Introduction to Satisfiability

Jinbo Huang

NICTA and Australian National University

Overview

- Satisfiability
- Algorithms
- Applications
- Extensions

Satisfiability

Broadly, can set of constraints be satisfied?

Example: neighbors have different colors on map

$W A \neq N T, W A \neq S A, \ldots$

Boolean Satisfiability (SAT)

All variables are Boolean (true/false)
Constraints are clauses

- $A \vee B, \bar{B} \vee C \vee D, \ldots$
- disjunction (logical OR) of literals
- literal: variable or its negation
- set of clauses: conjunctive normal form (CNF)

Clause satisfied when ≥ 1 literal is true

Why CNF?

Any Boolean formula can be put in CNF
With auxilary variables, polynomial-size CNF preserves satisfiability

Modeling is relatively natural

- problem broken into parts/steps
- model each part/step as (small) set of clauses

Why Boolean: Versatility

Can model many types of problems

- planning/scheduling, spatial/temporal reasoning, hardware/software verification, test generation, diagnosis, bioinformatics, ...
$W A \neq N T$ translates into
$W A_{R} \rightarrow \overline{N T_{R}}, W A_{B} \rightarrow \overline{N T_{B}}, W A_{G} \rightarrow \overline{N T_{G}}, \ldots$
$(X \rightarrow Y$ is short for $\bar{X} \vee Y)$
Encoding can be larger, but reasoning not necessarily slower

Why Boolean: NP-Completeness

All of NP translate to SAT in polynomial time

- $p \in N P \Rightarrow p$ is solved by an algorithm
- algo. works by moving from one state to next
- content of memory (computer) or tape (Turing machine)
- encode state with set of Boolean variables
- size of state: polynomial
- \# of states needed: polynomial
- moves determined by instructions in algo.
- encode instructions with Boolean formulas
- \# of sets needed: polynomial
- write formula that is satisfiable iff algorithm says YES

Why Boolean: Practical Solvers

Often efficient \& scalable on real-world problems

- often handle millions of clauses

Some techniques not readily applicable to constraint solvers

- fast propagation (literal watching)
- learning \& restarts (exponential boost)
- decision heuristic (driven by learning)

Algorithms for SAT

Clause learning

- top 3 in Application, SAT Competition 2009: precosat, glucose, LySAT
- 2 of top 3 in Crafted: CLASP, MINISAT

Local search

- top 3 in Random Satisfiable: TNM, GNOVELTY +2 , HYBRIDGM3

Other algorithms

- lookahead, solver portfolios

Algorithm: Enumeration

$\{\bar{A} \vee B, \bar{B} \vee C\}$
Is formula satisfiable?

Algorithm: Enumeration

$\{\bar{A} \vee B, \bar{B} \vee C\}$
Is formula satisfiable?
8 assignments to $A B C$: enumerate \& check, until model found, e.g., $A=B=C=t$

Algorithm: Enumeration

$\{\bar{A} \vee B, \bar{B} \vee C\}$
Is formula satisfiable?
8 assignments to $A B C$: enumerate \& check, until model found, e.g., $A=B=C=t$

Exponential in \# of variables in worst case (fine, but can try to do better in average case)

Algorithm: Enumeration by Search

$\{\bar{A} \vee B, \bar{B} \vee C\}$

Conditioning

$$
\left.\{\bar{A} \vee B, \bar{B} \vee C\}\right|_{A}
$$

Conditioning

$$
\left.\{\bar{A} \vee B, \bar{B} \vee C\}\right|_{A} \quad\{B, \bar{B} \vee C\}
$$

Conditioning

$\left.\left.\{\bar{A} \vee B, \bar{B} \vee C\}\right|_{A} \quad\{B, \bar{B} \vee C\}\right|_{B}$

Conditioning

$\left.\left.\{\bar{A} \vee B, \bar{B} \vee C\}\right|_{A} \quad\{B, \bar{B} \vee C\}\right|_{B} \quad\{C\}$

Conditioning

$\left.\left.\{\bar{A} \vee B, \bar{B} \vee C\}\right|_{A} \quad\{B, \bar{B} \vee C\}\right|_{B} \quad\{C\}$
Simplifies formula

- false literal disappears from clause
- true literal makes clause disappear

Leaves of search tree

- empty clause generated: formula falsified
- all clauses gone: formula satisfied

Not necessarily 2^{n} leaves, even in case of UNSAT

Early Backtracking

Backtrack as soon as empty clause generated

Early Backtracking

Backtrack as soon as empty clause generated
Can we do even better?

Early Backtracking

Backtrack as soon as empty clause generated
Can we do even better?
What about unit clauses?
$\left.\{\bar{A} \vee B, \bar{B} \vee C\}\right|_{A} \quad\{B, \bar{B} \vee C\}$

Early Backtracking

Backtrack as soon as empty clause generated
Can we do even better?
What about unit clauses?
$\left.\{\bar{A} \vee B, \bar{B} \vee C\}\right|_{A} \quad\{B, \bar{B} \vee C\}$
B must be true, no need for two branches

Early Backtracking

Backtrack as soon as empty clause generated
Can we do even better?
What about unit clauses?
$\left.\{\bar{A} \vee B, \bar{B} \vee C\}\right|_{A} \quad\{B, \bar{B} \vee C\}$
B must be true, no need for two branches
Setting $B=t$ may lead to more unit clauses, repeat till no more (or till empty clause)

Known as unit propagation

Algorithm: DPLL

Same kind of search tree, each node augmented with unit propagation

- multiple assignments in one level
- decision \& implications
- may not need n levels to reach leaf

Algorithm: DPLL

Same kind of search tree, each node augmented with unit propagation

- multiple assignments in one level
- decision \& implications
- may not need n levels to reach leaf

What (completely) determines search tree?

DPLL: Variable Ordering

Can have huge impact on efficiency
Example: unit propagation lookahead, as in SATZ

- short clauses are good, more likely to result in unit propagation
- tentatively try each variable, count new binary clauses generated
- select variable with highest score:
$w(X) \cdot w(\bar{X}) \cdot 1024+w(X)+w(\bar{X})$
Generally different orders down different branches: dynamic ordering

Enhancement

Given variable ordering, search tree is fixed
How can we possibly reduce search tree further?

Enhancement

Given variable ordering, search tree is fixed
How can we possibly reduce search tree further?
Backtrack earlier

Enhancement

Given variable ordering, search tree is fixed
How can we possibly reduce search tree further?
Backtrack earlier
Backtracking occurs (only) when empty clause generated

Empty clause generated (only) by unit propagation

Empowering Unit Propagation

Unit propagation determined by set of clauses
More clauses \Rightarrow (potentially) more propagation, earlier empty clause (backtrack), smaller search tree

Empowering Unit Propagation

Unit propagation determined by set of clauses
More clauses \Rightarrow (potentially) more propagation, earlier empty clause (backtrack), smaller search tree

What clauses to add?

Empowering Unit Propagation

Unit propagation determined by set of clauses
More clauses \Rightarrow (potentially) more propagation, earlier empty clause (backtrack), smaller search tree

What clauses to add?

