$
true	true	.186
true	false	.434
false	true	.190
false	false	.190

Sum out B

$$
\begin{array}{l|l}
C & \sum_{B} \Theta_{C \mid B} \sum_{A} \Theta_{A} \Theta_{B \mid A} \\
\hline \text { true } & .376 \\
\text { false } & .624
\end{array}
$$

Prior Marginals by Elimination: Early Summation

A	Θ_{A}
true	.6
false	.4

A	B	$\Theta_{B \mid A}$
true	true	.9
true	false	.1
false	true	.2
false	false	.8

B	C	$\Theta_{C \mid B}$
true	true	.3
true	false	.7
false	true	.5
false	false	.5

Biggest factor produced: 4 rows

Two factors left, $\Theta_{C \mid B} \&$ $\sum_{A} \Theta_{A} \Theta_{B \mid A}$, multiply

B	C	$\Theta_{C \mid B} \sum_{A} \Theta_{A} \Theta_{B \mid A}$
true	true	.186
true	false	.434
false	true	.190
false	false	.190

Sum out B

C	$\sum_{B} \Theta_{C \mid B} \sum_{A} \Theta_{A} \Theta_{B \mid A}$
true	.376
false	.624

Prior Marginals by Elimination: Algorithm

Input: Bayesian network \mathcal{N}, variables \mathbf{Q}, order π on other variables
Output: prior marginal $\operatorname{Pr}(\mathbf{Q})$
1: $\mathcal{S} \leftarrow$ CPTs of network \mathcal{N}
2: for $i=1$ to $|\pi|$ do
3: $\quad f \leftarrow \prod_{k} f_{k}$, where $f_{k} \in \mathcal{S}$ and mentions variable $\pi(i)$
4: $\quad f_{i} \leftarrow \sum_{\pi(i)} f$
5: remove all f_{k} from \mathcal{S}, add f_{i}
6: return $\prod_{f \in \mathcal{S}} f$

Prior Marginals by Elimination: Algorithm

Input: Bayesian network \mathcal{N}, variables \mathbf{Q}, order π on other variables
Output: prior marginal $\operatorname{Pr}(\mathbf{Q})$
1: $\mathcal{S} \leftarrow \mathrm{CPT}$ s of network \mathcal{N}
2: for $i=1$ to $|\pi|$ do
3: $\quad f \leftarrow \prod_{k} f_{k}$, where $f_{k} \in \mathcal{S}$ and mentions variable $\pi(i)$
4: $\quad f_{i} \leftarrow \sum_{\pi(i)} f$
5: remove all f_{k} from \mathcal{S}, add f_{i}
6: return $\prod_{f \in \mathcal{S}} f$
Complexity (not counting line 6): $O(n \exp (w))$, where w is \# of variables of largest f_{i}, known as width of order π

Prior Marginals by Elimination: Algorithm

Input: Bayesian network \mathcal{N}, variables \mathbf{Q}, order π on other variables
Output: prior marginal $\operatorname{Pr}(\mathbf{Q})$
1: $\mathcal{S} \leftarrow \mathrm{CPT}$ s of network \mathcal{N}
2: for $i=1$ to $|\pi|$ do
3: $\quad f \leftarrow \prod_{k} f_{k}$, where $f_{k} \in \mathcal{S}$ and mentions variable $\pi(i)$
4: $\quad f_{i} \leftarrow \sum_{\pi(i)} f$
5: remove all f_{k} from \mathcal{S}, add f_{i}
6: return $\prod_{f \in \mathcal{S}} f$
How do we find all f_{k} on line 3 quickly (linear in $\#$ of such f_{k})?

