Logic and Bayesian Networks Part 4: Variable Elimination

Jinbo Huang

				Winter (A)	$\frac{1}{2}$				
		Spri	nkler? (B)			Rain? (C)			
				Wet Gri (D)	ass?)	Slippery R (E)	oad?		
			A	B	$\Theta_{B A}$	A	C		$\Theta_{C A}$
A	Θ	4	true	true	.2	tru	e tri	Je	.8
true	.6		true	false	.8	tru	e fa	se	.2
false	.4		false	true	.75	fal	se tri	Je	.1
			false	false	.25	fal	se fa	lse	.9
B	e	C true	D true	$\Theta_{D BC}$					
tru	e	true	false	05		C	E	İΘ	FIC
tru	e	false	true	.9		true	true	.7	610
tru	e	false	false	1		true	false	3	
fal	se	true	true	.8		false	true	0	
fal	se	true	false	.2		false	false	1	
fal	se	false	true	0				1.2	
fal	se	false	false	1					

Pr(D, E)?

D	Е	$\Pr(D, E)$
true	true	.30443
true	false	.39507
false	true	.05957
false	false	.24093

	Spri	nkler? B)	Winter (A) (Wet Gm (D)	? F ass? S	Rain? (C) Hippery R (E)	oad?		
		A	B	$\Theta_{B A}$	A	C	1	$\Theta_{C A}$
$A = \Theta$	A	true	true	.2	tru	e tru	le	.8
true .6		true	false	.8	tru	e fal	se	.2
false .4		false	true	.75	fal	se tru	e	.1
		false	false	.25	fal	se fal	se	.9
B	C true	D true	$\Theta_{D BC}$.95					
true	true	false	.05		C	E	$ \Theta $	E C
true	false	true	.9		true	true	.7	
true	false	false	.1		true	false	.3	
false	true	true	.8		false	true	0	
false	true	false	.2		false	false	1	
false	false	true	0					
false	false	false	1					

Pr(D, E)?

D	Е	$\Pr(D, E)$
true	true	.30443
true	false	.39507
false	true	.05957
false	false	.24093

Sum out variables *A*, *B*, *C* from network

Elimination

A	B	C	D	E	Pr(.)
true	true	true	true	true	0.06384
true	true	true	true	false	0.02736
true	true	true	false	true	0.00336
true	true	true	false	false	0.00144
true	true	false	true	true	0.0
true	true	false	true	false	0.02160
true	true	false	false	true	0.0
true	true	false	false	false	0.00240
true	false	true	true	true	0.21504
true	false	true	true	false	0.09216
true	false	true	false	true	0.05376
true	false	true	false	false	0.02304
true	false	false	true	true	0.0
true	false	false	true	false	0.0
true	false	false	false	true	0.0
true	false	false	false	false	0.09600
false	true	true	true	true	0.01995
false	true	true	true	false	0.00855
false	true	true	false	true	0.00105
false	true	true	false	false	0.00045
false	true	false	true	true	0.0
false	true	false	true	false	0.24300
false	true	false	false	true	0.0
false	true	false	false	false	0.02700
false	false	true	true	true	0.00560
false	false	true	true	false	0.00240
false	false	true	false	true	0.00140
false	false	true	false	false	0.00060
false	false	false	true	true	0.0
false	false	false	true	false	0.0
false	false	false	false	true	0.0
false	false	false	false	false	0.0900

Summing out variables A

A	B	С	D	E	Pr(.)
true	true	true	true	true	0.06384
false	true	true	true	true	0.01995
В	С	D	E	Pr(.)	
true	true	true	true	0.0837	9=0.06384+0.01995

