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Overview

I Satisfiability

I Algorithms

I Applications

I Extensions
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Satisfiability

Broadly, can set of constraints
be satisfied?

Example: neighbors have
different colors on map

WA 6= NT ,WA 6= SA, . . .
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Boolean Satisfiability (SAT)

All variables are Boolean (true/false)

Constraints are clauses

I A ∨ B ,B ∨ C ∨ D, . . .

I disjunction (logical OR) of literals

I literal: variable or its negation

I set of clauses: conjunctive normal form (CNF)

Clause satisfied when ≥ 1 literal is true
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Why CNF?

Any Boolean formula can be put in CNF

With auxilary variables, polynomial-size CNF
preserves satisfiability

Modeling is relatively natural

I problem broken into parts/steps

I model each part/step as (small) set of clauses

Jinbo Huang Introduction to Satisfiability



Why Boolean: Versatility

Can model many types of problems

I planning/scheduling, spatial/temporal
reasoning, hardware/software verification, test
generation, diagnosis, bioinformatics, . . .

WA 6= NT translates into
WAR → NTR ,WAB → NTB ,WAG → NTG , . . .

(X → Y is short for X ∨ Y )

Encoding can be larger, but reasoning not
necessarily slower
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Why Boolean: NP-Completeness

All of NP translate to SAT in polynomial time

I p ∈ NP ⇒ p is solved by an algorithm
I algo. works by moving from one state to next

I content of memory (computer) or tape (Turing
machine)

I encode state with set of Boolean variables
I size of state: polynomial
I # of states needed: polynomial

I moves determined by instructions in algo.
I encode instructions with Boolean formulas
I # of sets needed: polynomial

I write formula that is satisfiable iff algorithm
says YES
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Why Boolean: Practical Solvers

Often efficient & scalable on real-world problems

I often handle millions of clauses

Some techniques not readily applicable to constraint
solvers

I fast propagation (literal watching)

I learning & restarts (exponential boost)

I decision heuristic (driven by learning)
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Algorithms for SAT

Clause learning

I top 3 in Application, SAT Competition 2009:
precosat, glucose, LySAT

I 2 of top 3 in Crafted: clasp, minisat

Local search

I top 3 in Random Satisfiable: TNM,
gnovelty+2, hybridGM3

Other algorithms

I lookahead, solver portfolios

Jinbo Huang Introduction to Satisfiability



Algorithm: Enumeration

{A ∨ B ,B ∨ C}

Is formula satisfiable?

8 assignments to ABC : enumerate & check, until
model found, e.g., A = B = C = t

Exponential in # of variables in worst case (fine,
but can try to do better in average case)
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Algorithm: Enumeration by Search

{A ∨ B ,B ∨ C}
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Conditioning

{A ∨ B ,B ∨ C}|A

'
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%
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Conditioning

{A ∨ B ,B ∨ C}|A {B ,B ∨ C}|B {C}

Simplifies formula

I false literal disappears from clause

I true literal makes clause disappear

Leaves of search tree

I empty clause generated: formula falsified

I all clauses gone: formula satisfied

Not necessarily 2n leaves, even in case of UNSAT
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Early Backtracking

Backtrack as soon as empty clause generated

Can we do even better?

What about unit clauses?
{A ∨ B ,B ∨ C}|A {B ,B ∨ C}

B must be true, no need for two branches

Setting B = t may lead to more unit clauses, repeat
till no more (or till empty clause)

Known as unit propagation
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Algorithm: DPLL

Same kind of search tree, each node augmented
with unit propagation

I multiple assignments in one level
I decision & implications

I may not need n levels to reach leaf

What (completely) determines search tree?
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DPLL: Variable Ordering

Can have huge impact on efficiency

Example: unit propagation lookahead, as in satz

I short clauses are good, more likely to result in
unit propagation

I tentatively try each variable, count new binary
clauses generated

I select variable with highest score:
w(X ) · w(X ) · 1024 + w(X ) + w(X )

Generally different orders down different branches:
dynamic ordering
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Enhancement

Given variable ordering, search tree is fixed

How can we possibly reduce search tree further?

