Introduction to Satisfiability

Jinbo Huang

NICTA and Australian National University
Overview

- Satisfiability
- Algorithms
- Applications
- Extensions
Broadly, can set of constraints be satisfied?

Example: neighbors have different colors on map

\[\text{WA} \neq \text{NT}, \text{WA} \neq \text{SA}, \ldots \]
Boolean Satisfiability (SAT)

All variables are Boolean (true/false)

Constraints are *clauses*

- \(A \lor B, \overline{B} \lor C \lor D, \ldots \)
- disjunction (logical OR) of *literals*
- literal: variable or its negation
- set of clauses: conjunctive normal form (CNF)

Clause satisfied when \(\geq 1 \) literal is true
Why CNF?

Any Boolean formula can be put in CNF

With auxiliary variables, polynomial-size CNF preserves satisfiability

Modeling is relatively natural

- problem broken into parts/steps
- model each part/step as (small) set of clauses
Why Boolean: Versatility

Can model many types of problems

- planning/scheduling, spatial/temporal reasoning, hardware/software verification, test generation, diagnosis, bioinformatics, . . .

WA ≠ NT translates into

(X → Y is short for ¬X ∨ Y)

Encoding can be larger, but reasoning not necessarily slower
All of NP translate to SAT in polynomial time

- $p \in \text{NP} \Rightarrow p$ is solved by an algorithm
- algo. works by moving from one state to next
 - content of memory (computer) or tape (Turing machine)
 - encode state with set of Boolean variables
 - size of state: polynomial
 - # of states needed: polynomial
- moves determined by instructions in algo.
 - encode instructions with Boolean formulas
 - # of sets needed: polynomial
- write formula that is satisfiable iff algorithm says YES
Why Boolean: Practical Solvers

Often efficient & scalable on real-world problems
 - often handle millions of clauses

Some techniques not readily applicable to constraint solvers
 - fast propagation (literal watching)
 - learning & restarts (exponential boost)
 - decision heuristic (driven by learning)
Algorithms for SAT

Clause learning
- top 3 in Application, SAT Competition 2009: precosat, glucose, LySAT
- 2 of top 3 in Crafted: CLASP, MINISAT

Local search
- top 3 in Random Satisfiable: TNM, gNOVELTY+2, hybridGM3

Other algorithms
- lookahead, solver portfolios
Algorithm: Enumeration

\[\{ \bar{A} \lor B, \bar{B} \lor C \} \]

Is formula satisfiable?
Algorithm: Enumeration

\{\overline{A} \lor B, \overline{B} \lor C\}

Is formula satisfiable?

8 assignments to \(ABC\): enumerate & check, until model found, e.g., \(A = B = C = t\)
Algorithm: Enumeration

\{\overline{A} \lor B, \overline{B} \lor C\}

Is formula satisfiable?

8 assignments to ABC: enumerate & check, until model found, e.g., $A = B = C = t$

Exponential in # of variables in worst case (fine, but can try to do better in average case)
Algorithm: Enumeration by Search

\[\{ \overline{A} \lor B, \overline{B} \lor C \} \]
Conditioning

\[\{ \overline{A} \lor B, \overline{B} \lor C \} \bigg|_A \]
Conditioning

\(\{ \overline{A} \lor B, \overline{B} \lor C \} \mid_A \{ B, \overline{B} \lor C \} \)
Conditioning

\[\{ \overline{A} \lor B, \overline{B} \lor C \}\mid_A \quad \{ B, \overline{B} \lor C \}\mid_B \]
Conditioning

\[\{ \overline{A} \lor B, \overline{B} \lor C \}\big|_A \quad \{ B, \overline{B} \lor C \}\big|_B \quad \{ C \} \]
Conditioning

\[\{ \overline{A} \lor B, \overline{B} \lor C \} \mid_A \{ B, \overline{B} \lor C \} \mid_B \{ C \} \]

Simplifies formula
- false literal disappears from clause
- true literal makes clause disappear

Leaves of search tree
- empty clause generated: formula falsified
- all clauses gone: formula satisfied

Not necessarily \(2^n \) leaves, even in case of UNSAT
Early Backtracking

Backtrack as soon as empty clause generated
Early Backtracking

Backtrack as soon as empty clause generated

Can we do even better?

\{A \lor B, B \lor C\} | A \{B, B \lor C\}

B must be true, no need for two branches

Setting $B = t$ may lead to more unit clauses, repeat till no more (or till empty clause)

Known as unit propagation

Jinbo Huang
Introduction to Satisfiability
Early Backtracking

Backtrack as soon as empty clause generated

Can we do even better?

What about unit clauses?

\[\{ \overline{A} \lor B, \overline{B} \lor C \} |_A \{ B, \overline{B} \lor C \} \]

\[B \text{ must be true, no need for two branches} \]

\[\text{Setting } B = t \text{ may lead to more unit clauses, repeat} \]

\[\text{till no more (or till empty clause)} \]

Known as unit propagation
Early Backtracking

Backtrack as soon as empty clause generated

Can we do even better?

What about unit clauses?
\[\{\overline{A} \lor B, \overline{B} \lor C\}\big|_A \{B, \overline{B} \lor C\}\]

\(B\) must be true, no need for two branches
Early Backtracking

Backtrack as soon as empty clause generated

Can we do even better?

What about unit clauses?
\[
\{\overline{A} \lor B, \overline{B} \lor C\}\big|_A \{B, \overline{B} \lor C\}
\]

\(B\) must be true, no need for two branches

Setting \(B = t\) may lead to more unit clauses, repeat till no more (or till empty clause)

Known as **unit propagation**
Algorithm: DPLL

Same kind of search tree, each node augmented with unit propagation

- multiple assignments in one level
 - decision & implications
- may not need \(n \) levels to reach leaf
Algorithm: DPLL

Same kind of search tree, each node augmented with unit propagation

- multiple assignments in one level
 - decision & implications
- may not need n levels to reach leaf

What (completely) determines search tree?
DPLL: Variable Ordering

Can have huge impact on efficiency

Example: unit propagation lookahead, as in SATZ

- short clauses are good, more likely to result in unit propagation
- tentatively try each variable, count new binary clauses generated
- select variable with highest score:
 \[w(X) \cdot w(\overline{X}) \cdot 1024 + w(X) + w(\overline{X}) \]

Generally different orders down different branches: dynamic ordering
Given variable ordering, search tree is fixed

How can we possibly reduce search tree further?
Given variable ordering, search tree is fixed

How can we possibly reduce search tree further?

Backtrack earlier
Given variable ordering, search tree is fixed

How can we possibly reduce search tree further?

Backtrack earlier

Backtracking occurs (only) when empty clause generated

Empty clause generated (only) by unit propagation
Empowering Unit Propagation

Unit propagation determined by set of clauses

More clauses \Rightarrow (potentially) more propagation, earlier empty clause (backtrack), smaller search tree
Empowering Unit Propagation

Unit propagation determined by set of clauses

More clauses \Rightarrow (potentially) more propagation, earlier empty clause (backtrack), smaller search tree

What clauses to add?
Empowering Unit Propagation

Unit propagation determined by set of clauses

More clauses \Rightarrow (potentially) more propagation, earlier empty clause (backtrack), smaller search tree

What clauses to add?

- not already in CNF
Empowering Unit Propagation

Unit propagation determined by set of clauses

More clauses \Rightarrow (potentially) more propagation, earlier empty clause (backtrack), smaller search tree

What clauses to add?