Do it for all instantiations of B, C, D, E

Repeat to eliminate B, C

Elimination

A	B	C	D	E	Pr(.)
true	true	true	true	true	0.06384
true	true	true	true	false	0.02736
true	true	true	false	true	0.00336
true	true	true	false	false	0.00144
true	true	false	true	true	0.0
true	true	false	true	false	0.02160
true	true	false	false	true	0.0
true	true	false	false	false	0.00240
true	false	true	true	true	0.21504
true	false	true	true	false	0.09216
true	false	true	false	true	0.05376
true	false	true	false	false	0.02304
true	false	false	true	true	0.0
true	false	false	true	false	0.0
true	false	false	false	true	0.0
true	false	false	false	false	0.09600
false	true	true	true	true	0.01995
false	true	true	true	false	0.00855
false	true	true	false	true	0.00105
false	true	true	false	false	0.00045
false	true	false	true	true	0.0
false	true	false	true	false	0.24300
false	true	false	false	true	0.0
false	true	false	false	false	0.02700
false	false	true	true	true	0.00560
false	false	true	true	false	0.00240
false	false	true	false	true	0.00140
false	false	true	false	false	0.00060
false	false	false	true	true	0.0
false	false	false	true	false	0.0
false	false	false	false	true	0.0
false	false	false	false	false	0.0900

Summing out variables A

	A	B	С	D	E	Pr(.)
	true	true	true	true	true	0.06384
	false	true	true	true	true	0.01995
1						
	В	С	D	E	Pr(.)	
	true	true	true	true	0.0837	9=0.06384+0.01995

Do it for all instantiations of B, C, D, E

Repeat to eliminate B, C

Exponential in number of variables

Elimination

4	D	C	D	F	$D_{n}(\cdot)$
71	D	true	D true	L truc	FT(.)
true	true	true	true	false	0.00384
true	true	true	false	taue	0.02130
true	true	true	false	true	0.00336
true	true	true	talse	talse	0.00144
true	true	talse	true	true	0.0
true	true	false	true	false	0.02160
true	true	false	talse	true	0.0
true	true	talse	talse	talse	0.00240
true	false	true	true	true	0.21504
true	false	true	true	false	0.09216
true	false	true	false	true	0.05376
true	false	true	false	false	0.02304
true	false	false	true	true	0.0
true	false	false	true	false	0.0
true	false	false	false	true	0.0
true	false	false	false	false	0.09600
false	true	true	true	true	0.01995
false	true	true	true	false	0.00855
false	true	true	false	true	0.00105
false	true	true	false	false	0.00045
false	true	false	true	true	0.0
false	true	false	true	false	0.24300
false	true	false	false	true	0.0
false	true	false	false	false	0.02700
false	false	true	true	true	0.00560
false	false	true	true	false	0.00240
false	false	true	false	true	0.00140
false	false	true	false	false	0.00060
false	false	false	true	true	0.0
false	false	false	true	false	0.0
false	false	false	false	true	0.0
false	false	false	false	false	0.0900

Summing out variables A

	A	B	С	D	E	Pr(.)
	true	true	true	true	true	0.06384
	false	true	true	true	true	0.01995
1						
	В	С	D	E	Pr(.)	
	true	true	true	true	0.0837	9=0.06384+0.01995

Do it for all instantiations of B, C, D, E

Repeat to eliminate B, C

Exponential in number of variables

Solution: Elimination in factored form

Factors

B	C	D	f_1	
true	true	true	.95	
true	true	false	.05	D
true	false	true	.9	true
true	false	false	.1	true
false	true	true	.8	false
false	true	false	.2	false
false	false	true	0	
false	false	false	1	

D	E	f_2
true	true	0.448
true	false	0.192
false	true	0.112
false	false	0.248
		1

Two factors: $f_1(b, c, d) = \Pr(d|b, c)$ and $f_2(d, e) = \Pr(d, e)$

- $f(x_1, \ldots, x_n)$: function from instantiation to number
- Can be joint or conditional probability
- Trivial factor: n = 0

Factors: Summing Out

Summing out $Z \in \mathbf{X}$ from $f(\mathbf{X})$, where $\mathbf{Y} = \mathbf{X} \setminus \{Z\}$

$$(\sum_{Z} f)(\mathbf{y}) \stackrel{def}{=} \sum_{z} f(z, \mathbf{y})$$

Commutative

$$\sum_{Z}\sum_{W}f=\sum_{W}\sum_{Z}f$$

- Summing out multiple variables \$\sum_z f\$: marginalizing variables \$\mathbf{Z}\$, projecting \$f\$ on variables \$\mathbf{Y}\$ (other variables)
- Complexity O(exp(w)), where $w = |\mathbf{X}|$