Backtrack earlier

Backtracking occurs (only) when empty clause
generated

Empty clause generated (only) by unit propagation
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Empowering Unit Propagation

Unit propagation determined by set of clauses

More clauses ⇒ (potentially) more propagation,
earlier empty clause (backtrack), smaller search tree

What clauses to add?

I not already in CNF

I logically implied by CNF (or correctness lost)

I empower UP

Jinbo Huang Introduction to Satisfiability



Empowering Unit Propagation

Unit propagation determined by set of clauses

More clauses ⇒ (potentially) more propagation,
earlier empty clause (backtrack), smaller search tree

What clauses to add?

I not already in CNF

I logically implied by CNF (or correctness lost)

I empower UP

Jinbo Huang Introduction to Satisfiability



Empowering Unit Propagation

Unit propagation determined by set of clauses

More clauses ⇒ (potentially) more propagation,
earlier empty clause (backtrack), smaller search tree

What clauses to add?

I not already in CNF

I logically implied by CNF (or correctness lost)

I empower UP

Jinbo Huang Introduction to Satisfiability



Empowering Unit Propagation

Unit propagation determined by set of clauses

More clauses ⇒ (potentially) more propagation,
earlier empty clause (backtrack), smaller search tree

What clauses to add?

I not already in CNF

I logically implied by CNF (or correctness lost)

I empower UP

Jinbo Huang Introduction to Satisfiability



Empowering Unit Propagation

Unit propagation determined by set of clauses

More clauses ⇒ (potentially) more propagation,
earlier empty clause (backtrack), smaller search tree

What clauses to add?

I not already in CNF

I logically implied by CNF (or correctness lost)

I empower UP

Jinbo Huang Introduction to Satisfiability
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I Conflict in level 3: ∆|A,B,C ⇒ X
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I What clause would have allowed UP to derive

X in level 0? A ∨ X (A→ X )
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Implication Graph

1 : A,B
2 : B ,C
3 : A,X ,Y
4 : A,X ,Z
5 : A,Y ,Z
6 : A,X ,Z
7 : A,Y ,Z

8 : A,X
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Conflict Analysis

1 : A,B
2 : B ,C
3 : A,X ,Y
4 : A,X ,Z
5 : A,Y ,Z
6 : A,X ,Z
7 : A,Y ,Z

I Cut: roots (decisions) on one side, sink
(contradiction) on other

I Arrows across cut together responsible for
contradiction

I Conflict set: tail points of arrows
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Conflict Set

1 : A,B
2 : B ,C
3 : A,X ,Y
4 : A,X ,Z
5 : A,Y ,Z
6 : A,X ,Z
7 : A,Y ,Z

I Cut 1: {A,X}
I Cut 2: {A,Y }
I Cut 3: {A,Y ,Z}

Jinbo Huang Introduction to Satisfiability



Conflict Clause

1 : A,B
2 : B ,C
3 : A,X ,Y
4 : A,X ,Z
5 : A,Y ,Z
6 : A,X ,Z
7 : A,Y ,Z

I Cut 1: {A,X} ⇒ A ∨ X

I Cut 2: {A,Y } ⇒ A ∨ Y

I Cut 3: {A,Y ,Z} ⇒ A ∨ Y ∨ Z (existing)
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Conflict Clause

1 : A,B
2 : B ,C
3 : A,X ,Y
4 : A,X ,Z
5 : A,Y ,Z
6 : A,X ,Z
7 : A,Y ,Z

I Cut 1: {A,X} ⇒ A ∨ X

I Cut 2: {A,Y } ⇒ A ∨ Y

I Which clause to learn?
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Unique Implication Point (UIP)

Prefer shorter explanation

I shorter clause closer to unit, more empowering

Never need > 1 node from latest level

I latest decision + history always suffices

UIP: lies on all paths from decision to contradiction
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UIP: lies on all paths from decision to contradiction
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1-UIP Learning

Work from sink backwards
Stop when conflict set includes a UIP, and no other
nodes, of latest level: 1-UIP clause (A ∨ Y )

I 2-UIP, 3-UIP, . . ., All-UIP

Empirically shown effective, most common choice
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Backtracking to Assertion Level

Learned clause: A ∨ Y

I becomes unit (Y ) when erasing current level

I asserting clause: UP will assert Y
(empowerment)
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Backtracking to Assertion Level

