Logic and Bayesian Networks Part 5: Applications

Jinbo Huang

NICTA and ANU

- Medical diagnosis
- Genetic linkage analysis
- Probabilistic planning

- Define network variables & their domains
 - ► Query & evidence variables, usually from problem statement
 - Intermediary variables, harder to determine
- Define network structure (edges)
 - What variables are *direct causes* of X?
- Define network CPTs
 - Determined objectively from problem statement
 - Reflection of subjective beliefs
 - Estimated from data

- Flu characterized by fever and body aches, can be associated with chilling and sore throat
- Cold associcated with chilling, can cause sore throat
- Tonsillitis (inflammation of tonsils) causes sore throat, can be associated with fever

- Flu characterized by fever and body aches, can be associated with chilling and sore throat
- Cold associcated with chilling, can cause sore throat
- Tonsillitis (inflammation of tonsils) causes sore throat, can be associated with fever
- Capture this knowledge with Bayesian network, diagnose condition given symptoms

- Flu characterized by fever and body aches, can be associated with chilling and sore throat
- Cold associcated with chilling, can cause sore throat
- Tonsillitis (inflammation of tonsils) causes sore throat, can be associated with fever
- Capture this knowledge with Bayesian network, diagnose condition given symptoms
- Query, evidence, intermediary variables?

- Flu characterized by fever and body aches, can be associated with chilling and sore throat
- Cold associcated with chilling, can cause sore throat
- Tonsillitis (inflammation of tonsils) causes sore throat, can be associated with fever
- Capture this knowledge with Bayesian network, diagnose condition given symptoms
- Query, evidence, intermediary variables?
- Flu, cold, tonsillitis;

- Flu characterized by fever and body aches, can be associated with chilling and sore throat
- Cold associcated with chilling, can cause sore throat
- Tonsillitis (inflammation of tonsils) causes sore throat, can be associated with fever
- Capture this knowledge with Bayesian network, diagnose condition given symptoms
- Query, evidence, intermediary variables?
- Flu, cold, tonsillitis; chilling, body ache, sore throat, fever

Condition: normal, cold, flu, tonsillitis

Condition: normal, cold, flu, tonsillitis

Model inaccuracy: *single fault* assumption

Condition: normal, cold, flu, tonsillitis

Model inaccuracy: *single fault* assumption

► Cold ⇒ Fever & Sore Throat independent

Condition: normal, cold, flu, tonsillitis

Model inaccuracy: *single fault* assumption

- ► Cold ⇒ Fever & Sore Throat independent
- Body Ache ⇒ Flu ↑
 ⇒ Cold & Tonsillitis ↓

Condition: normal, cold, flu, tonsillitis

Model inaccuracy: *single fault* assumption

- ► Cold ⇒ Fever & Sore Throat independent
- Body Ache ⇒ Flu ↑
 ⇒ Cold & Tonsillitis ↓
- ► No Fever \Rightarrow Cold \uparrow

From medical experts, based on known stats or subjective beliefs

- CPTs for conditions (roots of graph): Pr(condition) without knowledge of symptoms
- CPTs for symptoms: Pr(Chilling|Cold, Flu) etc

From medical experts, based on known stats or subjective beliefs

- CPTs for conditions (roots of graph): Pr(condition) without knowledge of symptoms
- CPTs for symptoms: Pr(Chilling|Cold, Flu) etc

Estimated directly from medical records

Case	Cold	Flu	Tonsillitis	Chilling	Body Ache	Sore Throat	Fever
1	Т	F	?	Т	F	F	F
2	F	Т	F	Т	Т	F	Т
3	?	?	Т	F	?	Т	F
Maximize			$\prod_{i=1}^{N} \Pr($	\mathbf{d}_i)			

Given symptoms (chilling, body ache, sore throat, fever), pose MAP query on Cold, Flu, & Tonsillitis

Reduces to MPE if evidence covers all four symptoms

- Goal: map genes onto chromosome (i.e., determine location of genes on chromosome)
- Useful for detecting and predicting diseases
- Input: pedigree, observed genotype/phenotype

- Genes: G_1 , G_2
- ▶ Gene has alleles (states): G₁(A, a), G₂(B, b)
- Individual carries two alleles per gene, from father & mother
- Genotype: collection of alleles of individual, composed of two haplotypes
- Phenotype: observable traits of individual

Genotype	Phenotype
A/A	blood type A
A/B	blood type AB
A/O	blood type A
B/B	blood type B
B/O	blood type B
O/O	blood type O

Deterministic

► However, not in reverse direction: Blood type A ⇒ A/A or A/O

Genotype	Phenotype
A/A	blood type A
A/B	blood type AB
A/O	blood type A
B/B	blood type B
B/O	blood type B
0/0	blood type O