• Multiplying $f_1(\mathbf{X})$ and $f_2(\mathbf{Y})$

$$(f_1f_2)(\mathbf{z}) \stackrel{def}{=} f_1(\mathbf{x})f_2(\mathbf{y})$$

where $\mathbf{Z} = \mathbf{X} \cup \mathbf{Y}$, $\mathbf{x} \sim \mathbf{z}$, $\mathbf{y} \sim \mathbf{z}$

- Commutative and associative
- Complexity $O(m \exp(w))$ for *m* factors, where $w = |\mathbf{Z}|$

Joint probability by chain rule

$$\Pr(a, b, c, d, e) = \theta_{e|c} \theta_{d|bc} \theta_{c|a} \theta_{b|a} \theta_{a}$$

Joint probability by chain rule

$$\Pr(a, b, c, d, e) = \theta_{e|c} \theta_{d|bc} \theta_{c|a} \theta_{b|a} \theta_{a}$$

Joint probability as \prod of factors

$$\Theta_{E|C}\Theta_{D|BC}\Theta_{D|A}\Theta_{B|A}\Theta_{A}$$

Joint probability by chain rule

$$\Pr(a, b, c, d, e) = \theta_{e|c} \theta_{d|bc} \theta_{c|a} \theta_{b|a} \theta_{a}$$

Joint probability as \prod of factors

$$\Theta_{E|C}\Theta_{D|BC}\Theta_{D|A}\Theta_{B|A}\Theta_{A}$$

$$\Pr(D, E) = \sum_{A,B,C} \Theta_{E|C} \Theta_{D|BC} \Theta_{D|A} \Theta_{B|A} \Theta_{A}$$

- Don't multiply all factors before summation
- Theorem: If X does not appear in f_1 , then

$$\sum_X f_1 f_2 = f_1 \sum_X f_2$$

- Don't multiply all factors before summation
- Theorem: If X does not appear in f_1 , then

$$\sum_X f_1 f_2 = f_1 \sum_X f_2$$

• For example, if X appears only in f_n , then

$$\sum_X f_1 \dots f_n = f_1 \dots f_{n-1} \sum_X f_n$$

- Don't multiply all factors before summation
- Theorem: If X does not appear in f_1 , then

$$\sum_X f_1 f_2 = f_1 \sum_X f_2$$

• For example, if X appears only in f_n , then

$$\sum_X f_1 \dots f_n = f_1 \dots f_{n-1} \sum_X f_n$$

Similarly, if X appears only in f_{n-1} and f_n , then

$$\sum_X f_1 \dots f_n = f_1 \dots f_{n-2} \sum_X f_{n-1} f_n$$

- Multiply all factors that include X, sum out X from result
- ▶ Early summation reduces factor size, hence complexity of ∏

Compute Pr(C): eliminate *A*, then *B*

		A	B	$\Theta_{B A}$	B		C	$\Theta_{C B}$
A	Θ_A	true	true	.9	tr	ue	true	.3
true	.6	true	false	.1	tr	ue	false	.7
false	.4	false	true	.2	fa	lse	true	.5
		false	false	.8	fa	se	false	.5

Compute Pr(C): eliminate *A*, then *B*

		A	B	$\Theta_{B A}$	B	C	$\Theta_{C B}$
A	Θ_A	true	true	.9	true	true	.3
true	.6	true	false	.1	true	false	.7
false	.4	false	true	.2	false	true	.5
		false	false	.8	false	false	.5

Two factors mention *A*: Θ_A , $\Theta_{B|A}$

D LO

.