- not already in CNF

Empowering Unit Propagation

Unit propagation determined by set of clauses
More clauses \Rightarrow (potentially) more propagation, earlier empty clause (backtrack), smaller search tree

What clauses to add?

- not already in CNF
- logically implied by CNF (or correctness lost)

Empowering Unit Propagation

Unit propagation determined by set of clauses
More clauses \Rightarrow (potentially) more propagation, earlier empty clause (backtrack), smaller search tree

What clauses to add?

- not already in CNF
- logically implied by CNF (or correctness lost)
- empower UP

Clause Learning

A, B
B, C
\bar{A}, \bar{X}, Y
\bar{A}, X, Z
$\bar{A}, \bar{Y}, \bar{Z}$
\bar{A}, X, \bar{Z}
$\bar{A}, \bar{Y}, \bar{Z}$

Clause Learning

$\left.\Delta\right|_{A}$
A, B
\bar{B}, C
\bar{A}, \bar{X}, Y
\bar{A}, X, Z
\bar{A}, \bar{Y}, Z
\bar{A}, X, \bar{Z}
$\bar{A}, \bar{Y}, \bar{Z}$

Clause Learning

$\left.\Delta\right|_{A}$
A, B
$\frac{B}{A}, \bar{C}$
\bar{A}, Y
\bar{A}, X, Z
\bar{A}, \bar{Y}, Z
\bar{A}, X, \bar{Z}
$\bar{A}, \bar{Y}, \bar{Z}$
B, C
\bar{X}, Y
X, Z
\bar{Y}, Z
X, \bar{Z}
\bar{Y}, \bar{Z}

Clause Learning

$\left.\left.\Delta\right|_{A} \quad \Delta\right|_{A, B}$
A, B
\bar{B}, C
\bar{A}, \bar{X}, Y
\bar{A}, X, Z
\bar{A}, \bar{Y}, Z
\bar{A}, X, \bar{Z}
$\bar{A}, \bar{Y}, \bar{Z}$
B, C
\bar{X}, Y
\bar{X}, Z
\bar{Y}, Z
X, \bar{Z}
\bar{Y}, \bar{Z}

Clause Learning

$\left.\left.\Delta\right|_{A} \quad \Delta\right|_{A, B}$
A, B
\bar{B}, C
\bar{A}, \bar{X}, Y
\bar{A}, X, Z
\bar{A}, \bar{Y}, Z
\bar{A}, X, \bar{Z}
$\bar{A}, \bar{Y}, \bar{Z}$
$\begin{array}{rr}B, C & \\ \bar{X}, Y & \bar{X}, Y \\ X, Z & X, Z \\ \bar{Y}, Z & \bar{Y}, Z \\ \bar{X}, \bar{Z} & \bar{Z}, \bar{Z} \\ \bar{Y}, \bar{Z} & \bar{Y}, \bar{Z}\end{array}$

Clause Learning

$\left.\left.\left.\Delta\right|_{A} \quad \Delta\right|_{A, B} \quad \Delta\right|_{A, B, C}$
A, B
\bar{B}, C
\bar{A}, \bar{X}, Y
\bar{A}, X, Z
\bar{A}, \bar{Y}, Z
\bar{A}, X, \bar{Z}
$\bar{A}, \bar{Y}, \bar{Z}$
$\begin{array}{rr}B, C & \bar{X}, Y \\ \bar{X}, Y \\ \bar{X}, Z & \bar{X}, Z \\ \bar{Y}, \bar{Z} & \bar{Y}, \bar{Z} \\ \bar{Y}, \bar{Z} & \bar{X}, \bar{Z} \\ & \bar{Z}\end{array}$

Clause Learning

$\left.\left.\left.\Delta\right|_{A} \quad \Delta\right|_{A, B} \quad \Delta\right|_{A, B, C}$
A, B
\bar{B}, C
\bar{A}, \bar{X}, Y
\bar{A}, X, Z
\bar{A}, \bar{Y}, Z
\bar{A}, X, \bar{Z}
$\bar{A}, \bar{Y}, \bar{Z}$
B, C
\bar{X}, Y
\bar{X}, Z
\bar{Y}, Z
\bar{X}, \bar{Z}
\bar{Y}, \bar{Z}
\bar{X}, Y
\bar{X}, Y
$\begin{array}{ll}\bar{X}, Z & X, Z \\ \bar{Y}, Z & \bar{Y}, \bar{Z} \\ \bar{X}, \bar{Z} & \bar{X}, \bar{Z} \\ \bar{Y}, \bar{Z} & \bar{Y}, \bar{Z}\end{array}$

Clause Learning

$\left.\left.\left.\left.\Delta\right|_{A} \quad \Delta\right|_{A, B} \quad \Delta\right|_{A, B, C} \quad \Delta\right|_{A, B, C, X}$
A, B
\bar{B}, C
\bar{A}, \bar{X}, Y
\bar{A}, X, Z
\bar{A}, \bar{Y}, Z
\bar{A}, X, \bar{Z}
$\bar{A}, \bar{Y}, \bar{Z}$
B, C
\bar{X}, Y
\bar{X}, Z
\bar{Y}, Z
\bar{X}, \bar{Z}
\bar{Y}, \bar{Z}
\bar{X}, Y
\bar{X}, Y
$\begin{array}{ll}X, Z & X, Z \\ \bar{Y}, Z & \bar{Y}, Z \\ \bar{X}, \bar{Z} & X, \bar{Z} \\ \bar{Y}, \bar{Z} & \bar{Y}, \bar{Z}\end{array}$

Clause Learning

$$
\left.\left.\left.\left.\Delta\right|_{A} \quad \Delta\right|_{A, B} \quad \Delta\right|_{A, B, C} \quad \Delta\right|_{A, B, C, X}
$$

A, B
\bar{B}, C
\bar{A}, \bar{X}, Y
\bar{A}, X, Z
\bar{A}, \bar{Y}, Z
\bar{A}, X, \bar{Z}
$\bar{A}, \bar{Y}, \bar{Z}$
$\begin{array}{rr}B, C & \\ \bar{X}, Y & \bar{X}, Y \\ \bar{X}, Z & \bar{X}, \bar{Z} \\ \bar{Y}, Z & \bar{Y}, \bar{Z} \\ \bar{X}, \bar{Z} & \bar{X}, \bar{Z} \\ \bar{Y}, \bar{Z} & \bar{Y}, \bar{Z}\end{array}$
\bar{X}, Y
Y
\bar{Y}, Z
\bar{Y}, \bar{Z}

Clause Learning

$$
\left.\left.\left.\left.\Delta\right|_{A} \quad \Delta\right|_{A, B} \quad \Delta\right|_{A, B, C} \quad \Delta\right|_{A, B, C, X}
$$