- Deterministic
- ► However, not in reverse direction: Blood type A ⇒ A/A or A/O

Genotype	Phenotype
H/H	healthy
H/D	healthy
D/D	ill with probability .9

Not deterministic

 Penetrance: Pr(phenotype | genotype)

Recombination

Recombination

Recombination

- Independent genes: recombination frequency θ = 1/2
- Linked genes: $\theta < 1/2$
- Closer on chromosome \approx more linked
- Genetic linkage analysis: Estimate distances between, and hence locations of, genes on chromosome based on data containing recombination information

Recombination Frequencies

Pedigree as Bayesian Network

- S genes: GP_{i1}/GM_{i1}, GP_{i2}/GM_{i2}, GP_{i3}/GM_{i3}
- Phenotype:
 P_{i1}, *P_{i2}*, *P_{i3}*
- Selectors: SP₃₁/SM₃₁, SP₃₂/SM₃₂, SP₃₃/SM₃₃

Pedigree as Bayesian Network

Pedigree as Bayesian Network

Given **e** on subset of genotype (*GP*, *GM*) and phenotype (*P*), $Pr(\mathbf{e})$ indicates likelihood of $\hat{\theta}$ (recombination frequencies)

Can compute preferred $\hat{\theta}$, or search for most likely $\hat{\theta}$

Given $\hat{\theta}$ and relative order of genes, determine their locations on chromosome

- Planning: Find plan (sequence of actions) to go from initial to goal state
- Probabilistic planning: In uncertain domains, find plan to reach goal with high probability

Goal: Block painted and held, gripper clean

Probabilistic initial state

- Block not painted, not held
- Gripper clean, but dry with probability 0.7

Probabilistic action effects

- Paint: Paints block w/p 1; makes gripper dirty w/p 1 if it holds block, w/p 0.1 if not
- Pick-up: Succeeds w/p 0.5 if gripper wet, 0.95 if gripper dry
- Dry: Dries wet gripper w/p 0.8; doesn't affect dry gripper

- Probabilistic initial state and action effects
- Conformant: Action effects not observable (can't decide next action by observing environment)
- Need straight-line plan with max probability of success, for given horizon (number of steps)
- Example 2-step plan: [paint, pickup] (succeeds with probability 0.7335)

Brute-force Approach

- Compute success probability for all plans of length one
- Given success probabilities of plans of length *i*, compute probability of success for plans of length *i* + 1
- Iterate to planning horizon n
- Pick n-step plan with max success probability
- Exponential in planning horizon

- Suppose action variable A_i represents action taken at step i
- ▶ Planning $\Leftrightarrow \max \Pr(\text{goal}|A_1, \dots, A_n)$ $\Leftrightarrow \max \Pr(\text{goal}, A_1, \dots, A_n)$

- Suppose action variable A_i represents action taken at step i
- ▶ Planning $\Leftrightarrow \max \Pr(\text{goal}|A_1, \dots, A_n)$ $\Leftrightarrow \max \Pr(\text{goal}, A_1, \dots, A_n)$
- How to define Bayesian network?

Planning Domain as Bayesian Network

Paint: Paints block with probability 1

Painted ₀	$Action_1$	$Painted_1$	Pr(.)
F	paint	Т	1
Т	*	Т	1

Planning Domain as Bayesian Network

Paint: Makes gripper dirty $w/p \ 1$ if it holds block, $w/p \ 0.1$ if not

Clean ₀	Held ₀	$Action_1$	Clean ₁	Pr(.)
Т	Т	paint	F	1
Т	F	paint	F	.1
F	*	*	F	1

Planning Domain as Bayesian Network

Add one layer per time step

Initial state \rightarrow priors on $Painted_0$, $Held_0$, Dry_0 , $Clean_0$ Goal state \rightarrow evidence **e** on $Painted_n$, $Held_n$, Dry_n , $Clean_n$ Optimal plan \rightarrow argmax $Pr(\mathbf{e}, A_1, \ldots, A_n)$

Priors on Action_i irrelevant

Plan Assessment

Plan Search

Plan Search

$$\max_{C,B} \Pr(\mathbf{e}, t', C, B) \leq$$

Plan Search

$$\max_{C,B} \Pr(\mathbf{e}, t', C, B) \leq .101$$

$\max_{A_{k+1},\ldots,A_n} \Pr(\mathbf{e},a_1,\ldots,a_k,A_{k+1},\ldots,A_n)$

$$\max_{A_{k+1},\ldots,A_n} \Pr(\mathbf{e},a_1,\ldots,a_k,A_{k+1},\ldots,A_n)$$

Some OR-nodes are decision nodes on A_{k+1}, \ldots, A_n

Turn these into max (instead of +)

Root of arithmetic circuit gives upper bound

- Bayesian networks as compact representations of probability distributions
- Inference by logical encoding and compilation to arithmetic circuits
- Inference by variable elimination
- Applications