A trı fa

Multiply Θ_A and $\Theta_{B|A}$

				А	В	$\Theta_A \Theta_{B A}$
	D	C	0	true	true	.54
B A	true	true	$ \Theta_C _B$.3	true	false	.06
	true	false	.7	false	true	.08
	false	true	.5	false	false	32
	talse	talse	.5	Taibe	raise	

		A	B	$\Theta_{B A}$	B	C	$\Theta_{C B}$
	Θ_A	true	true	.9	true	true	.3
Je	.6	true	false	.1	true	false	.7
se	.4	false	true	.2	false	true	.5
		false	false	.8	false	false	.5

B

true

true

false

false

C

true .7

false

true .5

false .5

A

true

true

false

false

 Θ_A

.6

A

true

false .4 B

true

false .1

true .2

false .8

 $\Theta_{B|A}$

.9

Multiply Θ_A and $\Theta_{B|A}$

В	$\Theta_A \Theta_{B A}$
true	.54
false	.06
true	.08
false	.32
	B true false true false

Sum out A

В	$\sum_{A} \Theta_{A} \Theta_{B A}$
true	.62 = .54 + .08
false	.38 = .06 + .32

 $\Theta_{C \underline{\mid} \underline{B}}$

.3

Two factors left, $\Theta_{C|B}$ & $\sum_{A} \Theta_{A} \Theta_{B|A}$, multiply

		A	B	$\Theta_{B A}$	B	C	$\Theta_{C B}$
A	Θ_A	true	true	.9	true	true	.3
true	.6	true	false	.1	true	false	.7
false	.4	false	true	.2	false	true	.5
		false	false	.8	false	false	.5

В	С	$\Theta_{C B}\sum_{A}\Theta_{A}\Theta_{B A}$
true	true	.186
true	false	.434
false	true	.190
false	false	.190

Two factors left, $\Theta_{C|B}$ & $\sum_{A} \Theta_{A} \Theta_{B|A}$, multiply

		A	B	$\Theta_{B A}$	B	C	$\Theta_{C B}$
A	Θ_A	true	true	.9	true	true	.3
true	.6	true	false	.1	true	false	.7
false	.4	false	true	.2	false	true	.5
		false	false	.8	false	false	.5

В	С	$\Theta_{C B}\sum_{A}\Theta_{A}\Theta_{B A}$
true	true	.186
true	false	.434
false	true	.190
false	false	.190

Sum out B

$$\begin{array}{c|c} \mathsf{C} & \sum_{B} \Theta_{C|B} \sum_{A} \Theta_{A} \Theta_{B|A} \\ \hline \mathsf{true} & .376 \\ \mathsf{false} & .624 \end{array}$$

Two factors left, $\Theta_{C|B}$ & $\sum_{A} \Theta_{A} \Theta_{B|A}$, multiply

		A	B	$\Theta_{B A}$	B	C	$\Theta_{C B}$
A	Θ_A	true	true	.9	true	true	.3
true	.6	true	false	.1	true	false	.7
false	.4	false	true	.2	false	true	.5
		false	false	.8	false	false	.5

$$\begin{array}{c|cccc} B & C & \Theta_{C|B} \sum_A \Theta_A \Theta_{B|A} \\ \hline true & true & .186 \\ true & false & .434 \\ \hline false & true & .190 \\ \hline false & false & .190 \end{array}$$

Biggest factor produced: 4 rows

Sum out B

$$\begin{array}{c|c} C & \sum_{B} \Theta_{C|B} \sum_{A} \Theta_{A} \Theta_{B|A} \\ \hline true & .376 \\ false & .624 \end{array}$$

Prior Marginals by Elimination: Algorithm

Input: Bayesian network \mathcal{N} , variables **Q**, order π on other variables

Output: prior marginal $Pr(\mathbf{Q})$

1:
$$S \leftarrow CPTs$$
 of network \mathcal{N}
2: **for** $i = 1$ to $|\pi|$ **do**
3: $f \leftarrow \prod_k f_k$, where $f_k \in S$ and mentions variable $\pi(i)$
4: $f_i \leftarrow \sum_{\pi(i)} f$
5: remove all f_k from S , add f_i
6: **return** $\prod_{f \in S} f$