- not already in CNF
- logically implied by CNF (or correctness lost)
Empowering Unit Propagation

Unit propagation determined by set of clauses

More clauses \Rightarrow (potentially) more propagation, earlier empty clause (backtrack), smaller search tree

What clauses to add?

- not already in CNF
- logically implied by CNF (or correctness lost)
- empower UP
Clause Learning

\[A, B \]
\[B, C \]
\[\overline{A}, \overline{X}, Y \]
\[\overline{A}, X, Z \]
\[\overline{A}, Y, Z \]
\[\overline{A}, X, \overline{Z} \]
\[\overline{A}, Y, \overline{Z} \]
Clause Learning

\[\Delta |_A \]

\[\begin{align*}
A, B \\
B, C \\
\overline{A}, \overline{X}, Y \\
\overline{A}, X, Z \\
\overline{A}, Y, Z \\
\overline{A}, X, \overline{Z} \\
\overline{A}, Y, \overline{Z} \\
\end{align*} \]

Conflict in level 3: \[\Delta |_A \]

What clause would have allowed UP to derive \(X \) in level 0?

\[A \lor X (A \rightarrow X) \]
Clause Learning

$\Delta |_A$

A, B
B, C
$\overline{A}, \overline{X}, Y$
\overline{A}, X, Z
\overline{A}, Y, Z
$\overline{A}, X, \overline{Z}$

\overline{X}, Y
X, Z
Y, Z
X, \overline{Z}
Y, \overline{Z}

Conflict in level 3: $\Delta |_A$

$A, B, C \Rightarrow X$

B, C irrelevant: $\Delta |_A$

What clause would have allowed UP to derive X in level 0?

$A \lor X (A \rightarrow X)$
Clause Learning

\[\Delta|_A \quad \Delta|_{A,B} \]

\[
A, B \\
B, C \\
\bar{A}, \bar{X}, Y \\
\bar{A}, X, Z \\
\bar{A}, Y, Z \\
\bar{A}, X, \bar{Z} \\
\bar{A}, Y, \bar{Z} \\
\bar{A}, \bar{X}, Y \\
\bar{A}, \bar{X}, Z \\
\bar{A}, \bar{Y}, Z
\]
Clause Learning

| $\Delta|_A$ | $\Delta|_{A,B}$ |
|------------|--------------|
| A, B | $\overline{A}, \overline{X}, Y$ | X, Y |
| B, C | X, Z | X, Z |
| \overline{A}, X, Z | Y, Z | Y, Z |
| $\overline{A}, \overline{Y}, \overline{Z}$ | X, \overline{Z} | X, \overline{Z} |
| $\overline{A}, Y, \overline{Z}$ | Y, \overline{Z} | Y, \overline{Z} |

What clause would have allowed UP to derive X in level 0?

$A \lor X (A \rightarrow X)$
Clause Learning

| | \(\Delta|_A \) | \(\Delta|_{A,B} \) | \(\Delta|_{A,B,C} \) |
|---|----------------|----------------|----------------|
| | \(A, B \) | \(B, C \) | \(B, C \) |
| | \(\overline{A}, \overline{X}, Y \) | \(\overline{X}, Y \) | \(\overline{X}, Y \) |
| | \(\overline{A}, X, Z \) | \(X, Z \) | \(X, Z \) |
| | \(\overline{A}, Y, Z \) | \(Y, Z \) | \(Y, Z \) |
| | \(\overline{A}, \overline{X}, \overline{Z} \) | \(X, \overline{Z} \) | \(X, \overline{Z} \) |
| | \(\overline{A}, \overline{Y}, \overline{Z} \) | \(\overline{Y}, \overline{Z} \) | \(\overline{Y}, \overline{Z} \) |

- Conflict in level 3: \(\Delta|_A \) for \(A \), \(B \), \(C \) ⇒ \(X \)
- Irrelevant: \(\Delta|_{A} \) for \(A \) ⇒ \(X \)
Clause Learning

| | $\Delta |_A$ | $\Delta |_{A,B}$ | $\Delta |_{A,B,C}$ |
|---|---|---|---|
| A, B | \bar{A}, \bar{X}, Y | \bar{X}, Y | \bar{X}, Y |
| B, C | \bar{B}, \bar{C} | \bar{B}, \bar{C} | \bar{B}, \bar{C} |
| \bar{A}, X, Z | X, Z | X, Z | X, Z |
| \bar{A}, Y, Z | Y, Z | Y, Z | Y, Z |
| \bar{A}, X, \bar{Z} | X, \bar{Z} | X, \bar{Z} | X, \bar{Z} |
| \bar{A}, Y, \bar{Z} | \bar{Y}, \bar{Z} | \bar{Y}, \bar{Z} | \bar{Y}, \bar{Z} |

Introduction to Satisfiability

Jinbo Huang
Clause Learning

| | $\Delta |_A$ | $\Delta |_{A,B}$ | $\Delta |_{A,B,C}$ | $\Delta |_{A,B,C,X}$ |
|---|---|---|---|---|
| A, B | $\bar A, \bar X, Y$ | X, Y | X, Y | X, Y |
| $\bar A, X, Z$ | $\bar A, X, Z$ | Y, Z | Y, Z | Y, Z |
| $\bar A, X, \bar Z$ | $\bar A, X, \bar Z$ | $X, \bar Z$ | $X, \bar Z$ | $X, \bar Z$ |
| $\bar A, Y, \bar Z$ | $\bar A, Y, \bar Z$ | $Y, \bar Z$ | $Y, \bar Z$ | $Y, \bar Z$ |

- **Conflict in level 3:** $\Delta |_{A,B,C}$
- **Irrelevant:** $\Delta |_{A, B}$

What clause would have allowed UP to derive X in level 0?

- $A \lor X (A \rightarrow X)$

Jinbo Huang
Introduction to Satisfiability
Clause Learning

| | $\Delta|_A$ | $\Delta|_{A,B}$ | $\Delta|_{A,B,C}$ | $\Delta|_{A,B,C,X}$ |
|---|-----------|----------------|-----------------|-------------------|
| A, B | | | | |
| B, C | | | | |
| $\overline{A}, \overline{X}, Y$ | \overline{X}, Y | \overline{X}, Y | \overline{X}, Y | Y |
| \overline{A}, X, Z | X, Z | X, Z | X, Z | |
| \overline{A}, Y, Z | \overline{Y}, Z | \overline{Y}, Z | \overline{Y}, Z | \overline{Y}, Z |
| $\overline{A}, X, \overline{Z}$ | X, \overline{Z} | X, \overline{Z} | X, \overline{Z} | |
| $\overline{A}, Y, \overline{Z}$ | $\overline{Y}, \overline{Z}$ | $\overline{Y}, \overline{Z}$ | $\overline{Y}, \overline{Z}$ | |

Conflict in level 3: $\Delta\mid A, B, C \Rightarrow X \mid B, C$ irrev.:

$\Delta\mid A \Rightarrow X \mid B, C$

What clause would have allowed UP to derive X in level 0?