A, B
\bar{B}, C
\bar{A}, \bar{X}, Y
\bar{A}, X, Z
\bar{A}, \bar{Y}, Z
\bar{A}, X, \bar{Z}
$\bar{A}, \bar{Y}, \bar{Z}$

$$
\begin{array}{rccc}
B, C & & \\
\bar{X}, Y & \bar{X}, Y & \bar{X}, Y & Y \\
X, Z & X, Z & X, Z & \\
\bar{Y}, Z & \bar{Y}, Z & \bar{Y}, Z & \bar{Y}, Z \\
X, \bar{Z} & X, \bar{Z} & X, \bar{Z} & \bar{Y}, \bar{Z}
\end{array}
$$

- Conflict in level 3: $\left.\Delta\right|_{A, B, C} \Rightarrow \bar{X}$

Clause Learning

$$
\left.\left.\left.\left.\Delta\right|_{A} \quad \Delta\right|_{A, B} \quad \Delta\right|_{A, B, C} \quad \Delta\right|_{A, B, C, X}
$$

A, B
$\frac{B}{\bar{A}}, \frac{C}{\bar{X}}, Y$
B, C
\bar{X}, Y

\bar{A}, X, Z
\bar{A}, \bar{Y}, Z
\bar{A}, X, \bar{Z}
$\bar{A}, \bar{Y}, \bar{Z}$
X, Z
\bar{Y}, Z
\bar{X}, \bar{Z}
\bar{Y}, \bar{Z}
\bar{X}, Y
Y
$\begin{array}{ll}X, Z & X, Z \\ \bar{Y}, Z & \bar{Y}, Z\end{array}$
\bar{Y}, Z
\bar{X}, \bar{Z}
\bar{Y}, \bar{Z}

- Conflict in level 3: $\left.\Delta\right|_{A, B, C} \Rightarrow \bar{X}$
- B, C irrelevant

Clause Learning

$$
\left.\left.\left.\left.\Delta\right|_{A} \quad \Delta\right|_{A, B} \quad \Delta\right|_{A, B, C} \quad \Delta\right|_{A, B, C, X}
$$

A, B
$\frac{B}{\bar{A}}, \frac{C}{\bar{X}}, Y$
B, C
\bar{X}, Y

\bar{A}, X, Z
\bar{A}, \bar{Y}, Z
\bar{A}, X, \bar{Z}
$\bar{A}, \bar{Y}, \bar{Z}$
X, Z
\bar{Y}, Z
\bar{X}, \bar{Z}
\bar{Y}, \bar{Z}
$\frac{X}{\bar{Y}}, Z$
$\frac{X}{\bar{Y}}, Z$
\bar{Y}, Z
\bar{X}, \bar{Z}
\bar{Y}, \bar{Z}

- Conflict in level 3: $\left.\Delta\right|_{A, B, C} \Rightarrow \bar{X}$
- B, C irrelevant: $\left.\Delta\right|_{A} \Rightarrow \bar{X}$

Clause Learning

$$
\left.\left.\left.\left.\Delta\right|_{A} \quad \Delta\right|_{A, B} \quad \Delta\right|_{A, B, C} \quad \Delta\right|_{A, B, C, X}
$$

A, B
$\frac{B}{\bar{A}}, \frac{C}{\bar{X}}, Y$

$$
\stackrel{B, C}{\bar{X}, Y} \quad \bar{X}, Y \quad \bar{X}, Y
$$

$$
\bar{A}, \underline{X}, Z
$$

$$
\begin{array}{ll}
X, Z & X, Z \\
\bar{Y}, \underline{Z} & \bar{Y}, \underline{Z}
\end{array}
$$

$$
\begin{aligned}
& X, Z \\
& \bar{Y}, \underline{Z}
\end{aligned}
$$

$$
\bar{Y}, Z
$$

$$
\frac{X}{\bar{Y}}, \overline{\bar{Z}}
$$

$$
\bar{Y}, \bar{Z}
$$

- Conflict in level 3: $\left.\Delta\right|_{A, B, C} \Rightarrow \bar{X}$
- B, C irrelevant: $\left.\Delta\right|_{A} \Rightarrow \bar{X}$
- What clause would have allowed UP to derive \bar{X} in level 0 ?

Clause Learning

$$
\left.\left.\left.\left.\Delta\right|_{A} \quad \Delta\right|_{A, B} \quad \Delta\right|_{A, B, C} \quad \Delta\right|_{A, B, C, X}
$$

A, B
$\frac{B}{\bar{A}}, \frac{C}{\bar{X}}, Y$

$$
\stackrel{B, C}{\bar{X}, Y} \quad \bar{X}, Y \quad \bar{X}, Y
$$

$$
\begin{array}{lllll}
\bar{A}, X, Z & X, Z & X, Z & X, Z & \\
\bar{A}, \bar{Y}, Z & \bar{Y}, \bar{Z} & \bar{Y}, Z & \bar{Y}, Z & \bar{Y}, Z \\
\bar{A}, X, \bar{Z} & X, \overline{\bar{Z}} & X, \bar{Z} & X, \bar{Z} & \bar{Y} \\
\bar{A}, \bar{Y}, \bar{Z} & \bar{Y}, \bar{Z} & \bar{Y}, \bar{Z} & \bar{Y}, \bar{Z} & \bar{Y}, \bar{Z}
\end{array}
$$

- Conflict in level 3: $\left.\Delta\right|_{A, B, C} \Rightarrow \bar{X}$
- B, C irrelevant: $\left.\Delta\right|_{A} \Rightarrow \bar{X}$
- What clause would have allowed UP to derive \bar{X} in level $0 ? \quad \bar{A} \vee \bar{X} \quad(A \rightarrow \bar{X})$

Clause Learning

A, B
B, C
\bar{A}, \bar{X}, Y
\bar{A}, X, Z
\bar{A}, \bar{Y}, Z
\bar{A}, X, \bar{Z}
$\bar{A}, \bar{Y}, \bar{Z}$
\bar{A}, \bar{X}

Clause Learning

$\left.\Delta\right|_{A}$
A, B
\bar{B}, C
\bar{A}, \bar{X}, Y
\bar{A}, X, Z
\bar{A}, \bar{Y}, Z
\bar{A}, X, \bar{Z}
$\bar{A}, \bar{Y}, \bar{Z}$
\bar{A}, \bar{X}
B, \bar{C}
\bar{X}, Y
X, Z
\bar{Y}, Z
X, \bar{Z}
\bar{Y}, \bar{Z}
\bar{X}

Clause Learning

$\left.\Delta\right|_{A}$
A, B
\bar{B}, C
\bar{A}, \bar{X}, Y
\bar{A}, X, Z
\bar{A}, \bar{Y}, Z
\bar{A}, X, \bar{Z}
$\bar{A}, \bar{Y}, \bar{Z}$
\bar{A}, \bar{X}
$\stackrel{B}{B} \bar{X}, Y$
X, Z
\bar{Y}, Z
\bar{X}, \bar{Z}
\bar{Y}, \bar{Z}
\bar{X}
$\bar{A} \vee \bar{X}$ satisfies criteria

- not in CNF
- implied by CNF
- empowers UP

Learn clause in level 3
Backtrack to level 0, start over

Clause Learning

$\left.\Delta\right|_{A}$

$\bar{A} \vee \bar{X}$ satisfies criteria

- not in CNF
- implied by CNF
- empowers UP

Learn clause in level 3
Backtrack to level 0, start over
How to learn? How far to backtrack?