Prior Marginals by Elimination: Algorithm

Input: Bayesian network \mathcal{N} , variables **Q**, order π on other variables

Output: prior marginal $Pr(\mathbf{Q})$

1:
$$S \leftarrow CPTs$$
 of network \mathcal{N}
2: **for** $i = 1$ to $|\pi|$ **do**
3: $f \leftarrow \prod_k f_k$, where $f_k \in S$ and mentions variable $\pi(i)$
4: $f_i \leftarrow \sum_{\pi(i)} f$
5: remove all f_k from S , add f_i
6: **return** $\prod_{f \in S} f$

Complexity (not counting line 6): $O(n \exp(w))$, where w is # of variables of largest f_i , known as width of order π

Prior Marginals by Elimination: Algorithm

Input: Bayesian network \mathcal{N} , variables **Q**, order π on other variables

Output: prior marginal $Pr(\mathbf{Q})$

1: $S \leftarrow CPTs$ of network \mathcal{N} 2: **for** i = 1 to $|\pi|$ **do** 3: $f \leftarrow \prod_k f_k$, where $f_k \in S$ and mentions variable $\pi(i)$ 4: $f_i \leftarrow \sum_{\pi(i)} f$ 5: remove all f_k from S, add f_i 6: **return** $\prod_{f \in S} f$

How do we find all f_k on line 3 quickly (linear in # of such f_k)?

Bucket	Factors
Е	$\Theta_{E C}$
В	$\Theta_{B A}, \Theta_{D BC}$
С	$\Theta_{C A}$
D	
A	Θ_A

Prior Marginals by Elimination: Bucket Elimination

Bucket	Factors	Bucket	Factors
E	$\Theta_{E C}$	Е	
В	$\Theta_{B A}, \ \Theta_{D BC}$	В	$\Theta_{B A}, \Theta_{D BC}$
С	$\Theta_{C A}$	С	$\Theta_{C A}, \sum_{E} \Theta_{E C}$
D	I	D	
A	Θ_A	Α	Θ_A

- Should prefer order with smaller width
- How to compute width, without actually running elimination?

- Should prefer order with smaller width
- How to compute width, without actually running elimination?
- Only care about size of factors, run abstract version of algorithm keeping track of factor sizes only

Width of Elimination Order

- Finding optimal order is NP-hard
- Min-degree: eliminate variable with fewest neighbors
- Min-fill: eliminate variable leading to fewest fill-in edges

Winter? (A)Rain? Sprinkler (C) (B) Wet Grass? (D) Slippery Road? (E)AВ $\Theta_{B|A}$ AC Θ_A A true true true true .6 false .8 true true true false false .4 false true .75 false true false false .25 false false $\Theta_{D|BC}$ В CDtrue true true .95 CE $\Theta_{E|C}$ true true false .05 .9 .7 true false true true true true false false .1 true false .3 false true .8 false true 0 true false false .2 false false 1 true false false true 0 false false 1 false

$$\Pr(D, E | \mathbf{e})$$
? $\mathbf{e} : A = \mathsf{true}, B = \mathsf{false}$

D	Е	Pr(<i>D</i> , <i>E</i> e)
true	true	.448
true	false	.192
false	true	.112
false	false	.248

_

 $\Theta_{C|A}$

.8

.2

.1

.9

 $\Theta_{C|A}$.8 .2 .1 .9

		Spri	nkler? (B)	Winter (A)	?) (Rain? (C)			
				Wet Gr (D	155?	Slippery R (E)	oad?		
			A	B	$\Theta_{B A}$	A	C	1	Θ_{c}
A	Θ	A	true	true	.2	tru	e tru	le	.8
true	.6	_	true	false	.8	tru	e fal	se	.2
false	.4		false	true	.75	fal	se tru	Je	.1
			false	false	.25	fal	se fal	se	.9
B	e	C true	D true	$\Theta_{D BC}$					
tru	ie	true	false	05		C	E	İΘ	FIC
tru	e	false	true	.9		true	true	.7	LIC
tru	ie	false	false	.1		true	false	.3	
fal	se	true	true	.8		false	true	0	
fal	se	true	false	.2		false	false	1	
fal	se	false	true	0					
fal	se	false	false	1					

$$\Pr(D, E | \mathbf{e})$$
? $\mathbf{e} : A = \mathsf{true}, B = \mathsf{false}$