Prior Marginals by Elimination: Bucket Elimination

Bucket	Factors
E	$\Theta_{E \mid C}$
B	$\Theta_{B \mid A}, \Theta_{D \mid B C}$
C	$\Theta_{C \mid A}$
D	
A	Θ_{A}

Prior Marginals by Elimination: Bucket Elimination

Bucket	Factors
E	$\Theta_{E \mid C}$
B	$\Theta_{B \mid A}, \Theta_{D \mid B C}$
C	$\Theta_{C \mid A}$
D	
A	Θ_{A}

Bucket	Factors
E	
B	$\Theta_{B \mid A}$,
C	$\Theta_{D \mid B C}$
D	
A	$\Theta_{C \mid A}$,

Width of Elimination Order

- Should prefer order with smaller width
- How to compute width, without actually running elimination?

Width of Elimination Order

- Should prefer order with smaller width
- How to compute width, without actually running elimination?
- Only care about size of factors, run abstract version of algorithm keeping track of factor sizes only

Width of Elimination Order

Computing Good Elimination Orders

- Finding optimal order is NP-hard
- Min-degree: eliminate variable with fewest neighbors
- Min-fill: eliminate variable leading to fewest fill-in edges

Posterior Marginals by Elimination

Posterior Marginals by Elimination

Posterior Marginals by Elimination

- Zero out all rows of all factors inconsistent with e
- Run elimination, result will be joint marginal $\operatorname{Pr}(\mathbf{Q}, \mathbf{e})$
- Add all entries to obtain $\operatorname{Pr}(\mathbf{e})$
- $\operatorname{Pr}(\mathbf{Q} \mid \mathbf{e})=\frac{\operatorname{Pr}(\mathbf{Q}, \mathbf{e})}{\operatorname{Pr}(\mathbf{e})}$

Posterior Marginals by Elimination

- Zero out all rows of all factors inconsistent with e
- Run elimination, result will be joint marginal $\operatorname{Pr}(\mathbf{Q}, \mathbf{e})$
- Add all entries to obtain $\operatorname{Pr}(\mathbf{e})$
- $\operatorname{Pr}(\mathbf{Q} \mid \mathbf{e})=\frac{\operatorname{Pr}(\mathbf{Q}, \mathbf{e})}{\operatorname{Pr}(\mathbf{e})}$
- Run with $\mathbf{Q}=\emptyset$ for $\operatorname{Pr}(\mathbf{e})$

Network Structure and Complexity: Treewidth

- Complexity of elimination exp. in width of elimination order
- Treewidth is width of best elimination order for given network
- Quantifies how close the network resembles a tree

Network Structure and Complexity: Treewidth

1

2

3

3

Network Structure and Complexity: Treewidth

- Trees have treewidth 1
- \# of nodes has no genuine effect on treewidth
- \# of parents per node has effect
- Treewidth \geq max \# of parents per node
- Equality holds for polytrees, or singly-connected networks
- Loops tend to increase treewidth
- \# of loops has no genuine effect

Query Structure and Complexity: Network Pruning

- Consider computation of $\operatorname{Pr}(\mathbf{Q}, \mathbf{e})$ (includes prior marginals and probability of evidence as special cases)

Query Structure and Complexity: Network Pruning

- Consider computation of $\operatorname{Pr}(\mathbf{Q}, \mathbf{e})$ (includes prior marginals and probability of evidence as special cases)
- Pruning nodes: All leaves $\notin \mathbf{Q} \cup \mathbf{E}$, iteratively
- Worst case: All leaves $\in \mathbf{Q} \cup \mathbf{E}$, no pruning
- Best case: All $\mathbf{Q} \cup \mathbf{E}$ are roots, every node $\notin \mathbf{Q} \cup \mathbf{E}$ pruned

Query Structure and Complexity: Network Pruning

- Consider computation of $\operatorname{Pr}(\mathbf{Q}, \mathbf{e})$ (includes prior marginals and probability of evidence as special cases)
- Pruning nodes: All leaves $\notin \mathbf{Q} \cup \mathbf{E}$, iteratively
- Worst case: All leaves $\in \mathbf{Q} \cup \mathbf{E}$, no pruning
- Best case: All $\mathbf{Q} \cup \mathbf{E}$ are roots, every node $\notin \mathbf{Q} \cup \mathbf{E}$ pruned
- Pruning edges: For each edge $U \rightarrow X, U \in \mathbf{E}$
- Remove edge, shrink CPT $\Theta_{X \mid U}$ by removing rows inconsistent with \mathbf{e} and removing column U