Backtrack as far as possible, as long as UP remains
empowered

Assertion level: 2nd highest level in learned clause,
or -1 if learned clause is unit

I A0 ∨ B1 ∨ C1 ∨ X4: aLevel = 1

I X4: aLevel = −1

I learned unit clause asserted before any decision

Empirically shown effective, most common choice
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Clause Learning: Putting It Together

repeat
if no free variable

return SAT
pick free variable X and set either X or X
if contradiction

if level < 0
return UNSAT

learn clause
backtrack anywhere learned clause 6= ∅

I No more branching, unlike DPLL

I Conflict-driven, repeated probing
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Clause Learning: Putting It Together

repeat
if no free variable

return SAT
pick free variable X and set either X or X
if contradiction

if level < 0
return UNSAT

learn clause
backtrack anywhere learned clause 6= ∅

I Completeness?

I Completeness?
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Clause Learning: Putting It Together

repeat
if no free variable

return SAT
pick free variable X and set either X or X
if contradiction

if level < 0
return UNSAT

learn clause
backtrack anywhere learned clause 6= ∅

I Will terminate because learned clause must be
new, |clauses| finite
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Clause Learning: Putting It Together

repeat
if no free variable

return SAT
pick free variable X and set either X or X
if contradiction

if level < 0
return UNSAT

learn clause
backtrack anywhere learned clause 6= ∅

I Components: decision heuristic, learning
method, backtracking method

Jinbo Huang Introduction to Satisfiability



Decision Heuristic: Popular Ideas

Learned conflict clause summarizes cause of failure

Try to satisfy conflict clauses
I helps eventually satisfy whole CNF if SAT
I helps terminate early if UNSAT

Maintain occurrence count for each literal
I increment on learning new clause
I periodically shrink all counts: recent activity

more relevant

Pick variable with highest count (+&− combined)
I set to same value it had last: progress saving
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Progress Saving

Backtracking erases multiple levels of assignments

Some of those may have satisfied parts of CNF

Reusing assignments helps avoid having to
rediscover those partial solutions
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Restarts: Special Case of Backtracking

Re-make decisions in light of new clauses

I restart at predetermined intervals

I restart based on current search activity

Important empirically

I solvers with no restarts uncompetitive

I performance sensitive to restart policy

Important theoretically

I clause learning more powerful than DPLL,
proof relies on restarts
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Efficient Unit Propagation

Need to detect unit clauses

Naively, keep track of clause lengths: when setting
X , decrement lengths of clauses that contain X

I inefficient when CNF is large

Pick 2 literals to watch in each clause

I watch A,B in A ∨ B ∨ C ∨ D

I clause cannot be unit unless A or B is set

I do nothing when C or D is assigned

Scales to millions of clauses in practice

Jinbo Huang Introduction to Satisfiability



Clause Learning: Summary

Fundamentally different search scheme from DPLL

I no branching

I sequence of decisions, learn, backtrack, repeat

I theoretically more powerful than DPLL

What determines search behavior

I methods for decision, learning, backtracking
(including restarts)

I popular choices: literal activity + progress
saving, 1-UIP learning, backtracking to
assertion level (various restart policies being
explored)
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Clause Learning and Resolution

Resolution p-simulates clause learning

I Each learned clause obtained by resolution

I At termination, resolution proof can be
extracted (in polytime)
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Clause Learning and Resolution

Clause learning p-simulates resolution
I Have clause learning absorb interesting clauses

of resolution proof (in polytime)
I interesting: 1-empowering, 1-provable
I absorb: render it useless (not 1-empowering)

I Interesting clause always exists unless ∆
1-inconsistent

I Hence clause learning will terminate after
absorbing all interesting clauses
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Hard Problems for Resolution: Pigeonhole

Pij : pigeon i in hole j

P11 ∨ P12, P21 ∨ P22, P31 ∨ P32

¬P11 ∨ ¬P21, ¬P21 ∨ ¬P31, ¬P11 ∨ ¬P31

¬P12 ∨ ¬P22, ¬P22 ∨ ¬P32, ¬P12 ∨ ¬P32

No polynomial resolution proof for PHn
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Extended Resolution