D	Е	Pr(<i>D</i> , <i>E</i> e)
true	true	.448
true	false	.192
false	true	.112
false	false	.248

Compute joint marginals instead

D	E	Pr(<i>D</i> , <i>E</i> , e)
true	true	.21504
true	false	.09216
false	true	.05376
false	false	.11904

- Zero out all rows of all factors inconsistent with e
- ▶ Run elimination, result will be joint marginal Pr(**Q**, **e**)
- Add all entries to obtain Pr(e)

$$\blacktriangleright \operatorname{Pr}(\mathbf{Q}|\mathbf{e}) = \frac{\operatorname{Pr}(\mathbf{Q},\mathbf{e})}{\operatorname{Pr}(\mathbf{e})}$$
- Zero out all rows of all factors inconsistent with e
- ▶ Run elimination, result will be joint marginal Pr(Q, e)
- Add all entries to obtain Pr(e)

$$\blacktriangleright \operatorname{Pr}(\mathbf{Q}|\mathbf{e}) = \frac{\operatorname{Pr}(\mathbf{Q},\mathbf{e})}{\operatorname{Pr}(\mathbf{e})}$$

• Run with $\mathbf{Q} = \emptyset$ for $\Pr(\mathbf{e})$

- Complexity of elimination exp. in width of elimination order
- Treewidth is width of best elimination order for given network
- Quantifies how close the network resembles a tree

Network Structure and Complexity: Treewidth

Network Structure and Complexity: Treewidth

- Trees have treewidth 1
- # of nodes has no genuine effect on treewidth
- # of parents per node has effect
 - Treewidth \geq max # of parents per node
 - Equality holds for *polytrees*, or *singly-connected* networks
- Loops tend to increase treewidth
- ▶ # of loops has no genuine effect

 Consider computation of Pr(Q, e) (includes prior marginals and probability of evidence as special cases)

- Consider computation of Pr(Q, e) (includes prior marginals and probability of evidence as special cases)
- ▶ Pruning nodes: All leaves $\not\in \mathbf{Q} \cup \mathbf{E}$, iteratively
 - Worst case: All leaves $\in \mathbf{Q} \cup \mathbf{E}$, no pruning
 - \blacktriangleright Best case: All $\textbf{Q} \cup \textbf{E}$ are roots, every node $\not \in \textbf{Q} \cup \textbf{E}$ pruned

- Consider computation of Pr(Q, e) (includes prior marginals and probability of evidence as special cases)
- ▶ Pruning nodes: All leaves $\not\in \mathbf{Q} \cup \mathbf{E}$, iteratively
 - Worst case: All leaves $\in \mathbf{Q} \cup \mathbf{E}$, no pruning
 - \blacktriangleright Best case: All $\textbf{Q} \cup \textbf{E}$ are roots, every node $\not \in \textbf{Q} \cup \textbf{E}$ pruned
- Pruning edges: For each edge $U \rightarrow X$, $U \in \mathbf{E}$
 - Remove edge, shrink CPT Θ_{X|U} by removing rows inconsistent with e and removing column U

- Consider computation of Pr(Q, e) (includes prior marginals and probability of evidence as special cases)
- ▶ Pruning nodes: All leaves $\not\in \mathbf{Q} \cup \mathbf{E}$, iteratively
 - Worst case: All leaves $\in \mathbf{Q} \cup \mathbf{E}$, no pruning
 - ▶ Best case: All $\mathbf{Q} \cup \mathbf{E}$ are roots, every node $\notin \mathbf{Q} \cup \mathbf{E}$ pruned
- Pruning edges: For each edge $U \rightarrow X$, $U \in \mathbf{E}$
 - Remove edge, shrink CPT Θ_{X|U} by removing rows inconsistent with e and removing column U
- Effective treewidth is treewidth of pruned network given query