Implication Graph

Implication Graph

$1: A, B$
2 : B, C
$3: \bar{A}, \bar{X}, Y$
4: \bar{A}, X, Z
$5: \bar{A}, \bar{Y}, Z$
$6: \bar{A}, X, \bar{Z}$
$7: \bar{A}, \bar{Y}, \bar{Z}$
$8: \bar{A}, \bar{X}$

Implication Graph

$1: A, B$
$2: B, C$
$3: \bar{A}, \bar{X}, Y$
$4: \bar{A}, X, Z$
$5: \bar{A}, \bar{Y}, \bar{Z}$
$6: \bar{A}, X, \bar{Z}$
$7: \bar{A}, \bar{Y}, \bar{Z}$
$8: \bar{A}, \bar{X}$

Conflict Analysis

$$
\begin{aligned}
& 1: A, B \\
& 2: B, C \\
& 3: \bar{A}, \bar{X}, Y \\
& 4: \bar{A}, \bar{X}, Z \\
& 5: \bar{A}, \bar{Y}, Z \\
& 6: \bar{A}, \bar{X}, \bar{Z} \\
& 7: \bar{A}, \bar{Y}, \bar{Z}
\end{aligned}
$$

- Cut: roots (decisions) on one side, sink (contradiction) on other
- Arrows across cut together responsible for contradiction
- Conflict set: tail points of arrows

Conflict Set

$$
\begin{aligned}
& 1: A, B \\
& \begin{array}{l}
\text { 2: } \bar{B}, \bar{A}, \bar{X}, Y
\end{array} \\
& 4: \bar{A}, X, Z \\
& \text { 5: } \bar{A}, \bar{Y}, Z \\
& 6: \bar{A}, X, \bar{Z} \\
& 7: \bar{A}, \bar{Y}, \bar{Z} \\
& \text { - Cut 1: }\{A, X\} \\
& \text { - Cut 2: }\{A, Y\} \\
& \text { - Cut 3: }\{A, Y, Z\}
\end{aligned}
$$

Conflict Clause

$$
\begin{aligned}
& 1: A, B \\
& 2: B, C \\
& 3: \bar{A}, \bar{X}, Y \\
& 4: \bar{A}, X, Z \\
& 5: \bar{A}, \bar{Y}, Z \\
& 6: \bar{A}, \bar{X}, \bar{Z} \\
& 7: \bar{A}, \bar{Y}, \bar{Z}
\end{aligned}
$$

- Cut 1: $\{A, X\} \quad \Rightarrow \bar{A} \vee \bar{X}$
- Cut 2: $\{A, Y\} \quad \Rightarrow \bar{A} \vee \bar{Y}$
- Cut 3: $\{A, Y, Z\} \Rightarrow \bar{A} \vee \bar{Y} \vee \bar{Z}$ (existing)

Conflict Clause

$$
\begin{aligned}
& 1: A, B \\
& 2: B, C \\
& 3: \bar{A}, \bar{X}, Y \\
& 4: \bar{A}, \bar{X}, Z \\
& 5: \bar{A}, \bar{Y}, Z \\
& 6: \bar{A}, \bar{X}, \bar{Z} \\
& 7: \bar{A}, \bar{Y}, \bar{Z}
\end{aligned}
$$

- Cut 1: $\{A, X\} \quad \Rightarrow \bar{A} \vee \bar{X}$
- Cut 2: $\{A, Y\} \quad \Rightarrow \bar{A} \vee \bar{Y}$
- Which clause to learn?

Unique Implication Point (UIP)

Prefer shorter explanation

- shorter clause closer to unit, more empowering

Never need >1 node from latest level

- latest decision + history always suffices

UIP: lies on all paths from decision to contradiction

Unique Implication Point (UIP)

Prefer shorter explanation

- shorter clause closer to unit, more empowering

Never need >1 node from latest level

- latest decision + history always suffices

UIP: lies on all paths from decision to contradiction

1-UIP Learning

Work from sink backwards
Stop when conflict set includes a UIP, and no other nodes, of latest level: 1-UIP clause $(\bar{A} \vee \bar{Y})$

- 2-UIP, 3-UIP, ..., All-UIP

Empirically shown effective, most common choice

Backtracking to Assertion Level

Learned clause: $\bar{A} \vee \bar{Y}$

- becomes unit (\bar{Y}) when erasing current level
- asserting clause: UP will assert \bar{Y} (empowerment)

Backtracking to Assertion Level

Backtrack as far as possible, as long as UP remains empowered

Assertion level: 2nd highest level in learned clause, or -1 if learned clause is unit

- $A_{0} \vee \bar{B}_{1} \vee C_{1} \vee X_{4}$: aLevel $=1$
- X_{4} : aLevel $=-1$
- learned unit clause asserted before any decision

Empirically shown effective, most common choice

Clause Learning: Putting It Together

REPEAT

IF no free variable RETURN SAT
pick free variable X and set either X or \bar{X}
IF contradiction
if level <0
RETURN UNSAT
learn clause
backtrack anywhere learned clause $\neq \emptyset$

Clause Learning: Putting It Together

REPEAT

IF no free variable RETURN SAT
pick free variable X and set either X or \bar{X}
IF contradiction
if level <0
RETURN UNSAT
learn clause
backtrack anywhere learned clause $\neq \emptyset$

- No more branching, unlike DPLL
- Conflict-driven, repeated probing

Clause Learning: Putting It Together

REPEAT

IF no free variable RETURN SAT
pick free variable X and set either X or \bar{X}
IF contradiction
if level <0
RETURN UNSAT
learn clause
backtrack anywhere learned clause $\neq \emptyset$

- Completeness?

Clause Learning: Putting It Together

REPEAT
IF no free variable
RETURN SAT
pick free variable X and set either X or \bar{X}
IF contradiction
IF level < 0
RETURN UNSAT
learn clause
backtrack anywhere learned clause $\neq \emptyset$

- Will terminate because learned clause must be new, |clauses| finite

Clause Learning: Putting It Together

REPEAT
IF no free variable
RETURN SAT
pick free variable X and set either X or \bar{X} IF contradiction

IF level <0
RETURN UNSAT
learn clause
backtrack anywhere learned clause $\neq \emptyset$

- Components: decision heuristic, learning method, backtracking method

Decision Heuristic: Popular Ideas

Learned conflict clause summarizes cause of failure
Try to satisfy conflict clauses

- helps eventually satisfy whole CNF if SAT
- helps terminate early if UNSAT

Maintain occurrence count for each literal

- increment on learning new clause
- periodically shrink all counts: recent activity more relevant

Pick variable with highest count ($+\&-$ combined)

- set to same value it had last: progress saving

Progress Saving

Backtracking erases multiple levels of assignments
Some of those may have satisfied parts of CNF
Reusing assignments helps avoid having to rediscover those partial solutions