$A \lor X (A \rightarrow X)$

Jinbo Huang

Introduction to Satisfiability
Clause Learning

| | $\Delta|_A$ | $\Delta|_{A,B}$ | $\Delta|_{A,B,C}$ | $\Delta|_{A,B,C,X}$ |
|--------|-----------|----------------|-------------------|-------------------|
| A, B | | | | |
| B, C | | | | |
| $\overline{A}, \overline{X}, Y$ | \overline{X}, Y | \overline{X}, Y | \overline{X}, Y | Y |
| \overline{A}, X, Z | X, Z | X, Z | X, Z | |
| \overline{A}, Y, Z | \overline{Y}, Z | \overline{Y}, Z | \overline{Y}, Z | \overline{Y}, Z |
| $\overline{A}, X, \overline{Z}$ | X, \overline{Z} | X, \overline{Z} | X, \overline{Z} | |
| $\overline{A}, Y, \overline{Z}$ | $\overline{Y}, \overline{Z}$ | $\overline{Y}, \overline{Z}$ | $\overline{Y}, \overline{Z}$ | |

Conflict in level 3: $\Delta|_{A,B,C} \Rightarrow \overline{X}$
Clause Learning

| $\Delta|_A$ | $\Delta|_{A,B}$ | $\Delta|_{A,B,C}$ | $\Delta|_{A,B,C,X}$ |
|-----------|-----------------|------------------|------------------|
| A, B | | | |
| B, C | B, C | | |
| \bar{A}, \bar{X}, Y | \bar{X}, Y | \bar{X}, Y | \bar{X}, Y | Y |
| \bar{A}, X, Z | X, Z | X, Z | X, Z | |
| \bar{A}, Y, Z | Y, Z | Y, Z | Y, Z | Y, Z |
| \bar{A}, X, \bar{Z} | X, \bar{Z} | X, \bar{Z} | X, \bar{Z} | |
| $\bar{A}, \bar{Y}, \bar{Z}$ | \bar{Y}, \bar{Z} | \bar{Y}, \bar{Z} | \bar{Y}, \bar{Z} | \bar{Y}, \bar{Z} |

- Conflict in level 3: $\Delta|_{A,B,C} \Rightarrow \bar{X}$
- B, C irrelevant
Clause Learning

| Δ|A | Δ|A,B | Δ|A,B,C | Δ|A,B,C,X |
|---|---|---|---|---|
| A, B |
| B, C |
\(\overline{A}, \overline{X}, Y\)	\(\overline{X}, Y\)	\(\overline{X}, Y\)	\(\overline{X}, Y\)	\(\overline{Y}\)
\(\overline{A}, X, Z\)	\(X, Z\)	\(X, Z\)	\(X, Z\)	\(\overline{Y}, Z\)
\(\overline{A}, Y, Z\)	\(\overline{Y}, Z\)	\(\overline{Y}, Z\)	\(\overline{Y}, Z\)	\(\overline{Y}, Z\)
\(\overline{A}, X, \overline{Z}\)	\(X, \overline{Z}\)	\(X, \overline{Z}\)	\(X, \overline{Z}\)	\(\overline{Y}, \overline{Z}\)
\(\overline{A}, \overline{Y}, \overline{Z}\)	\(\overline{Y}, \overline{Z}\)	\(\overline{Y}, \overline{Z}\)	\(\overline{Y}, \overline{Z}\)	\(\overline{Y}, \overline{Z}\)

- **Conflict in level 3:** \(\Delta|_{A,B,C} \Rightarrow \overline{X}\)
- **B, C irrelevant:** \(\Delta|_A \Rightarrow \overline{X}\)
Clause Learning

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th>(A, B)</th>
<th>(A, B, C)</th>
<th>(A, B, C, X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A, B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B, C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\overline{A}, \overline{X}, Y)</td>
<td>(\overline{X}, Y)</td>
<td>(\overline{X}, Y)</td>
<td>(\overline{X}, Y)</td>
<td>(Y)</td>
</tr>
<tr>
<td>(\overline{A}, \overline{X}, Z)</td>
<td>(X, Z)</td>
<td>(X, Z)</td>
<td>(X, Z)</td>
<td></td>
</tr>
<tr>
<td>(\overline{A}, \overline{Y}, Z)</td>
<td>(\overline{Y}, Z)</td>
<td>(\overline{Y}, Z)</td>
<td>(\overline{Y}, Z)</td>
<td>(Y, Z)</td>
</tr>
<tr>
<td>(\overline{A}, \overline{X}, \overline{Z})</td>
<td>(X, \overline{Z})</td>
<td>(X, \overline{Z})</td>
<td>(X, \overline{Z})</td>
<td>(\overline{Y}, \overline{Z})</td>
</tr>
<tr>
<td>(\overline{A}, \overline{Y}, \overline{Z})</td>
<td>(\overline{Y}, \overline{Z})</td>
<td>(\overline{Y}, \overline{Z})</td>
<td>(\overline{Y}, \overline{Z})</td>
<td>(Y, \overline{Z})</td>
</tr>
</tbody>
</table>

- **Conflict in level 3:** \(\Delta_{A,B,C} \Rightarrow \overline{X}\)
- **\(B, C\) irrelevant:** \(\Delta_{A} \Rightarrow \overline{X}\)
- **What clause would have allowed UP to derive \(\overline{X}\) in level 0?**
Clause Learning

\[
\begin{array}{cccc}
\Delta|_A & \Delta|_{A,B} & \Delta|_{A,B,C} & \Delta|_{A,B,C,X} \\
A, B & B, C & B, C & B, C \\
\overline{A}, \overline{X}, Y & \overline{X}, Y & \overline{X}, Y & \overline{X}, Y \\
\overline{A}, X, Z & X, Z & X, Z & X, Z \\
\overline{A}, Y, Z & \overline{Y}, Z & \overline{Y}, Z & \overline{Y}, Z \\
\overline{A}, X, \overline{Z} & X, \overline{Z} & X, \overline{Z} & X, \overline{Z} \\
\overline{A}, \overline{Y}, \overline{Z} & \overline{Y}, \overline{Z} & \overline{Y}, \overline{Z} & \overline{Y}, \overline{Z} \\
\end{array}
\]

- Conflict in level 3: \(\Delta|_{A,B,C} \Rightarrow \overline{X} \)
- \(B, C \) irrelevant: \(\Delta|_A \Rightarrow \overline{X} \)
- What clause would have allowed UP to derive \(\overline{X} \) in level 0? \(\overline{A} \lor \overline{X} \) \((A \rightarrow \overline{X}) \)
Clause Learning

\[A, B \]
\[B, C \]
\[\overline{A}, \overline{X}, Y \]
\[\overline{A}, X, Z \]
\[\overline{A}, \overline{Y}, Z \]
\[\overline{A}, X, \overline{Z} \]
\[\overline{A}, \overline{Y}, \overline{Z} \]
\[A, X \]
Clause Learning

\[\Delta|_A \]

\[A, B \]
\[B, C \]
\[\overline{A}, X, Y \]
\[\overline{A}, X, Z \]
\[\overline{A}, Y, Z \]
\[\overline{A}, X, \overline{Z} \]
\[\overline{A}, Y, \overline{Z} \]
\[\overline{A}, \overline{X} \]

\[\overline{X}, Y \]
\[X, Z \]
\[\overline{Y}, Z \]
\[X, \overline{Z} \]
\[\overline{Y}, \overline{Z} \]
\[\overline{X} \]
Clause Learning

\[\Delta|_A \]

\(A, B\)
\(B, C\)
\(\overline{A}, X, Y\)
\(\overline{A}, X, Z\)
\(\overline{A}, Y, Z\)
\(\overline{A}, X, \overline{Z}\)
\(\overline{A}, Y, \overline{Z}\)
\(\overline{A}, X\)

\(\overline{A} \lor \overline{X}\) satisfies criteria

- not in CNF
- implied by CNF
- empowers UP

Learn clause in level 3

Backtrack to level 0, start over

Jinbo Huang
Introduction to Satisfiability
Clause Learning

\(\Delta \mid_A \)