Α	В	$\Theta_{B A}$		
true	true	$n_3 = \star(\lambda_b, \theta_{b a})$	A	Θ_A
true	false	$n_4 = \star (\lambda_{\overline{b}}, heta_{\overline{b} a})$	true	$n_1 = \star (\lambda_a, \theta_a)$
false	true	$n_5 = \star(\lambda_b, \theta_{b \overline{a}})$	false	$n_2 = \star (\lambda_{\overline{a}}, \theta_{\overline{a}})$
false	false	$n_6 = \star(\lambda_{\overline{b}}, \theta_{\overline{b} \overline{a}})$		

Α	В	$\Theta_{B A}$
true	true	$n_3 = \star(\lambda_b, \theta_{b a})$
true	false	$n_4 = \star (\lambda_{\overline{b}}, \theta_{\overline{b} a})$
false	true	$n_5 = \star(\lambda_b, \theta_{b \overline{a}})$
false	false	$n_6 = \star (\lambda_{\overline{b}}, \theta_{\overline{b} \overline{a}})$

A	В	$\Theta_{B A}$		
true	true	$n_3 = \star(\lambda_b, \theta_{b a})$	A	$\sum_{B} \Theta_{B A}$
true	false	$n_4 = \star(\lambda_{\overline{b}}, \theta_{\overline{b} a})$	true	$n_7 = +(n_3, n_4)$
false	true	$n_5 = \star(\lambda_b, \theta_{b \overline{a}})$	false	$n_8 = +(n_5, n_6)$
false	false	$n_6 = \star (\lambda_{\overline{b}}, \theta_{\overline{b} \overline{a}})$		

Α	$\Theta_A \sum_B \Theta_{B A}$
true	$n_9 = \star(n_1, n_7)$
false	$n_{10} = \star (n_2, n_8)$

Circuit size O(n exp(w)) as complexity of variable elimination

Variable Elimination vs. Compilation

Variable elimination

- $\Theta(n \exp(w))$ in all cases
- A run of VE answers only one query
- ► Arithmetic circuit from VE useful for multiple queries, but still Θ(n exp(w))

Variable Elimination vs. Compilation

Variable elimination

- $\Theta(n \exp(w))$ in all cases
- A run of VE answers only one query
- ► Arithmetic circuit from VE useful for multiple queries, but still Θ(n exp(w))

Compilation of logical encoding

- Compilation O(n exp(w)) only in worst case, can be much faster
- Smaller arithmetic circuits, faster online query answering

- Tables always have fixed size: exponential in # of variables
- Use non-tabular representations of factors to reduce size

Algebraic Decision Diagrams (ADDs)

Compactness of ADDs

- *f*(*x*₁,...,*x_n*) = .2 if odd # of *x_i* are true, .4 otherwise
- ADD size O(n), tabular
 size O(exp(n))

- Reduced ADDs are *canonical*: Unique for given variable order
- Size sensitive to variable order
- When used in elimination, reverse of elimination order tends to work well

ADD Operations: Apply

ADD Operations: Apply

- Works with any binary operator: $+, -, \times, /,$ etc
- Complexity O(nm) (avoid redundant work with caching)

ADD Operations: Restrict

ADD Operations: Restrict

• Complexity O(n), same for multiple variables

ADD Operations: Sum Out

$\sum_{X} f = \sum_{X} f^{X=F} + \sum_{X} f^{X=T}$

From Table to ADD

Each row to ADD, then add them up

Use ADDs instead of tables

Multiplication and summing out by ADD operations

- Factors, summing out, multiplication
- Prior marginals by elimination, bucket elimination
- Width of elimination order, min-degree, min-fill
- Posterior marginals and probability of evidence by zeroing out
- Treewidth and complexity
- Network pruning based on query
- Arithmetic circuits from variable elimination
- Variable elimination with ADDs