Introduce new variables into proof

Extension: x ↔ φ

I φ: formula over existing variables

I Suffices to restrict φ to l1 ∨ l2

Otherwise same as resolution
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Extended Resolution

Can simulate (compact) proof by induction

Pigeonhole: No 1-to-1 map from {1, . . . , n} to
{1, . . . , n − 1}

I Base case (n = 2): easy

I If f (i) maps {1, . . . , n} to {1, . . . , n − 1}
I Define f ′(i) from {1, . . . , n − 1} to
{1, . . . , n − 2}

I f ′(i) = f (i) if f (i) 6= n − 1
I f ′(i) = f (n) otherwise
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Extended Resolution

Induction proof
I If f (i) maps {1, . . . , n} to {1, . . . , n − 1}
I Define f ′(i) from {1, . . . , n − 1} to
{1, . . . , n − 2}

I f ′(i) = f (i) if f (i) 6= n − 1
I f ′(i) = f (n) otherwise

ER proof simulating above
I {Pij} describes f (PHn), introduce {Qij} to

describe f ′ (PHn−1)
I Qij ↔ (Pij ∨ (Pi ,n−1 ∧ Pnj))

I O(n3) resolutions to derive PHn−1

I Repeat until base case PH2:
R11,R21,¬R11 ∨ ¬R21
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Extended Resolution

Strictly more powerful than resolution
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Adding Extensions to Clause Learning

How does solver decide?

Compare simulation of resolution by solver

I Resolution itself provides no guidance on what
clauses to resolve

I Solver uses probings as guide

I Reduces search space, retains power

Prune space of extensions
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I Resolution itself provides no guidance on what
clauses to resolve
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I Reduces search space, retains power

Prune space of extensions
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Useless Extensions

x ↔ l1 ∨ l2 useless if ∆ ∪ {l1, l2} ` false

Lemma: Banning them does not affect power of ER

Efficient filtering of useless extensions?
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Useless Extensions

Theorem: Solver need only pick l1 ∨ l2 from
assignment stack (with negation)

I Due to forced assignments, not all
combinations of l1 ∨ l2 possible

I But those would be useless anyway

I Full power of ER retained

I Decision heuristic doubles as guide for
extensions
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A More Concrete Heuristic

Pick l1 ∨ l2 from learned clause, if length ≥ k

I Literals in learned clause must come from
assignment stack (with negation)

Open question: Does this restrict power of ER
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Experiments: Application Benchmarks

Results mixed

However, where it worked, improvement very
substantial

I From unsolved to solved (in 5–30 minutes)

I Search tree size reduced by factor of 5–42
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Experiments: Crafted Benchmarks

gt-ordering: any partial order on {1, . . . , n} must
have maximal element

7 instances, none could be solved by baseline solver

All solved, in 39 seconds
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Extended Clause Learning: Summary

Extensions can lead to substantial practical gains

Extension heuristics a promising research direction

Catch: More powerful proof system, harder to find
short proof
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Local Search

Clause learning poor on random problems

I good at exploiting structure

I little/no structure in random problems

Local search

I start with complete assignment

I if CNF satisfied, done; else flip a var, repeat

I incomplete: may not find model, cannot prove
unsatisfiability
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GSAT

repeat MAX-TRIES times
randomly generate assignment α
repeat MAX-FLIPS times

if α satisfies CNF then return SAT
flip variable in α for least falsified clauses

return FAIL

I quickly descends toward better assignment

I spends much time moving “sideways” on a
plateau, before exiting into better plateau

I may get stuck in local minimum
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Walksat

I flip variable in falsified clause (more focus)

I introduce noise to escape from plateaus

repeat MAX-TRIES times
randomly generate assignment α
repeat MAX-FLIPS times

if α satisfies CNF then return SAT
randomly pick falsified clause
if ∃ “freebie move” then do it
else

with probability p, flip random var in clause
else flip var in clause for least “break count”

return FAIL
Jinbo Huang Introduction to Satisfiability



Phase Transition in Random Problems

k-SAT: k literals per clause

Vary # of (random) clauses for given # of variables

I low ratio: nearly all SAT, easy

I high ratio: nearly all UNSAT, easy

I phase transition (≈ 4.2 for 3-SAT): about half
SAT, half UNSAT, hardest
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Solver Portfolio