Restarts: Special Case of Backtracking

Re-make decisions in light of new clauses

Restarts: Special Case of Backtracking

Re-make decisions in light of new clauses

- restart at predetermined intervals
- restart based on current search activity

Restarts: Special Case of Backtracking

Re-make decisions in light of new clauses

- restart at predetermined intervals
- restart based on current search activity

Important empirically

- solvers with no restarts uncompetitive
- performance sensitive to restart policy

Important theoretically

- clause learning more powerful than DPLL, proof relies on restarts

Efficient Unit Propagation

Need to detect unit clauses
Naively, keep track of clause lengths: when setting X, decrement lengths of clauses that contain \bar{X}

- inefficient when CNF is large

Pick 2 literals to watch in each clause

- watch A, B in $A \vee B \vee \bar{C} \vee D$
- clause cannot be unit unless \bar{A} or \bar{B} is set
- do nothing when C or D is assigned

Scales to millions of clauses in practice

Clause Learning: Summary

Fundamentally different search scheme from DPLL

- no branching
- sequence of decisions, learn, backtrack, repeat
- theoretically more powerful than DPLL

What determines search behavior

- methods for decision, learning, backtracking (including restarts)
- popular choices: literal activity + progress saving, 1-UIP learning, backtracking to assertion level (various restart policies being explored)

Clause Learning and Resolution

Resolution p-simulates clause learning

- Each learned clause obtained by resolution
- At termination, resolution proof can be extracted (in polytime)

Clause Learning and Resolution

Clause learning p-simulates resolution

- Have clause learning absorb interesting clauses of resolution proof (in polytime)
- interesting: 1-empowering, 1-provable
- absorb: render it useless (not 1-empowering)
- Interesting clause always exists unless Δ 1-inconsistent
- Hence clause learning will terminate after absorbing all interesting clauses

Hard Problems for Resolution: Pigeonhole

$P_{i j}$: pigeon i in hole j
$P_{11} \vee P_{12}, P_{21} \vee P_{22}, P_{31} \vee P_{32}$
$\neg P_{11} \vee \neg P_{21}, \neg P_{21} \vee \neg P_{31}, \neg P_{11} \vee \neg P_{31}$
$\neg P_{12} \vee \neg P_{22}, \neg P_{22} \vee \neg P_{32}, \neg P_{12} \vee \neg P_{32}$
No polynomial resolution proof for $P H_{n}$

Extended Resolution

Introduce new variables into proof

Extension: $x \leftrightarrow \phi$

- ϕ : formula over existing variables
- Suffices to restrict ϕ to $I_{1} \vee I_{2}$

Otherwise same as resolution

Extended Resolution

Can simulate (compact) proof by induction
Pigeonhole: No 1-to-1 map from $\{1, \ldots, n\}$ to $\{1, \ldots, n-1\}$

- Base case $(n=2)$: easy
- If $f(i) \operatorname{maps}\{1, \ldots, n\}$ to $\{1, \ldots, n-1\}$
- Define $f^{\prime}(i)$ from $\{1, \ldots, n-1\}$ to
$\{1, \ldots, n-2\}$
- $f^{\prime}(i)=f(i)$ if $f(i) \neq n-1$
- $f^{\prime}(i)=f(n)$ otherwise

Extended Resolution

Induction proof

- If $f(i) \operatorname{maps}\{1, \ldots, n\}$ to $\{1, \ldots, n-1\}$
- Define $f^{\prime}(i)$ from $\{1, \ldots, n-1\}$ to $\{1, \ldots, n-2\}$
- $f^{\prime}(i)=f(i)$ if $f(i) \neq n-1$
- $f^{\prime}(i)=f(n)$ otherwise

ER proof simulating above

- $\left\{P_{i j}\right\}$ describes $f\left(P H_{n}\right)$, introduce $\left\{Q_{i j}\right\}$ to describe $f^{\prime}\left(P H_{n-1}\right)$

$$
\text { - } Q_{i j} \leftrightarrow\left(P_{i j} \vee\left(P_{i, n-1} \wedge P_{n j}\right)\right)
$$

- $O\left(n^{3}\right)$ resolutions to derive $P H_{n-1}$
- Repeat until base case PH_{2} :
$R_{11}, R_{21}, \neg R_{11} \vee \neg R_{21}$

Extended Resolution

Strictly more powerful than resolution

Adding Extensions to Clause Learning

How does solver decide?

Adding Extensions to Clause Learning

How does solver decide?
Compare simulation of resolution by solver

- Resolution itself provides no guidance on what clauses to resolve
- Solver uses probings as guide
- Reduces search space, retains power

Adding Extensions to Clause Learning

How does solver decide?
Compare simulation of resolution by solver

- Resolution itself provides no guidance on what clauses to resolve
- Solver uses probings as guide
- Reduces search space, retains power

Prune space of extensions

Useless Extensions

$x \leftrightarrow I_{1} \vee I_{2}$ useless if $\Delta \cup\left\{\bar{I}_{1}, \bar{I}_{2}\right\} \vdash$ false

Useless Extensions

$x \leftrightarrow I_{1} \vee I_{2}$ useless if $\Delta \cup\left\{\bar{I}_{1}, \bar{I}_{2}\right\} \vdash$ false
Lemma: Banning them does not affect power of ER

Useless Extensions

$x \leftrightarrow I_{1} \vee I_{2}$ useless if $\Delta \cup\left\{\bar{I}_{1}, \bar{I}_{2}\right\} \vdash$ false
Lemma: Banning them does not affect power of ER
Efficient filtering of useless extensions?

Useless Extensions

Theorem: Solver need only pick $I_{1} \vee I_{2}$ from assignment stack (with negation)

- Due to forced assignments, not all combinations of $I_{1} \vee I_{2}$ possible
- But those would be useless anyway
- Full power of ER retained
- Decision heuristic doubles as guide for extensions

A More Concrete Heuristic

Pick $I_{1} \vee I_{2}$ from learned clause, if length $\geq k$

- Literals in learned clause must come from assignment stack (with negation)

Open question: Does this restrict power of ER

Experiments: Application Benchmarks

Results mixed
However, where it worked, improvement very substantial

- From unsolved to solved (in 5-30 minutes)
- Search tree size reduced by factor of 5-42

Experiments: Crafted Benchmarks

gt-ordering: any partial order on $\{1, \ldots, n\}$ must have maximal element

7 instances, none could be solved by baseline solver
All solved, in 39 seconds

Extended Clause Learning: Summary

Extensions can lead to substantial practical gains
Extension heuristics a promising research direction
Catch: More powerful proof system, harder to find short proof

Local Search

Clause learning poor on random problems

- good at exploiting structure
- little/no structure in random problems

Local Search

Clause learning poor on random problems

- good at exploiting structure
- little/no structure in random problems

Local search

- start with complete assignment
- if CNF satisfied, done; else flip a var, repeat
- incomplete: may not find model, cannot prove unsatisfiability

GSAT

REPEAT MAX-TRIES times
randomly generate assignment α
REPEAT MAX-FLIPS times
IF α satisfies CNF THEN RETURN SAT flip variable in α for least falsified clauses RETURN FAIL