\(\overline{A} \lor \overline{X} \) satisfies criteria

- not in CNF
- implied by CNF
- empowers UP

Learn clause in level 3

Backtrack to level 0, start over

How to learn? How far to backtrack?
Implication Graph

1: \(A, B\)
2: \(B, C\)
3: \(\overline{A}, X, Y\)
4: \(\overline{A}, X, Z\)
5: \(\overline{A}, \overline{Y}, Z\)
6: \(\overline{A}, X, \overline{Z}\)
7: \(\overline{A}, \overline{Y}, \overline{Z}\)
Implication Graph

1: \(A, B\)
2: \(B, C\)
3: \(\overline{A}, \overline{X}, Y\)
4: \(\overline{A}, X, Z\)
5: \(\overline{A}, Y, Z\)
6: \(\overline{A}, X, \overline{Z}\)
7: \(\overline{A}, Y, \overline{Z}\)
8: \(\overline{A}, \overline{X}\)
Implication Graph

1: \(A, B \)
2: \(B, C \)
3: \(\overline{A}, X, Y \)
4: \(\overline{A}, X, Z \)
5: \(\overline{A}, Y, Z \)
6: \(\overline{A}, X, \overline{Z} \)
7: \(\overline{A}, Y, \overline{Z} \)
8: \(\overline{A}, \overline{X} \)

\[A = t \]
\[0 / Z = t \]
\[0 / X = f \]
\[0 / \{ \} \]
Conflict Analysis

1: A, B
2: B, C
3: \overline{A}, X, Y
4: \overline{A}, X, Z
5: $\overline{A}, \overline{Y}, Z$
6: $\overline{A}, X, \overline{Z}$
7: $\overline{A}, \overline{Y}, \overline{Z}$

- Cut: roots (decisions) on one side, sink (contradiction) on other
- Arrows across cut together responsible for contradiction
- **Conflict set**: tail points of arrows
Conflict Set

1: A, B
2: B, C
3: \overline{A}, X, Y
4: \overline{A}, X, Z
5: $\overline{A}, \overline{Y}, Z$
6: $\overline{A}, X, \overline{Z}$
7: $\overline{A}, \overline{Y}, \overline{Z}$

- Cut 1: $\{A, X\}$
- Cut 2: $\{A, Y\}$
- Cut 3: $\{A, Y, Z\}$
Conflict Clause

1: \(A, B\)
2: \(B, C\)
3: \(\overline{A}, X, Y\)
4: \(\overline{A}, X, Z\)
5: \(\overline{A}, Y, Z\)
6: \(\overline{A}, X, \overline{Z}\)
7: \(\overline{A}, Y, \overline{Z}\)

- **Cut 1:** \(\{A, X\}\) \(\Rightarrow \overline{A} \lor \overline{X}\)
- **Cut 2:** \(\{A, Y\}\) \(\Rightarrow \overline{A} \lor \overline{Y}\)
- **Cut 3:** \(\{A, Y, Z\}\) \(\Rightarrow \overline{A} \lor \overline{Y} \lor \overline{Z}\) (existing)
Conflict Clause

1: \(A, B\)
2: \(B, C\)
3: \(
\overline{A}, \overline{X}, Y
\)
4: \(\overline{A}, X, Z\)
5: \(\overline{A}, Y, Z\)
6: \(\overline{A}, X, \overline{Z}\)
7: \(\overline{A}, Y, \overline{Z}\)

\[\begin{align*}
0/ & A = t \\
1/ & B = t \\
2/ & C = t \\
3/ & Y = t \\
3/ & X = t \\
3/ & Z = t \\
\end{align*}\]

- Cut 1: \(\{A, X\} \Rightarrow \overline{A} \lor \overline{X}\)
- Cut 2: \(\{A, Y\} \Rightarrow \overline{A} \lor \overline{Y}\)
- Which clause to learn?
Unique Implication Point (UIP)

Prefer shorter explanation
 - shorter clause closer to unit, more empowering
Never need ≥ 1 node from latest level
 - latest decision + history always suffices

UIP: lies on all paths from decision to contradiction
Unique Implication Point (UIP)

UIP: lies on all paths from decision to contradiction

 Prefer shorter explanation
 - shorter clause closer to unit, more empowering

Never need > 1 node from latest level
 - latest decision + history always suffices

UIP: lies on all paths from decision to contradiction
1-UIP Learning

Work from sink backwards
Stop when conflict set includes a UIP, and no other nodes, of latest level: 1-UIP clause ($\overline{A} \lor \overline{Y}$)

- 2-UIP, 3-UIP, . . . , All-UIP

Empirically shown effective, most common choice
Backtracking to Assertion Level

Learned clause: $\overline{A} \lor \overline{Y}$

- becomes unit (\overline{Y}) when erasing current level
- asserting clause: UP will assert \overline{Y} (empowerment)
Backtracking to Assertion Level

Backtrack as far as possible, as long as UP remains empowered

Assertion level: 2nd highest level in learned clause, or -1 if learned clause is unit

- $A_0 \lor \overline{B}_1 \lor C_1 \lor X_4$: $a\text{Level} = 1$
- X_4: $a\text{Level} = -1$
- learned unit clause asserted before any decision

Empirically shown effective, most common choice
Clause Learning: Putting It Together

REPEAT
 IF no free variable
 RETURN SAT
 pick free variable X and set either X or \overline{X}
 IF contradiction
 IF level < 0
 RETURN UNSAT
 learn clause
 backtrack anywhere learned clause $\neq \emptyset$
REPEAT

IF no free variable

RETURN SAT

pick free variable X and set either X or \overline{X}

IF contradiction

IF level < 0

RETURN UNSAT

learn clause

backtrack anywhere learned clause $\neq \emptyset$

- No more branching, unlike DPLL
- Conflict-driven, repeated probing
REPEAT
 IF no free variable
 RETURN SAT
 pick free variable \(X \) and set either \(X \) or \(\overline{X} \)
 IF contradiction
 IF level < 0
 RETURN UNSAT
 learn clause
 backtrack anywhere learned clause \(\neq \emptyset \)

Completeness?
Clause Learning: Putting It Together

REPEAT
 IF no free variable
 RETURN SAT
 pick free variable X and set either X or \(\overline{X} \)
 IF contradiction
 IF level < 0
 RETURN UNSAT
 learn clause
 backtrack anywhere learned clause \(\neq \emptyset \)

Will terminate because learned clause must be new, \(|\text{clauses}|\) finite
Clause Learning: Putting It Together

REPEAT
 IF no free variable
 RETURN SAT
 pick free variable X and set either X or \overline{X}
 IF contradiction
 IF level < 0
 RETURN UNSAT
 learn clause
 backtrack anywhere learned clause $\neq \emptyset$

Components: decision heuristic, learning method, backtracking method
Decision Heuristic: Popular Ideas

Learned conflict clause summarizes cause of failure

Try to satisfy conflict clauses
 ▶ helps eventually satisfy whole CNF if SAT
 ▶ helps terminate early if UNSAT

Maintain occurrence count for each literal
 ▶ increment on learning new clause
 ▶ periodically shrink all counts: recent activity more relevant

Pick variable with highest count (+&− combined)
 ▶ set to same value it had last: progress saving
Backtracking erases multiple levels of assignments

Some of those may have satisfied parts of CNF

Reusing assignments helps avoid having to rediscover those partial solutions
Restarts: Special Case of Backtracking

Re-make decisions in light of new clauses
Restarts: Special Case of Backtracking

Re-make decisions in light of new clauses

▶ restart at predetermined intervals
▶ restart based on current search activity
Restarts: Special Case of Backtracking