Keep collection of solvers

Train solver selector on large set of instances

Use it to select solver for given instance

1 of top 3 in Crafted, SAT Competition 2009:
SATzilla
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Applications of SAT

I Qualitative temporal reasoning

I Constraint solving
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Qualitative Temporal Reasoning

Reasoning about time intervals (events)

Qualitative: relations between intervals

I not concerned with exact time points

“Peter reads newspaper during
breakfast, goes to work after
breakfast”
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Interval Algebra (IA)

I All have inverse, total of 13 atomic relations
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The Reasoning Task

Is given temporal (IA) network
satisfiable?

I nodes: variables

I edges: constraints

I infinite domain (all possible intervals on a line)
I traditional search doesn’t work

I 213 = 8192 possible relations
I “Peter reads private email before or after work”
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Transforming Search Space

Don’t search for instantiation of nodes (intervals)

Search for instantiation of edges

I edge: set of atomic relations

I any consistent instantiation of nodes satisfies
exactly 1 per edge

I need only search for satisfiable atomic
refinement of network

Theorem
Atomic IA network is satisfiable iff path-consistent
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Path Consistency

Any consistent assignment for
2 nodes can be extended to
consistent assignment for 3rd

∀ABC , a, b, if Aa ∼ Bb then ∃c
Cc ∼ Aa and Cc ∼ Bb

I reading 7:10–7:20, breakfast 7:00–7:30

I can assign work 8:00–12:00

I missing edge: universal relation
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Path Consistency

Any consistent assignment for
2 nodes can be extended to
consistent assignment for 3rd

∀ABC , a, b, if Aa ∼ Bb then ∃c
Cc ∼ Aa and Cc ∼ Bb

I reading 7:10–7:20, work 7:15–12:00

I no way to assign breakfast

I refine (invisible) edge W-R: universal → after
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Ensuring Path Consistency

Atomic network: ∀ABC : RAC ∈ RAB ◦ RBC

Composition
I {d} ◦ {p} = {p}
I {d} ◦ {o} = {p,m, o, s, d}

R12d ,R23p ∨R23o,R13m ∨R13d ∨R13f

R12d ∧ R23p → false

R12d ∧ R23o → (R13m ∨ R13d)

Alternatively, use inequalities
between points, better in practice
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Solving IA Networks by SAT

Encode each 4 in complete graph

I invisible edges are edges with universal relation

I
(
n
3

)
= n(n−1)(n−2)

6 triangles

CNF satisfiable iff IA network satisfiable
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More Compact Encoding

Jinbo Huang Introduction to Satisfiability



More Compact Encoding

Encode 2 partitions separately

I # of triangles from 20 to 11

I partition recursively

I soundness nontrivial

Theorem
IA has atomic network amalgamation property
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Empirical Results: 50–100 Nodes
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Empirical Results: 110–200 Nodes
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Applications of SAT

I Qualitative temporal reasoning

I Constraint solving
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A Constraint Model

int: z = 10;
array [1..z] of 1..z*z: sq = [x*x | x in 1..z];
array [1..z] of var 0..z: s;
var 1..z: k;
var 1..z: j;
constraint forall ( i in 2..z ) ( s[i] > 0 -> s[i-1] > s[i] );
constraint s[1] < k;
constraint sum ( i in 1..z ) ( sq[s[i]] ) = sq[k];
constraint s[j] > 0;
solve maximize j;

Perfect Square: Find largest set of integers
⊆ {1, . . . , z} whose squares sum up to a square
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Elements of Constraint Model

I Integer and set comparisons

I Integer arithmetic

I Linear equalities and inequalities

I Set operations

I Array access with variable index

I Global constraints

I Satisfaction and optimization
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Existing Methods

I Pseudo-Boolean constraints to SAT

I Boolean cardinality constraints to SAT

I Integer linear constraints to SAT

I Extensional constraints to SAT

I Set constraints to BDDs

I Satisfiability modulo theories

I Lazy clause generation (hybrid of FD and SAT)
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New Approach