- quickly descends toward better assignment
- spends much time moving "sideways" on a plateau, before exiting into better plateau
- may get stuck in local minimum

Walksat

- flip variable in falsified clause (more focus)
- introduce noise to escape from plateaus REPEAT MAX-TRIES times
randomly generate assignment α
REPEAT MAX-FLIPS times
IF α satisfies CNF THEN RETURN SAT
randomly pick falsified clause
IF \exists "freebie move" THEN do it
ELSE
with probability p, flip random var in clause else flip var in clause for least "break count" RETURN FAIL

Phase Transition in Random Problems

k-SAT: k literals per clause
Vary \# of (random) clauses for given \# of variables

- low ratio: nearly all SAT, easy
- high ratio: nearly all UNSAT, easy
- phase transition (≈ 4.2 for 3-SAT): about half SAT, half UNSAT, hardest

Solver Portfolio

Keep collection of solvers
Train solver selector on large set of instances
Use it to select solver for given instance
1 of top 3 in Crafted, SAT Competition 2009:
SATzILLA

Applications of SAT

- Qualitative temporal reasoning
- Constraint solving

Qualitative Temporal Reasoning

Reasoning about time intervals (events)
Qualitative: relations between intervals

- not concerned with exact time points

Interval Algebra (IA)

> x precedes y or xpy
> x meets y or x m y
> x overlaps y or x o y
> x starts y or x sy
> x during y or $x d y$
> x finishes y or $x f y$
> x equal y or x eq y

- All have inverse, total of 13 atomic relations

The Reasoning Task

Is given temporal (IA) network satisfiable?

- nodes: variables
- edges: constraints
- infinite domain (all possible intervals on a line)
- traditional search doesn't work
- $2^{13}=8192$ possible relations
- "Peter reads private email before or after work"

Transforming Search Space

Don't search for instantiation of nodes (intervals)
Search for instantiation of edges

- edge: set of atomic relations
- any consistent instantiation of nodes satisfies exactly 1 per edge
- need only search for satisfiable atomic refinement of network

Transforming Search Space

Don't search for instantiation of nodes (intervals)
Search for instantiation of edges

- edge: set of atomic relations
- any consistent instantiation of nodes satisfies exactly 1 per edge
- need only search for satisfiable atomic refinement of network

Theorem
Atomic IA network is satisfiable iff path-consistent

Path Consistency

Any consistent assignment for 2 nodes can be extended to consistent assignment for 3rd
$\forall A B C, a, b$, if $A_{a} \sim B_{b}$ then $\exists c$ $C_{c} \sim A_{a}$ and $C_{c} \sim B_{b}$

- reading 7:10-7:20, breakfast 7:00-7:30
- can assign work 8:00-12:00
- missing edge: universal relation

Path Consistency

Any consistent assignment for 2 nodes can be extended to consistent assignment for 3rd
$\forall A B C, a, b$, if $A_{a} \sim B_{b}$ then $\exists c$ $C_{c} \sim A_{a}$ and $C_{c} \sim B_{b}$

- reading 7:10-7:20, work 7:15-12:00
- no way to assign breakfast
- refine (invisible) edge W-R: universal \rightarrow after

Ensuring Path Consistency

Atomic network: $\forall A B C: R_{A C} \in R_{A B} \circ R_{B C}$
Composition

$$
\begin{aligned}
& -\{d\} \circ\{p\}=\{p\} \\
& -\{d\} \circ\{o\}=\{p, m, o, s, d\}
\end{aligned}
$$

Ensuring Path Consistency

Atomic network: $\forall A B C: R_{A C} \in R_{A B} \circ R_{B C}$
Composition

$$
\begin{aligned}
& -\{d\} \circ\{p\}=\{p\} \\
& -\{d\} \circ\{o\}=\{p, m, o, s, d\}
\end{aligned}
$$

$$
1 \xrightarrow{\{m, d, f\}} 3
$$

$\{d\} \quad\{p, o\}$

Ensuring Path Consistency

Atomic network: $\forall A B C: R_{A C} \in R_{A B} \circ R_{B C}$ Composition

- $\{d\} \circ\{p\}=\{p\}$
- $\{d\} \circ\{o\}=\{p, m, o, s, d\}$
$1 \xrightarrow{\{\mathrm{~m}, \mathrm{~d}, \mathrm{f}\}}{ }_{3} R_{12 d}, R_{23 p} \vee R_{23 o}, R_{13 m} \vee R_{13 d} \vee R_{13 f}$
$\{d\} \quad\{p, o\}$

2

Ensuring Path Consistency

Atomic network: $\forall A B C: R_{A C} \in R_{A B} \circ R_{B C}$

Composition

- $\{d\} \circ\{p\}=\{p\}$
- $\{d\} \circ\{o\}=\{p, m, o, s, d\}$

1 \{m, d, f\} ${ }_{3} R_{12 d}, R_{23 p} \vee R_{230}, R_{13 m} \vee R_{13 d} \vee R_{13 f}$
$R_{12 d} \wedge R_{23 p} \rightarrow$ false

Ensuring Path Consistency

Atomic network: $\forall A B C: R_{A C} \in R_{A B} \circ R_{B C}$

Composition

$$
\begin{aligned}
& -\{d\} \circ\{p\}=\{p\} \\
& -\{d\} \circ\{o\}=\{p, m, o, s, d\}
\end{aligned}
$$

$$
1 \xrightarrow{\{\mathrm{~m}, \mathrm{~d}, \mathrm{f}\}}{ }_{3} \quad R_{12 d}, R_{23 p} \vee R_{23 o}, R_{13 m} \vee R_{13 d} \vee R_{13 f}
$$

$$
R_{12 d} \wedge R_{23 p} \rightarrow \text { false }
$$

$$
R_{12 d} \wedge R_{23 o} \rightarrow\left(R_{13 m} \vee R_{13 d}\right)
$$

Ensuring Path Consistency

Atomic network: $\forall A B C: R_{A C} \in R_{A B} \circ R_{B C}$

Composition

$$
\begin{aligned}
& -\{d\} \circ\{p\}=\{p\} \\
& -\{d\} \circ\{o\}=\{p, m, o, s, d\}
\end{aligned}
$$

$$
1 \xrightarrow{\{\mathrm{~m}, \mathrm{~d}, \mathrm{f}\}}{ }_{3} \quad R_{12 d}, R_{23 p} \vee R_{230}, R_{13 m} \vee R_{13 d} \vee R_{13 f}
$$

$$
R_{12 d} \wedge R_{23 p} \rightarrow \text { false }
$$

$$
R_{12 d} \wedge R_{230} \rightarrow\left(R_{13 m} \vee R_{13 d}\right)
$$

2
Alternatively, use inequalities between points, better in practice

Solving IA Networks by SAT

Encode each \triangle in complete graph

- invisible edges are edges with universal relation
- $\binom{n}{3}=\frac{n(n-1)(n-2)}{6}$ triangles