Query Structure and Complexity: Network Pruning

- Consider computation of $\operatorname{Pr}(\mathbf{Q}, \mathbf{e})$ (includes prior marginals and probability of evidence as special cases)
- Pruning nodes: All leaves $\notin \mathbf{Q} \cup \mathbf{E}$, iteratively
- Worst case: All leaves $\in \mathbf{Q} \cup \mathbf{E}$, no pruning
- Best case: All $\mathbf{Q} \cup \mathbf{E}$ are roots, every node $\notin \mathbf{Q} \cup \mathbf{E}$ pruned
- Pruning edges: For each edge $U \rightarrow X, U \in \mathbf{E}$
- Remove edge, shrink CPT $\Theta_{X \mid \mathbf{U}}$ by removing rows inconsistent with \mathbf{e} and removing column U
- Effective treewidth is treewidth of pruned network given query

Arithmetic Circuits from Variable Elimination

A	B	$\Theta_{B \mid A}$				
true	true	$n_{3}=\star\left(\lambda_{b}, \theta_{b \mid a}\right)$				
true	false	$n_{4}=\star\left(\lambda_{\bar{b}}, \theta_{\bar{b} \mid a}\right)$				
false	true	$n_{5}=\star\left(\lambda_{b}, \theta_{b \mid \bar{a}}\right)$		A		
true	$\Theta_{A}=\star\left(\lambda_{a}, \theta_{a}\right)$					
false	false	$n_{6}=\star\left(\lambda_{\bar{b}}, \theta_{\bar{b} \mid \bar{a}}\right)$			\quad false	$n_{2}=\star\left(\lambda_{\bar{a}}, \theta_{\bar{a}}\right)$
:---						

Arithmetic Circuits from Variable Elimination

A	B	$\Theta_{B \mid A}$
true	true	$n_{3}=\star\left(\lambda_{b}, \theta_{b \mid a}\right)$
true	false	$n_{4}=\star\left(\lambda_{\bar{b}}, \theta_{\bar{b} \mid a}\right)$
false	true	$n_{5}=\star\left(\lambda_{b}, \theta_{b \mid \bar{a}}\right)$
false	false	$n_{6}=\star\left(\lambda_{\bar{b}}, \theta_{\bar{b} \mid \bar{a}}\right)$

Arithmetic Circuits from Variable Elimination

A	B	$\Theta_{B \mid A}$
true	true	$n_{3}=\star\left(\lambda_{b}, \theta_{b \mid a}\right)$
true	false	$n_{4}=\star\left(\lambda_{\bar{b}}, \theta_{\bar{b} \mid a}\right)$
false	true	$n_{5}=\star\left(\lambda_{b}, \theta_{b \mid \bar{a}}\right)$
false	false	$n_{6}=\star\left(\lambda_{\bar{b}}, \theta_{\bar{b} \mid \bar{a}}\right)$

A	$\sum_{B} \Theta_{B \mid A}$
true	$n_{7}=+\left(n_{3}, n_{4}\right)$

false $n_{8}=+\left(n_{5}, n_{6}\right)$

Arithmetic Circuits from Variable Elimination

Arithmetic Circuits from Variable Elimination

Arithmetic Circuits from Variable Elimination

Circuit size $O(n \exp (w))$ as complexity of variable elimination

Variable Elimination vs. Compilation

Variable elimination

- $\Theta(n \exp (w))$ in all cases
- A run of VE answers only one query
- Arithmetic circuit from VE useful for multiple queries, but still $\Theta(n \exp (w))$

Variable Elimination vs. Compilation

Variable elimination

- $\Theta(n \exp (w))$ in all cases
- A run of VE answers only one query
- Arithmetic circuit from VE useful for multiple queries, but still $\Theta(n \exp (w))$