Everything to SAT
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Challenge

Desired encoding varies with constraint type

I Unary suits cardinality constraints

I Direct encoding suits extensional constraints

I Primitive comparisons can encode linear
constraints

I None good for arbitrary arithmetic

Jinbo Huang Introduction to Satisfiability



Solution

One-size-fits-all binary encoding

I Arbitrary arithmetic supported

I Heterogeneous model into single Boolean
formula

I Con: potential loss of propagation power

Adopt constraint language MiniZinc

I Reasonably simple yet expressive

I Many benchmarks and solvers available for
empirical study
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MiniZinc

I Developed by G12 @ NICTA

I Solver independent modeling

I Reasonable compromise between simplicity &
expressivity

I Comes with translation to FlatZinc, suitable as
low-level solver input language

I Large pool of benchmarks & examples

I Encourages comparison of different solvers
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Binary Encoding

I Use k bits per integer, in two’s complement
I Balance between efficiency and completeness

I Large k : large encoding, inefficient
I Small k : may fail to find solution

I Start with k sufficient for constants in model

I Increase k , re-encode, and re-solve until
solution found or limit (32, e.g.) reached
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Integer Comparisons

I x3© x2© x1© ≤ y3© y2© y1©

−→

(x3 > y3) ∨ [(x3 = y3) ∧ ( x2© x1© ≤unsigned y2© y1©)]

I x2© x1© ≤unsigned y2© y1© −→

(x2 < y2) ∨ [(x2 = y2) ∧ (x1 ≤ y1)]

I Similar for other operators: =, 6=, <,≥, >
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Integer Arithmetic

I Adder and multiplier as in computer hardware

I Constraints to prevent overflow
+: sum temporarily has k + 1 bits

leading two bits must be identical
×: product temporarily has 2k bits

leading k + 1 bits must be identical

I Subtraction, division, and modulo via + and ×
I max(x , y , z) −→

[(y ≤ x)→ (x = z)] ∧ [(y > x)→ (y = z)]

I Other operators: negation, absolute value, min

Jinbo Huang Introduction to Satisfiability



Integer Arithmetic

I Adder and multiplier as in computer hardware

I Constraints to prevent overflow
+: sum temporarily has k + 1 bits

leading two bits must be identical
×: product temporarily has 2k bits

leading k + 1 bits must be identical

I Subtraction, division, and modulo via + and ×

I max(x , y , z) −→
[(y ≤ x)→ (x = z)] ∧ [(y > x)→ (y = z)]

I Other operators: negation, absolute value, min

Jinbo Huang Introduction to Satisfiability



Integer Arithmetic

I Adder and multiplier as in computer hardware

I Constraints to prevent overflow
+: sum temporarily has k + 1 bits

leading two bits must be identical
×: product temporarily has 2k bits

leading k + 1 bits must be identical

I Subtraction, division, and modulo via + and ×
I max(x , y , z) −→

[(y ≤ x)→ (x = z)] ∧ [(y > x)→ (y = z)]

I Other operators: negation, absolute value, min

Jinbo Huang Introduction to Satisfiability



Integer Arithmetic

I Adder and multiplier as in computer hardware

I Constraints to prevent overflow
+: sum temporarily has k + 1 bits

leading two bits must be identical
×: product temporarily has 2k bits

leading k + 1 bits must be identical

I Subtraction, division, and modulo via + and ×
I max(x , y , z) −→

[(y ≤ x)→ (x = z)] ∧ [(y > x)→ (y = z)]

I Other operators: negation, absolute value, min

Jinbo Huang Introduction to Satisfiability



Linear Constraints

I a1x1 + . . . + anxn op© b
op© can be =, 6=,≤, <,≥, >

I Decompose into multiplications, summations,
comparison

I Use auxiliary variables to keep size linear in n
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Set Operations

I set of 1..10 : Y

−→ Y1, . . . ,Y10

I Yi encodes i ∈ Y

I Membership: x ∈ Y −→
∨10

i=1[(x = i) ∧ Yi ]

I Subset: X ⊆ Y −→
∧10

i=1(Xi → Yi)
I If X and Y have different universes, use smallest

range containing both

I Cardinality: x = |Y | −→ x =
∑10

i=1 Yi

I Similar for other operators: union, intersection,
difference, symmetric difference