CNF satisfiable iff IA network satisfiable

More Compact Encoding

More Compact Encoding

Encode 2 partitions separately

- \# of triangles from 20 to 11
- partition recursively
- soundness nontrivial

Theorem
IA has atomic network amalgamation property

Empirical Results: $50-100$ Nodes

Empirical Results: 110-200 Nodes

Applications of SAT

- Qualitative temporal reasoning
- Constraint solving

A Constraint Model

```
int: z = 10;
array [1..z] of 1..z*z: sq = [x*x | x in 1..z];
array [1..z] of var 0..z: s;
var 1..z: k;
var 1..z: j;
constraint forall ( i in 2..z ) ( s[i] > 0 -> s[i-1] > s[i] );
constraint s[1] < k;
constraint sum ( i in 1..z ) ( sq[s[i]] ) = sq[k];
constraint s[j] > 0;
solve maximize j;
```

Perfect Square: Find largest set of integers $\subseteq\{1, \ldots, z\}$ whose squares sum up to a square

Elements of Constraint Model

- Integer and set comparisons
- Integer arithmetic
- Linear equalities and inequalities
- Set operations
- Array access with variable index
- Global constraints
- Satisfaction and optimization

Existing Methods

- Pseudo-Boolean constraints to SAT
- Boolean cardinality constraints to SAT
- Integer linear constraints to SAT
- Extensional constraints to SAT
- Set constraints to BDDs
- Satisfiability modulo theories
- Lazy clause generation (hybrid of FD and SAT)

New Approach

Everything to SAT

Challenge

Desired encoding varies with constraint type

- Unary suits cardinality constraints
- Direct encoding suits extensional constraints
- Primitive comparisons can encode linear constraints
- None good for arbitrary arithmetic

Solution

One-size-fits-all binary encoding

- Arbitrary arithmetic supported
- Heterogeneous model into single Boolean formula
- Con: potential loss of propagation power

Adopt constraint language MiniZinc

- Reasonably simple yet expressive
- Many benchmarks and solvers available for empirical study

MiniZinc

- Developed by G12 @ NICTA
- Solver independent modeling
- Reasonable compromise between simplicity \& expressivity
- Comes with translation to FlatZinc, suitable as low-level solver input language
- Large pool of benchmarks \& examples
- Encourages comparison of different solvers

Binary Encoding

- Use k bits per integer, in two's complement
- Balance between efficiency and completeness
- Large k : large encoding, inefficient
- Small k : may fail to find solution
- Start with k sufficient for constants in model
- Increase k, re-encode, and re-solve until solution found or limit (32, e.g.) reached

Integer Comparisons

Integer Comparisons

$$
\begin{aligned}
& \left(x_{3}>y_{3}\right) \vee\left[\left(x_{3}=y_{3}\right) \wedge\left(x_{2}(\times 2) \leq_{\text {unsigned }}(23(2))\right]\right.
\end{aligned}
$$

Integer Comparisons

- $x_{3} x_{2}\left(x_{1}\right) \leq\left(1 / 3\left(1 / 2\left(11_{1}\right)\right.\right.$
$\left(x_{3}>y_{3}\right) \vee\left[\left(x_{3}=y_{3}\right) \wedge\left(\otimes_{2}\left(x_{1}\right) \leq_{\text {unsigned }}\left(x_{2}\left(1_{1}\right)\right)\right]\right.$

$$
\left(x_{2}<y_{2}\right) \vee\left[\left(x_{2}=y_{2}\right) \wedge\left(x_{1} \leq y_{1}\right)\right]
$$

Integer Comparisons

- $\times_{3} \times 2 \times\left(X_{1}\right) \leq(13(1 / 2(11)$
$\left(x_{3}>y_{3}\right) \vee\left[\left(x_{3}=y_{3}\right) \wedge\left(x_{2} x_{1}\right) \leq_{\text {unsigned }}\left(x_{2}\left(y_{1}\right)\right)\right]$
- (\times_{2} ($\left.\times_{1}\right) \leq_{\text {unsigned }}\left(\right.$ ® $_{2}$ (1/12 \longrightarrow

$$
\left(x_{2}<y_{2}\right) \vee\left[\left(x_{2}=y_{2}\right) \wedge\left(x_{1} \leq y_{1}\right)\right]
$$

- Similar for other operators: $=, \neq,<, \geq,>$

Integer Arithmetic

- Adder and multiplier as in computer hardware
- Constraints to prevent overflow
+ : sum temporarily has $k+1$ bits leading two bits must be identical
\times : product temporarily has $2 k$ bits
leading $k+1$ bits must be identical

Integer Arithmetic

- Adder and multiplier as in computer hardware
- Constraints to prevent overflow
+ : sum temporarily has $k+1$ bits leading two bits must be identical
\times : product temporarily has $2 k$ bits
leading $k+1$ bits must be identical
- Subtraction, division, and modulo via + and \times

Integer Arithmetic

- Adder and multiplier as in computer hardware
- Constraints to prevent overflow + : sum temporarily has $k+1$ bits leading two bits must be identical
\times : product temporarily has $2 k$ bits
leading $k+1$ bits must be identical
- Subtraction, division, and modulo via + and \times
- $\max (x, y, z) \longrightarrow$

$$
[(y \leq x) \rightarrow(x=z)] \wedge[(y>x) \rightarrow(y=z)]
$$

Integer Arithmetic

- Adder and multiplier as in computer hardware
- Constraints to prevent overflow + : sum temporarily has $k+1$ bits leading two bits must be identical
\times : product temporarily has $2 k$ bits
leading $k+1$ bits must be identical
- Subtraction, division, and modulo via + and \times
- max $(x, y, z) \longrightarrow$

$$
[(y \leq x) \rightarrow(x=z)] \wedge[(y>x) \rightarrow(y=z)]
$$

- Other operators: negation, absolute value, min

Linear Constraints

- $a_{1} x_{1}+\ldots+a_{n} x_{n}$ (®) b
(1) can be $=, \neq, \leq,<, \geq,>$

Linear Constraints

- $a_{1} x_{1}+\ldots+a_{n} x_{n}$ @ b
(1) can be $=, \neq, \leq,<, \geq,>$
- Decompose into multiplications, summations, comparison
- Use auxiliary variables to keep size linear in n

Set Operations

- set of $1 . .10: Y$

Set Operations

- set of $1 . .10: Y \longrightarrow Y_{1}, \ldots, Y_{10}$
- Y_{i} encodes $i \in Y$

Set Operations

- set of $1 . .10: Y \longrightarrow Y_{1}, \ldots, Y_{10}$
- Y_{i} encodes $i \in Y$
- Membership: $x \in Y \longrightarrow \bigvee_{i=1}^{10}\left[(x=i) \wedge Y_{i}\right]$

Set Operations

- set of $1 . .10: Y \longrightarrow Y_{1}, \ldots, Y_{10}$
- Y_{i} encodes $i \in Y$
- Membership: $x \in Y \longrightarrow \bigvee_{i=1}^{10}\left[(x=i) \wedge Y_{i}\right]$
- Subset: $X \subseteq Y \longrightarrow \bigwedge_{i=1}^{10}\left(X_{i} \rightarrow Y_{i}\right)$