Re-make decisions in light of new clauses
 ▶ restart at predetermined intervals
 ▶ restart based on current search activity

Important empirically
 ▶ solvers with no restarts uncompetitive
 ▶ performance sensitive to restart policy

Important theoretically
 ▶ clause learning more powerful than DPLL, proof relies on restarts
Efficient Unit Propagation

Need to detect unit clauses

Naively, keep track of clause lengths: when setting \(X \), decrement lengths of clauses that contain \(\overline{X} \)

- inefficient when CNF is large

Pick 2 literals to watch in each clause

- watch \(A, B \) in \(A \lor B \lor \overline{C} \lor D \)
- clause cannot be unit unless \(\overline{A} \) or \(\overline{B} \) is set
- do nothing when \(C \) or \(D \) is assigned

Scales to millions of clauses in practice
Clause Learning: Summary

Fundamentally different search scheme from DPLL

- no branching
- sequence of decisions, learn, backtrack, repeat
- theoretically more powerful than DPLL

What determines search behavior

- methods for decision, learning, backtracking (including restarts)
- popular choices: literal activity + progress saving, 1-UIP learning, backtracking to assertion level (various restart policies being explored)
Resolution p-simulates clause learning

- Each learned clause obtained by resolution
- At termination, resolution proof can be extracted (in polytime)
Clause Learning and Resolution

Clause learning p-simulates resolution

- Have clause learning absorb interesting clauses of resolution proof (in polytime)
 - interesting: 1-empowering, 1-provable
 - absorb: render it useless (not 1-empowering)

- Interesting clause always exists unless Δ^{1} inconsistent

- Hence clause learning will terminate after absorbing all interesting clauses
P_{ij}: pigeon i in hole j

$P_{11} \lor P_{12}, P_{21} \lor P_{22}, P_{31} \lor P_{32}$

$\neg P_{11} \lor \neg P_{21}, \neg P_{21} \lor \neg P_{31}, \neg P_{11} \lor \neg P_{31}$

$\neg P_{12} \lor \neg P_{22}, \neg P_{22} \lor \neg P_{32}, \neg P_{12} \lor \neg P_{32}$

No polynomial resolution proof for PH_n
Introduce *new variables* into proof

Extension: \(x \leftrightarrow \phi\)

- \(\phi\): formula over existing variables
- Suffices to restrict \(\phi\) to \(l_1 \lor l_2\)

Otherwise same as resolution
Extended Resolution

Can simulate (compact) proof by induction

Pigeonhole: No 1-to-1 map from \(\{1, \ldots, n\} \) to \(\{1, \ldots, n - 1\} \)

- Base case \((n = 2)\): easy
- If \(f(i) \) maps \(\{1, \ldots, n\} \) to \(\{1, \ldots, n - 1\} \)
- Define \(f'(i) \) from \(\{1, \ldots, n - 1\} \) to \(\{1, \ldots, n - 2\} \)
 - \(f'(i) = f(i) \) if \(f(i) \neq n - 1 \)
 - \(f'(i) = f(n) \) otherwise
Extended Resolution

Induction proof
- If \(f(i) \) maps \(\{1, \ldots, n\} \) to \(\{1, \ldots, n - 1\} \)
- Define \(f'(i) \) from \(\{1, \ldots, n - 1\} \) to \(\{1, \ldots, n - 2\} \)
 - \(f'(i) = f(i) \) if \(f(i) \neq n - 1 \)
 - \(f'(i) = f(n) \) otherwise

ER proof simulating above
- \(\{P_{ij}\} \) describes \(f \left(PH_n \right) \), introduce \(\{Q_{ij}\} \) to describe \(f' \left(PH_{n-1} \right) \)
 - \(Q_{ij} \leftrightarrow (P_{ij} \lor (P_{i,n-1} \land P_{nj})) \)
- \(O(n^3) \) resolutions to derive \(PH_{n-1} \)
- Repeat until base case \(PH_2: R_{11}, R_{21}, \neg R_{11} \lor \neg R_{21} \)
Extended Resolution

Strictly more powerful than resolution
Adding Extensions to Clause Learning

How does solver decide?
Adding Extensions to Clause Learning

How does solver decide?

Compare simulation of resolution by solver

- Resolution itself provides no guidance on what clauses to resolve
- Solver uses *probings* as guide
- Reduces search space, retains power
Adding Extensions to Clause Learning

How does solver decide?

Compare simulation of resolution by solver
- Resolution itself provides no guidance on what clauses to resolve
- Solver uses *probings* as guide
- Reduces search space, retains power

Prune space of extensions
Useless Extensions

\[x \leftrightarrow l_1 \lor l_2 \text{ useless if } \Delta \cup \{\overline{l_1}, \overline{l_2}\} \vdash false \]
Useless Extensions

$x \leftrightarrow l_1 \lor l_2$ useless if $\Delta \cup \{\overline{l_1}, \overline{l_2}\} \not\vdash false$

Lemma: Banning them does not affect power of ER
Useless Extensions

\[x \leftrightarrow l_1 \lor l_2 \text{ useless if } \Delta \cup \{ \overline{l_1}, \overline{l_2} \} \vdash \text{false} \]

Lemma: Banning them does not affect power of ER

Efficient filtering of useless extensions?
Theorem: Solver need only pick $l_1 \lor l_2$ from assignment stack (with negation)

- Due to forced assignments, not all combinations of $l_1 \lor l_2$ possible
- But those would be useless anyway
- Full power of ER retained
- Decision heuristic **doubles** as guide for extensions
A More Concrete Heuristic

Pick $l_1 \lor l_2$ from learned clause, if length $\geq k$

- Literals in learned clause must come from assignment stack (with negation)

Open question: Does this restrict power of ER
Experiments: Application Benchmarks

Results mixed

However, where it worked, improvement very substantial

- From unsolved to solved (in 5–30 minutes)
- Search tree size reduced by factor of 5–42
Experiments: Crafted Benchmarks

gt-ordering: any partial order on \(\{1, \ldots, n\}\) must have maximal element

7 instances, none could be solved by baseline solver

All solved, in 39 seconds
Extended Clause Learning: Summary

Extensions can lead to substantial practical gains

Extension heuristics a promising research direction

Catch: More powerful proof system, harder to find short proof
Local Search

Clause learning poor on random problems

- good at exploiting structure
- little/no structure in random problems
Local Search

Clause learning poor on random problems
 ▶ good at exploiting structure
 ▶ little/no structure in random problems

Local search
 ▶ start with complete assignment
 ▶ if CNF satisfied, done; else flip a var, repeat
 ▶ incomplete: may not find model, cannot prove unsatisfiability
GSAT

REPEAT MAX-TRIES times
 randomly generate assignment α
REPEAT MAX-FLIPS times
 IF α satisfies CNF THEN RETURN SAT
 flip variable in α for least falsified clauses
RETURN FAIL

- quickly descends toward better assignment
- spends much time moving “sideways” on a plateau, before exiting into better plateau
- may get stuck in local minimum
Walksat

- flip variable in falsified clause (more focus)
- introduce *noise* to escape from plateaus

REPEAT MAX-TRIES times

- randomly generate assignment α

REPEAT MAX-FLIPS times

- **IF** α satisfies CNF **THEN** RETURN SAT
- randomly pick falsified clause
- **IF** \exists “freebie move” **THEN** do it
- **ELSE**
 - with probability p, flip random var in clause
 - else flip var in clause for least “break count”