Jinbo Huang Introduction to Satisfiability



Set Operations

I set of 1..10 : Y −→ Y1, . . . ,Y10

I Yi encodes i ∈ Y

I Membership: x ∈ Y −→
∨10

i=1[(x = i) ∧ Yi ]

I Subset: X ⊆ Y −→
∧10

i=1(Xi → Yi)
I If X and Y have different universes, use smallest

range containing both

I Cardinality: x = |Y | −→ x =
∑10

i=1 Yi

I Similar for other operators: union, intersection,
difference, symmetric difference

Jinbo Huang Introduction to Satisfiability



Set Operations

I set of 1..10 : Y −→ Y1, . . . ,Y10

I Yi encodes i ∈ Y

I Membership: x ∈ Y −→
∨10

i=1[(x = i) ∧ Yi ]

I Subset: X ⊆ Y −→
∧10

i=1(Xi → Yi)
I If X and Y have different universes, use smallest

range containing both

I Cardinality: x = |Y | −→ x =
∑10

i=1 Yi

I Similar for other operators: union, intersection,
difference, symmetric difference

Jinbo Huang Introduction to Satisfiability



Set Operations

I set of 1..10 : Y −→ Y1, . . . ,Y10

I Yi encodes i ∈ Y

I Membership: x ∈ Y −→
∨10

i=1[(x = i) ∧ Yi ]

I Subset: X ⊆ Y −→
∧10

i=1(Xi → Yi)

I If X and Y have different universes, use smallest
range containing both

I Cardinality: x = |Y | −→ x =
∑10

i=1 Yi

I Similar for other operators: union, intersection,
difference, symmetric difference

Jinbo Huang Introduction to Satisfiability



Set Operations

I set of 1..10 : Y −→ Y1, . . . ,Y10

I Yi encodes i ∈ Y

I Membership: x ∈ Y −→
∨10

i=1[(x = i) ∧ Yi ]

I Subset: X ⊆ Y −→
∧10

i=1(Xi → Yi)
I If X and Y have different universes, use smallest

range containing both

I Cardinality: x = |Y | −→ x =
∑10

i=1 Yi

I Similar for other operators: union, intersection,
difference, symmetric difference

Jinbo Huang Introduction to Satisfiability



Set Operations

I set of 1..10 : Y −→ Y1, . . . ,Y10

I Yi encodes i ∈ Y

I Membership: x ∈ Y −→
∨10

i=1[(x = i) ∧ Yi ]

I Subset: X ⊆ Y −→
∧10

i=1(Xi → Yi)
I If X and Y have different universes, use smallest

range containing both

I Cardinality: x = |Y | −→ x =
∑10

i=1 Yi

I Similar for other operators: union, intersection,
difference, symmetric difference

Jinbo Huang Introduction to Satisfiability



Set Operations

I set of 1..10 : Y −→ Y1, . . . ,Y10

I Yi encodes i ∈ Y

I Membership: x ∈ Y −→
∨10

i=1[(x = i) ∧ Yi ]

I Subset: X ⊆ Y −→
∧10

i=1(Xi → Yi)
I If X and Y have different universes, use smallest

range containing both

I Cardinality: x = |Y | −→ x =
∑10

i=1 Yi

I Similar for other operators: union, intersection,
difference, symmetric difference

Jinbo Huang Introduction to Satisfiability



Arrays of Booleans/Integers/Sets

I Index range fixed at compile time

I Decompose into individual variables
Y [1..10] −→ Y1, . . . ,Y10

I Handling variable indices
Y [x ] = z −→

∨10
i=1[(x = i) ∧ (Yi = z)]
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Optimization Problems

I Optimization of variable only (optimization of
expression eliminated using auxiliary variable)

I Binary search for increasingly optimal solutions

I Each step of search is a satisfaction problem

I At most k + 1 subproblems (log of domain size)
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Complexity of Encoding

I Quadratic in k for ×, /,%, linear constraints

I Linear for +,−, ||,min,max ,=, 6=,≤, <,≥, >
I Linear in size of array for array access with

variable index

I Linear in size of universe of set for set
constraints

I In practice, often millions of variables & clauses
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Weaknesses and Strengths

I Domain knowledge lost

I Binary search blind

I Propagation weak for some types of constraints

I All constraints propagated seamlessly at once

I Clause learning more powerful than traditional
nogood learning

I SAT heuristics good at real-world problems

Jinbo Huang Introduction to Satisfiability



Empirical Evaluation

I Use all benchmark groups & examples in
MiniZinc distribution (3/3/2008)

I 488 problems in 21 groups: 12 satisfaction, 8
optimization, 1 mixed

I rectangle packing, linear equations, car sequencing,
curriculum design, social golfers, job shop
scheduling, nurse scheduling, n-queens, truck
scheduling, warehouse planning, math puzzles, ...