Compilation of logical encoding

- Compilation $O(n \exp (w))$ only in worst case, can be much faster
- Smaller arithmetic circuits, faster online query answering

Reviving Variable Elimination

- Tables always have fixed size: exponential in \# of variables
- Use non-tabular representations of factors to reduce size

Algebraic Decision Diagrams (ADDs)

X	Y	Z	$f()$.
F	F	F	.9
F	F	T	.1
F	T	F	.9
F	T	T	.1
T	F	F	.1
T	F	T	.9
T	T	F	.5
T	T	T	.5

Compactness of ADDs

- $f\left(x_{1}, \ldots, x_{n}\right)=.2$ if odd $\#$ of x_{i} are true, .4 otherwise
- ADD size $O(n)$, tabular size $O(\exp (n))$

ADD Reduction

ADD Reduction

ADD Reduction

ADD Reduction

ADD Reduction

- Reduced ADDs are canonical: Unique for given variable order
- Size sensitive to variable order
- When used in elimination, reverse of elimination order tends to work well

ADD Operations: Apply

ADD Operations: Apply

- Works with any binary operator:,,$+- \times, /$, etc
- Complexity $O(n m)$ (avoid redundant work with caching)

ADD Operations: Restrict

ADD Operations: Restrict

- Complexity $O(n)$, same for multiple variables

ADD Operations: Sum Out

$$
\sum_{X} f=\sum_{X} f^{X=F}+\sum_{X} f^{X=T}
$$

From Table to ADD

X	Y	Z	$f()$.
F	F	F	.1
F	F	T	.9
F	T	F	.1
F	T	T	.9
T	F	F	.9
T	F	T	.1
T	T	F	.5
T	T	T	.5

- Each row to ADD, then add them up

Variable Elimination with ADDs

Use ADDs instead of tables
Multiplication and summing out by ADD operations

Arithmetic Circuits from Variable Elimination Revisited

X	Θ_{X}
x_{0}	.1
x_{1}	.9

X	Y	$\Theta_{Y \mid X}$
x_{0}	y_{0}	0
x_{0}	y_{1}	1
x_{1}	y_{0}	.5
x_{1}	y_{1}	.5

Arithmetic Circuits from Variable Elimination Revisited

$$
\begin{array}{c|c}
X & \Theta_{X} \\
\hline x_{0} & .1 \\
x_{1} & .9
\end{array}
$$

X	Y	$\Theta_{Y \mid X}$
x_{0}	y_{0}	0
x_{0}	y_{1}	1
x_{1}	y_{0}	.5
x_{1}	y_{1}	.5

Arithmetic Circuits from Variable Elimination Revisited

X	Θ_{X}		x_{0}	y_{0}
x_{0}	0			
x_{0}	.1		y_{1}	1
x_{1}	.9		x_{1}	y_{0}
x_{1}	y_{1}	.5		
			x_{1}	y_{1}

Arithmetic Circuits from Variable Elimination Revisited

X	Θ_{X}		x_{0}	y_{0}
x_{0}	y_{1}	1		
x_{0}	.1		x_{1}	y_{0}
x_{1}	.9		.5	
x_{1}	y_{1}	.5		

Arithmetic Circuits from Variable Elimination Revisited

X	Θ_{X}
x_{0}	.1
x_{1}	.9

X	Y	$\Theta_{Y \mid X}$
x_{0}	y_{0}	0
x_{0}	y_{1}	1
x_{1}	y_{0}	.5
x_{1}	y_{1}	.5

Variable Elimination: Summary

- Factors, summing out, multiplication
- Prior marginals by elimination, bucket elimination
- Width of elimination order, min-degree, min-fill
- Posterior marginals and probability of evidence by zeroing out
- Treewidth and complexity
- Network pruning based on query
- Arithmetic circuits from variable elimination
- Variable elimination with ADDs