RETURN FAIL
Phase Transition in Random Problems

k-SAT: k literals per clause

Vary \# of (random) clauses for given \# of variables

- low ratio: nearly all SAT, easy
- high ratio: nearly all UNSAT, easy
- phase transition (≈ 4.2 for 3-SAT): about half SAT, half UNSAT, hardest
Solver Portfolio

Keep collection of solvers

Train solver selector on large set of instances

Use it to select solver for given instance

1 of top 3 in Crafted, SAT Competition 2009: SATZILLA
Applications of SAT

- Qualitative temporal reasoning
- Constraint solving
Qualitative Temporal Reasoning

Reasoning about time intervals (events)

Qualitative: relations between intervals
- not concerned with exact time points

“Peter reads newspaper during breakfast, goes to work after breakfast”
Interval Algebra (IA)

- $x \text{ precedes } y$ or $x \preceq y$
- $x \text{ meets } y$ or $x \cap y$
- $x \text{ overlaps } y$ or $x \cap y$
- $x \text{ starts } y$ or $x \subset y$
- $x \text{ during } y$ or $x \cap y$
- $x \text{ finishes } y$ or $x \supset y$
- $x \text{ equal } y$ or $x \equiv y$

- All have inverse, total of 13 atomic relations
The Reasoning Task

Is given temporal (IA) network satisfiable?

- nodes: variables
- edges: constraints

- infinite domain (all possible intervals on a line)
 - traditional search doesn’t work
- \(2^{13} = 8192\) possible relations
 - “Peter reads private email before or after work”
Transforming Search Space

Don’t search for instantiation of nodes (intervals)

Search for instantiation of edges

- edge: set of atomic relations
- any consistent instantiation of nodes satisfies exactly 1 per edge
- need only search for satisfiable atomic refinement of network
Transforming Search Space

Don’t search for instantiation of nodes (intervals)

Search for instantiation of edges
 ▶ edge: set of atomic relations
 ▶ any consistent instantiation of nodes satisfies exactly 1 per edge
 ▶ need only search for satisfiable atomic refinement of network

Theorem
Atomic IA network is satisfiable iff path-consistent
Path Consistency

Any consistent assignment for 2 nodes can be extended to consistent assignment for 3rd

∀ABC, a, b, if A_a ∼ B_b then ∃c C_c ∼ A_a and C_c ∼ B_b

- reading 7:10–7:20, breakfast 7:00–7:30
- can assign work 8:00–12:00
- missing edge: universal relation
Path Consistency

Any consistent assignment for 2 nodes can be extended to consistent assignment for 3rd

∀ABC, a, b, if $A_a \sim B_b$ then $\exists c \ C_c \sim A_a$ and $C_c \sim B_b$

- reading 7:10–7:20, work 7:15–12:00
- no way to assign breakfast
- refine (invisible) edge W-R: universal \rightarrow after
Ensuring Path Consistency

Atomic network: \(\forall ABC : R_{AC} \in R_{AB} \circ R_{BC} \)

Composition

- \(\{d\} \circ \{p\} = \{p\} \)
- \(\{d\} \circ \{o\} = \{p, m, o, s, d\} \)
Ensuring Path Consistency

Atomic network: \(\forall ABC : R_{AC} \in R_{AB} \circ R_{BC} \)

Composition

- \(\{d\} \circ \{p\} = \{p\} \)
- \(\{d\} \circ \{o\} = \{p, m, o, s, d\} \)
Ensuring Path Consistency

Atomic network: $\forall ABC : R_{AC} \in R_{AB} \circ R_{BC}$

Composition

1. $\{d\} \circ \{p\} = \{p\}$
2. $\{d\} \circ \{o\} = \{p, m, o, s, d\}$

$$R_{12d}, R_{23p} \lor R_{23o}, R_{13m} \lor R_{13d} \lor R_{13f}$$
Ensuring Path Consistency

Atomic network: \(\forall ABC : R_{AC} \in R_{AB} \circ R_{BC} \)

Composition

\[
\begin{align*}
\{d\} \circ \{p\} &= \{p\} \\
\{d\} \circ \{o\} &= \{p, m, o, s, d\}
\end{align*}
\]

\[
R_{12d}, R_{23p} \lor R_{23o}, R_{13m} \lor R_{13d} \lor R_{13f}
\]

\[
R_{12d} \land R_{23p} \rightarrow false
\]
Ensuring Path Consistency

Atomic network: \(\forall ABC : R_{AC} \in R_{AB} \circ R_{BC} \)

Composition

- \(\{d\} \circ \{p\} = \{p\} \)
- \(\{d\} \circ \{o\} = \{p, m, o, s, d\} \)

\[
R_{12d}, R_{23p} \lor R_{23o}, R_{13m} \lor R_{13d} \lor R_{13f}
\]

\[
R_{12d} \land R_{23p} \rightarrow \text{false}
\]

\[
R_{12d} \land R_{23o} \rightarrow (R_{13m} \lor R_{13d})
\]
Ensuring Path Consistency

Atomic network: \(\forall ABC : R_{AC} \in R_{AB} \circ R_{BC} \)

Composition

- \(\{d\} \circ \{p\} = \{p\} \)
- \(\{d\} \circ \{o\} = \{p, m, o, s, d\} \)

\(R_{12d}, R_{23p} \lor R_{23o}, R_{13m} \lor R_{13d} \lor R_{13f} \)

\(R_{12d} \land R_{23p} \rightarrow \text{false} \)

\(R_{12d} \land R_{23o} \rightarrow (R_{13m} \lor R_{13d}) \)

Alternatively, use inequalities between points, better in practice.
Solving IA Networks by SAT

Encode each △ in complete graph

- invisible edges are edges with universal relation
- \(\binom{n}{3} = \frac{n(n-1)(n-2)}{6} \) triangles

CNF satisfiable iff IA network satisfiable
More Compact Encoding
More Compact Encoding

Encode 2 partitions separately

- # of triangles from 20 to 11
- partition recursively
- soundness nontrivial

Theorem

IA has atomic network amalgamation property
Empirical Results: 50–100 Nodes
Empirical Results: 110–200 Nodes

![Graph showing empirical results for 110–200 nodes. The graph plots the number of solved instances against the average degree. Different lines represent different algorithms: partPoint, PhamPoint, GQR, and Nebel. The graph illustrates how each algorithm performs across varying average degrees.](image-url)
Applications of SAT

- Qualitative temporal reasoning
- Constraint solving
int: z = 10;
array [1..z] of 1..z*z: sq = [x*x | x in 1..z];
array [1..z] of var 0..z: s;
var 1..z: k;
var 1..z: j;
constraint forall (i in 2..z) (s[i] > 0 -> s[i-1] > s[i]);
constraint s[1] < k;
constraint sum (i in 1..z) (sq[s[i]]) = sq[k];
constraint s[j] > 0;
solve maximize j;

Perfect Square: Find largest set of integers \(\subseteq \{1, \ldots, z\} \) whose squares sum up to a square
Elements of Constraint Model

- Integer and set comparisons
- Integer arithmetic
- Linear equalities and inequalities
- Set operations
- Array access with variable index
- Global constraints
- Satisfaction and optimization
Existing Methods

- Pseudo-Boolean constraints to SAT
- Boolean cardinality constraints to SAT
- Integer linear constraints to SAT
- Extensional constraints to SAT
- Set constraints to BDDs
- Satisfiability modulo theories
- Lazy clause generation (hybrid of FD and SAT)
Everything to SAT
Desired encoding varies with constraint type

- Unary suits cardinality constraints
- *Direct encoding* suits extensional constraints
- *Primitive comparisons* can encode linear constraints
- None good for arbitrary arithmetic
Solution