I Compare with G12/FD & Gecode/FlatZinc

I 4-hour time limit for each run
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Overall Result

# of problems solved out of 488

FznTini G12/FD Gecode/FlatZinc
263 103 178
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Easy Cases for All

Problem Inst. FznTini G12/FD Gecode/FlatZinc

Solved Time Solved Time Solved Time

alpha 1 1 1.65 1 0.10 1 239.20

areas 4 4 0.69 4 0.71 4 0.04

eq 1 1 49.92 1 0.18 1 0.00

examples 18 18 2076.74 18 1557.62 18 2.87

kakuro 6 6 0.17 6 1.10 6 0.01

knights 4 4 0.78 4 390.79 4 1.01

photo 1 1 0.08 1 0.20 1 0.00
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Bad Cases for Booleanization

Problem Inst. FznTini G12/FD Gecode/FlatZinc

Solved Time Solved Time Solved Time

cars 79 1 3.34 1 0.15 1 0.01

golfers 9 3 6278.30 4 12.88 6 1297.26

golomb 5 4 2030.23 5 323.54 5 10.35

magicseq 7 4 9939.32 7 172.12 7 9.19

queens 6 5 4168.79 6 90.68 3 0.33

trucking 10 9 14747.10 10 196.48 10 86.52
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Good Cases for Booleanization

Problem Inst. FznTini G12/FD Gecode/FlatZinc

Solved Time Solved Time Solved Time

packing 50 9 2843.46 7 2447.65 7 44.13

bibd 9 8 16.17 8 757.72 6 197.48

curriculum 3 3 12.76 2 13.17 0 —

jobshop 73 19 50294.40 2 1764.65 2 31.6

nurse sch. 100 99 1800.36 1 3.97 0 —

perfect sq. 10 10 548.41 4 4350.19 5 2024.85

warehouses 10 10 671.71 9 2266.44 9 221.83

Jinbo Huang Introduction to Satisfiability



Summary and Opportunities

I SAT works!

I More compact and/or propagation friendly
encodings of constraints

I Direct encoding of global constraints

I More informed search (than blind binary
search) for optimization problems

I Deeper empirical and theoretical studies of
power and limitations

I Hybridizations of SAT and other techniques
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Extensions of SAT

I Max-SAT

I Model counting

I Knowledge compilation

I Quantified Boolean formulas

I Pseudo-Boolean formulas
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Max-SAT

Satisfy max # of clauses

Clauses can have weights

I satisfy clauses with max sum of weights

Can have hard clauses

I these must be satisfied

I maximize with respect to rest
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Model Counting

Compute # of models (satisfying assignments)

#P-complete

Literals can have weights

I weight of model: product of literal weights

I compute sum of weights of models

I closely related to probabilistic reasoning
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Knowledge Compilation

Put formula into given logical form

I to support efficient (poly-time) operations

Target compilation forms

I decomposable negation normal form

I binary decision diagrams

I prime implicates, . . .

Forms differ in succinctness & tractability

I pick most succinct form that supports desired
operations

I need to develop compilers for them
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Quantified Boolean Formula

∀X∃Y ∀Z (X ∨ Z ) ∧ Y

I all variables quantified

Is formula true?

PSPACE-complete
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Pseudo-Boolean Formula

Pseudo-Boolean constraint

I 2X + Y + 3Z < 5

Special case: cardinality constraint

I X + Y + Z > 2
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SAT Resources

I SAT conferences, www.satisfiability.org

I SAT competitions, www.satcompetition.org

I SAT Live, www.satlive.org

I Handbook of satisfiability

Jinbo Huang Introduction to Satisfiability