Set Operations

- set of $1 . .10: Y \longrightarrow Y_{1}, \ldots, Y_{10}$
- Y_{i} encodes $i \in Y$
- Membership: $x \in Y \longrightarrow \bigvee_{i=1}^{10}\left[(x=i) \wedge Y_{i}\right]$
- Subset: $X \subseteq Y \longrightarrow \bigwedge_{i=1}^{10}\left(X_{i} \rightarrow Y_{i}\right)$
- If X and Y have different universes, use smallest range containing both

Set Operations

- set of 1..10: $Y \longrightarrow Y_{1}, \ldots, Y_{10}$
- Y_{i} encodes $i \in Y$
- Membership: $x \in Y \longrightarrow \bigvee_{i=1}^{10}\left[(x=i) \wedge Y_{i}\right]$
- Subset: $X \subseteq Y \longrightarrow \bigwedge_{i=1}^{10}\left(X_{i} \rightarrow Y_{i}\right)$
- If X and Y have different universes, use smallest range containing both
- Cardinality: $x=|Y| \longrightarrow x=\sum_{i=1}^{10} Y_{i}$

Set Operations

- set of $1 . .10: Y \longrightarrow Y_{1}, \ldots, Y_{10}$
- Y_{i} encodes $i \in Y$
- Membership: $x \in Y \longrightarrow \bigvee_{i=1}^{10}\left[(x=i) \wedge Y_{i}\right]$
- Subset: $X \subseteq Y \longrightarrow \bigwedge_{i=1}^{10}\left(X_{i} \rightarrow Y_{i}\right)$
- If X and Y have different universes, use smallest range containing both
- Cardinality: $x=|Y| \longrightarrow x=\sum_{i=1}^{10} Y_{i}$
- Similar for other operators: union, intersection, difference, symmetric difference

Arrays of Booleans/Integers/Sets

- Index range fixed at compile time
- Decompose into individual variables $Y[1 . .10] \longrightarrow Y_{1}, \ldots, Y_{10}$
- Handling variable indices

$$
Y[x]=z \longrightarrow \bigvee_{i=1}^{10}\left[(x=i) \wedge\left(Y_{i}=z\right)\right]
$$

Optimization Problems

- Optimization of variable only (optimization of expression eliminated using auxiliary variable)
- Binary search for increasingly optimal solutions
- Each step of search is a satisfaction problem
- At most $k+1$ subproblems (log of domain size)

Complexity of Encoding

- Quadratic in k for $\times, /, \%$, linear constraints
- Linear for $+,-, \|, \min , \max ,=, \neq, \leq,<, \geq,>$
- Linear in size of array for array access with variable index
- Linear in size of universe of set for set constraints
- In practice, often millions of variables \& clauses

Weaknesses and Strengths

- Domain knowledge lost
- Binary search blind
- Propagation weak for some types of constraints
- All constraints propagated seamlessly at once
- Clause learning more powerful than traditional nogood learning
- SAT heuristics good at real-world problems

Empirical Evaluation

- Use all benchmark groups \& examples in MiniZinc distribution (3/3/2008)
- 488 problems in 21 groups: 12 satisfaction, 8 optimization, 1 mixed
- rectangle packing, linear equations, car sequencing, curriculum design, social golfers, job shop scheduling, nurse scheduling, n-queens, truck scheduling, warehouse planning, math puzzles, ...
- Compare with G12/FD \& Gecode/FlatZinc
- 4-hour time limit for each run

Overall Result

\# of problems solved out of 488

FznTini G12/FD Gecode/FlatZinc 263103178

Easy Cases for All

Problem	Inst.	FznTini		G12/FD		Gecode/FlatZinc	
		Solved	Time	Solved	Time	Solved	Time
alpha	1	1	1.65	1	0.10	1	239.20
areas	4	4	0.69	4	0.71	4	0.04
eq	1	1	49.92	1	0.18	1	0.00
examples	18	18	2076.74	18	1557.62	18	2.87
kakuro	6	6	0.17	6	1.10	6	0.01
knights	4	4	0.78	4	390.79	4	1.01
photo	1	1	0.08	1	0.20	1	0.00

Bad Cases for Booleanization

Problem	Inst.		FznTini		G12/FD		Gecode/FlatZinc	
		Solved	Time	Solved	Time	Solved	Time	
cars	79	1	3.34	1	0.15	1	0.01	
golfers	9	3	6278.30	4	12.88	6	1297.26	
golomb	5	4	2030.23	5	323.54	5	10.35	
magicseq	7	4	9939.32	7	172.12	7	9.19	
queens	6	5	4168.79	6	90.68	3	0.33	
trucking	10	9	14747.10	10	196.48	10	86.52	

Good Cases for Booleanization

Problem	Inst.	FznTini		G12/FD		Gecode/FlatZinc	
		Solved	Time	Solved	Time	Solved	Time
packing	50	9	2843.46	7	2447.65	7	44.13
bibd	9	8	16.17	8	757.72	6	197.48
curriculum	3	3	12.76	2	13.17	0	-
jobshop	73	19	50294.40	2	1764.65	2	31.6
nurse sch.	100	99	1800.36	1	3.97	0	-
perfect sq.	10	10	548.41	4	4350.19	5	2024.85
warehouses	10	10	671.71	9	2266.44	9	221.83

Summary and Opportunities

- SAT works!
- More compact and/or propagation friendly encodings of constraints
- Direct encoding of global constraints
- More informed search (than blind binary search) for optimization problems
- Deeper empirical and theoretical studies of power and limitations
- Hybridizations of SAT and other techniques

Extensions of SAT

- Max-SAT
- Model counting
- Knowledge compilation
- Quantified Boolean formulas
- Pseudo-Boolean formulas

Max-SAT

Satisfy max \# of clauses
Clauses can have weights

- satisfy clauses with max sum of weights

Can have hard clauses

- these must be satisfied
- maximize with respect to rest

Model Counting

Compute \# of models (satisfying assignments)
\#P-complete
Literals can have weights

- weight of model: product of literal weights
- compute sum of weights of models
- closely related to probabilistic reasoning

Knowledge Compilation

Put formula into given logical form

- to support efficient (poly-time) operations

Target compilation forms

- decomposable negation normal form
- binary decision diagrams
- prime implicates, ...

Forms differ in succinctness \& tractability

- pick most succinct form that supports desired operations
- need to develop compilers for them

Quantified Boolean Formula

$\forall X \exists Y \forall Z(X \vee Z) \wedge Y$

Quantified Boolean Formula

$\forall X \exists Y \forall Z(X \vee Z) \wedge Y$

- all variables quantified

Is formula true?
PSPACE-complete

Pseudo-Boolean Formula

Pseudo-Boolean constraint

- $2 X+Y+3 Z<5$

Pseudo-Boolean Formula

Pseudo-Boolean constraint

- $2 X+Y+3 Z<5$

Special case: cardinality constraint

- $X+Y+Z>2$

SAT Resources

- SAT conferences, www.satisfiability.org
- SAT competitions, www.satcompetition.org
- SAT Live, www.satlive.org
- Handbook of satisfiability