One-size-fits-all binary encoding

- Arbitrary arithmetic supported
- Heterogeneous model into single Boolean formula
- Con: potential loss of propagation power

Adopt constraint language MiniZinc

- Reasonably simple yet expressive
- Many benchmarks and solvers available for empirical study
MiniZinc

- Developed by G12 @ NICTA
- Solver independent modeling
- Reasonable compromise between simplicity & expressivity
- Comes with translation to FlatZinc, suitable as low-level solver input language
- Large pool of benchmarks & examples
- Encourages comparison of different solvers
Binary Encoding

- Use k bits per integer, in two’s complement
- Balance between efficiency and completeness
 - Large k: large encoding, inefficient
 - Small k: may fail to find solution
- Start with k sufficient for constants in model
- Increase k, re-encode, and re-solve until solution found or limit (32, e.g.) reached
Integer Comparisons

\[x_3 x_2 x_1 \leq y_3 y_2 y_1 \]
Integer Comparisons

\[x_3 x_2 x_1 \leq y_3 y_2 y_1 \rightarrow \]

\[(x_3 > y_3) \lor [(x_3 = y_3) \land (x_2 x_1 \leq_{\text{unsigned}} y_2 y_1)] \]
Integer Comparisons

\[x_3 x_2 x_1 \leq y_3 y_2 y_1 \quad \rightarrow \quad (x_3 > y_3) \lor [(x_3 = y_3) \land (x_2 x_1 \leq_{\text{unsigned}} y_2 y_1)] \]

\[x_2 x_1 \leq_{\text{unsigned}} y_2 y_1 \quad \rightarrow \quad (x_2 < y_2) \lor [(x_2 = y_2) \land (x_1 \leq y_1)] \]
Integer Comparisons

- \(x_3 \leq x_2 \leq x_1 \rightarrow \)
 \[
 (x_3 > y_3) \lor [(x_3 = y_3) \land (x_2 \leq \text{unsigned } y_2 \lor y_1)]
 \]
- \(x_2 \leq \text{unsigned } y_2 \lor y_1 \rightarrow \)
 \[
 (x_2 < y_2) \lor [(x_2 = y_2) \land (x_1 \leq y_1)]
 \]
- Similar for other operators: =, \(\neq \), <, \(\geq \), >
Integer Arithmetic

- Adder and multiplier as in computer hardware
- Constraints to prevent overflow
 - $+$: sum temporarily has $k + 1$ bits leading two bits must be identical
 - \times: product temporarily has $2k$ bits leading $k + 1$ bits must be identical
Integer Arithmetic

- Adder and multiplier as in computer hardware
- Constraints to prevent overflow
 +: sum temporarily has $k + 1$ bits leading two bits must be identical
 ×: product temporarily has $2k$ bits leading $k + 1$ bits must be identical
- Subtraction, division, and modulo via $+$ and \times
Integer Arithmetic

- Adder and multiplier as in computer hardware
- Constraints to prevent overflow
 \[+: \text{ sum temporarily has } k + 1 \text{ bits} \]
 \[\text{leading two bits must be identical}\]
 \[\times: \text{ product temporarily has } 2k \text{ bits} \]
 \[\text{leading } k + 1 \text{ bits must be identical}\]
- Subtraction, division, and modulo via \(+\) and \(\times\)
- \(\text{max}(x, y, z) \rightarrow\)
 \[\left[(y \leq x) \rightarrow (x = z) \right] \wedge \left[(y > x) \rightarrow (y = z) \right]\]

Other operators: negation, absolute value, min
Integer Arithmetic

- Adder and multiplier as in computer hardware
- Constraints to prevent overflow
 - \(+\): sum temporarily has \(k + 1\) bits
 - leading two bits must be identical
 - \(\times\): product temporarily has \(2k\) bits
 - leading \(k + 1\) bits must be identical
- Subtraction, division, and modulo via \(+\) and \(\times\)
- \(\text{max}(x, y, z) \rightarrow [(y \leq x) \rightarrow (x = z)] \land [(y > x) \rightarrow (y = z)]\)
- Other operators: negation, absolute value, min
Linear Constraints

- \(a_1x_1 + \ldots + a_nx_n \oplus b \)
- \(\oplus \) can be \(=, \neq, \leq, <, \geq, > \)
Linear Constraints

- \(a_1x_1 + \ldots + a_nx_n \mathrel{\oplus} b \)
 \(\mathrel{\oplus} \) can be \(=, \neq, \leq, <, \geq, > \)

- Decompose into multiplications, summations, comparison

- Use auxiliary variables to keep size linear in \(n \)
Set Operations

- set of 1..10: \(Y \)
Set Operations

- set of 1..10: \(Y \rightarrow Y_1, \ldots, Y_{10} \)
- \(Y_i \) encodes \(i \in Y \)
Set Operations

- set of 1..10: \(Y \rightarrow Y_1, \ldots, Y_{10} \)
- \(Y_i \) encodes \(i \in Y \)
- Membership: \(x \in Y \rightarrow \bigvee_{i=1}^{10} [(x = i) \land Y_i] \)
Set Operations

- set of 1..10 : $Y \rightarrow Y_1, \ldots, Y_{10}$
- Y_i encodes $i \in Y$

- Membership: $x \in Y \rightarrow \bigvee_{i=1}^{10} [(x = i) \land Y_i]$
- Subset: $X \subseteq Y \rightarrow \bigwedge_{i=1}^{10} (X_i \rightarrow Y_i)$
Set Operations

- set of $1..10 : Y \rightarrow Y_1, \ldots, Y_{10}$
- Y_i encodes $i \in Y$

- Membership: $x \in Y \rightarrow \bigvee_{i=1}^{10} [(x = i) \land Y_i]$

- Subset: $X \subseteq Y \rightarrow \bigwedge_{i=1}^{10} (X_i \rightarrow Y_i)$
 - If X and Y have different universes, use smallest range containing both
Set Operations

- set of 1..10: $Y \rightarrow Y_1, \ldots, Y_{10}$
- Y_i encodes $i \in Y$

- Membership: $x \in Y \rightarrow \bigvee_{i=1}^{10} [(x = i) \land Y_i]$
- Subset: $X \subseteq Y \rightarrow \bigwedge_{i=1}^{10} (X_i \rightarrow Y_i)$
 - If X and Y have different universes, use smallest range containing both
- Cardinality: $x = |Y| \rightarrow x = \sum_{i=1}^{10} Y_i$
Set Operations

- set of 1..10 : \(Y \rightarrow Y_1, \ldots, Y_{10} \)
- \(Y_i \) encodes \(i \in Y \)

- Membership: \(x \in Y \rightarrow \bigvee_{i=1}^{10} [(x = i) \land Y_i] \)
- Subset: \(X \subseteq Y \rightarrow \bigwedge_{i=1}^{10} (X_i \rightarrow Y_i) \)
 - If \(X \) and \(Y \) have different universes, use smallest range containing both

- Cardinality: \(x = |Y| \rightarrow x = \sum_{i=1}^{10} Y_i \)
- Similar for other operators: union, intersection, difference, symmetric difference
Arrays of Booleans/Integers/Sets

- Index range fixed at compile time
- Decompose into individual variables
 \[Y[1..10] \rightarrow Y_1, \ldots, Y_{10} \]
- Handling variable indices
 \[Y[x] = z \rightarrow \bigvee_{i=1}^{10} [(x = i) \land (Y_i = z)] \]
Optimization Problems

- Optimization of variable only (optimization of expression eliminated using auxiliary variable)
- Binary search for increasingly optimal solutions
- Each step of search is a satisfaction problem
- At most $k + 1$ subproblems (log of domain size)
Complexity of Encoding

- Quadratic in k for \times, $/$, $\%$, linear constraints
- Linear for $+$, $-$, $\|$, min, max, $=, \neq, \leq, <, \geq, >$
- Linear in size of array for array access with variable index
- Linear in size of universe of set for set constraints
- In practice, often millions of variables & clauses
Weaknesses and Strengths

- Domain knowledge lost
- Binary search blind
- Propagation weak for some types of constraints

- All constraints propagated seamlessly at once
- Clause learning more powerful than traditional nogood learning
- SAT heuristics good at real-world problems
Empirical Evaluation

- Use all benchmark groups & examples in MiniZinc distribution (3/3/2008)
- 488 problems in 21 groups: 12 satisfaction, 8 optimization, 1 mixed
 - rectangle packing, linear equations, car sequencing, curriculum design, social golfers, job shop scheduling, nurse scheduling, n-queens, truck scheduling, warehouse planning, math puzzles, ...
- Compare with G12/FD & Gecode/FlatZinc
- 4-hour time limit for each run
Overall Result

of problems solved out of 488

FznTini G12/FD Gecode/FlatZinc
263 103 178
Easy Cases for All

<table>
<thead>
<tr>
<th>Problem</th>
<th>Inst.</th>
<th>FznTini</th>
<th>G12/FD</th>
<th>Gecode/FlatZinc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Solved</td>
<td>Time</td>
<td>Solved</td>
</tr>
<tr>
<td>alpha</td>
<td>1</td>
<td>1</td>
<td>1.65</td>
<td>1</td>
</tr>
<tr>
<td>areas</td>
<td>4</td>
<td>4</td>
<td>0.69</td>
<td>4</td>
</tr>
<tr>
<td>eq</td>
<td>1</td>
<td>1</td>
<td>49.92</td>
<td>1</td>
</tr>
<tr>
<td>examples</td>
<td>18</td>
<td>18</td>
<td>2076.74</td>
<td>18</td>
</tr>
<tr>
<td>kakuro</td>
<td>6</td>
<td>6</td>
<td>0.17</td>
<td>6</td>
</tr>
<tr>
<td>knights</td>
<td>4</td>
<td>4</td>
<td>0.78</td>
<td>4</td>
</tr>
<tr>
<td>photo</td>
<td>1</td>
<td>1</td>
<td>0.08</td>
<td>1</td>
</tr>
</tbody>
</table>
Bad Cases for Booleanization

<table>
<thead>
<tr>
<th>Problem</th>
<th>Inst.</th>
<th>FznTini</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Solved</td>
<td>Time</td>
<td>Solved</td>
<td>Time</td>
</tr>
<tr>
<td>cars</td>
<td>79</td>
<td>1</td>
<td>3.34</td>
<td>1</td>
<td>0.15</td>
<td>1</td>
</tr>
<tr>
<td>golfers</td>
<td>9</td>
<td>3</td>
<td>6278.30</td>
<td>4</td>
<td>12.88</td>
<td>6</td>
</tr>
<tr>
<td>golomb</td>
<td>5</td>
<td>4</td>
<td>2030.23</td>
<td>5</td>
<td>323.54</td>
<td>5</td>
</tr>
<tr>
<td>magicseq</td>
<td>7</td>
<td>4</td>
<td>9939.32</td>
<td>7</td>
<td>172.12</td>
<td>7</td>
</tr>
<tr>
<td>queens</td>
<td>6</td>
<td>5</td>
<td>4168.79</td>
<td>6</td>
<td>90.68</td>
<td>3</td>
</tr>
<tr>
<td>trucking</td>
<td>10</td>
<td>9</td>
<td>14747.10</td>
<td>10</td>
<td>196.48</td>
<td>10</td>
</tr>
</tbody>
</table>

Jinbo Huang

Introduction to Satisfiability
Good Cases for Booleanization

<table>
<thead>
<tr>
<th>Problem</th>
<th>Inst.</th>
<th>FznTini</th>
<th></th>
<th>G12/FD</th>
<th></th>
<th>Gencode/FlatZinc</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Solved</td>
<td>Time</td>
<td>Solved</td>
<td>Time</td>
<td>Solved</td>
<td>Time</td>
</tr>
<tr>
<td>packing</td>
<td>50</td>
<td>9</td>
<td>2843.46</td>
<td>7</td>
<td>2447.65</td>
<td>7</td>
<td>44.13</td>
</tr>
<tr>
<td>bibd</td>
<td>9</td>
<td>8</td>
<td>16.17</td>
<td>8</td>
<td>757.72</td>
<td>6</td>
<td>197.48</td>
</tr>
<tr>
<td>curriculum</td>
<td>3</td>
<td>3</td>
<td>12.76</td>
<td>2</td>
<td>13.17</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>jobshop</td>
<td>73</td>
<td>19</td>
<td>50294.40</td>
<td>2</td>
<td>1764.65</td>
<td>2</td>
<td>31.6</td>
</tr>
<tr>
<td>nurse sch.</td>
<td>100</td>
<td>99</td>
<td>1800.36</td>
<td>1</td>
<td>3.97</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>perfect sq.</td>
<td>10</td>
<td>10</td>
<td>548.41</td>
<td>4</td>
<td>4350.19</td>
<td>5</td>
<td>2024.85</td>
</tr>
<tr>
<td>warehouses</td>
<td>10</td>
<td>10</td>
<td>671.71</td>
<td>9</td>
<td>2266.44</td>
<td>9</td>
<td>221.83</td>
</tr>
</tbody>
</table>
Summary and Opportunities

- SAT works!
- More compact and/or propagation friendly encodings of constraints
- Direct encoding of global constraints
- More informed search (than blind binary search) for optimization problems
- Deeper empirical and theoretical studies of power and limitations
- Hybridizations of SAT and other techniques
Extensions of SAT

- Max-SAT
- Model counting
- Knowledge compilation
- Quantified Boolean formulas
- Pseudo-Boolean formulas
Max-SAT

Satisfy max \# of clauses

Clauses can have weights
 ▶ satisfy clauses with max sum of weights

Can have *hard* clauses
 ▶ these must be satisfied
 ▶ maximize with respect to rest
Compute \# of models (satisfying assignments)

\#P-complete

Literals can have weights

- weight of model: product of literal weights
- compute sum of weights of models
- closely related to probabilistic reasoning
Knowledge Compilation

Put formula into given logical form
▶ to support efficient (poly-time) operations

Target compilation forms
▶ decomposable negation normal form
▶ binary decision diagrams
▶ prime implicates, . . .

Forms differ in succinctness & tractability
▶ pick most succinct form that supports desired operations
▶ need to develop compilers for them
Quantified Boolean Formula

\[\forall X \exists Y \forall Z (X \lor Z) \land Y \]
Quantified Boolean Formula

\(\forall X \exists Y \forall Z (X \lor Z) \land Y \)

- all variables quantified

Is formula true?

PSPACE-complete
Pseudo-Boolean Formula

Pseudo-Boolean constraint

\[2X + Y + 3Z < 5 \]
Pseudo-Boolean Formula

Pseudo-Boolean constraint

- \(2X + Y + 3Z < 5 \)

Special case: cardinality constraint

- \(X + Y + Z > 2 \)
SAT Resources

- SAT conferences, www.satisfiability.org
- SAT competitions, www.satcompetition.org
- SAT Live, www.satlive.org
- Handbook of satisfiability