Overview

▶ Syntax and semantics
▶ Reasoning methods
Propositional Logic: Ingredients

\[\text{Burglary} \lor \text{Earthquake} \rightarrow \text{Alarm} \]

Variables

- \(A, B, C, \ldots\)
- \(\text{Burglary}, \text{Earthquake}, \text{Alarm}, \ldots\)

Connectives

- \(\neg\) (not, negation)
- \(\land\) (and, conjunction)
- \(\lor\) (or, disjunction)
- \(\rightarrow\) (implication)
- \(\leftrightarrow\) (biconditional)
Every variable is a sentence

If α and β are sentences, so are

- $\neg(\alpha)$
- $(\alpha) \land (\beta)$
- $(\alpha) \lor (\beta)$
- $(\alpha) \rightarrow (\beta)$
- $(\alpha) \leftrightarrow (\beta)$

Parentheses omitted where no confusion arises
Propositional Sentences

Burglary ∨ Earthquake → Alarm

\((A ∨ B) ∧ (A ∨ ¬B) → A\)

\(¬(A ∧ B) ↔ (¬A ∨ ¬B)\)
Semantics: Worlds

World, interpretation, evaluation, truth assignment, variable instantiation

- Map from variables to \{true, false\} / \{1, 0\}
- \(\omega_1(A) = 1, \omega_1(B) = 0, \omega_1(C) = 1, \ldots\)
- \(\omega_2(A) = 0, \omega_2(B) = 1, \omega_2(C) = 1, \ldots\)
- \(2^n\) possible worlds for \(n\) variables
Given world ω, $\omega \models \alpha$: α evaluates to 1 under ω

- $\omega \models X$ iff $\omega(X) = 1$
- $\omega \models \neg \alpha$ iff $\omega \not \models \alpha$
- $\omega \models \alpha \land \beta$ iff $\omega \models \alpha$ and $\omega \models \beta$
- $\omega \models \alpha \lor \beta$ iff $\omega \models \alpha$ or $\omega \models \beta$
- $\alpha \rightarrow \beta \equiv \neg \alpha \lor \beta$
- $\alpha \leftrightarrow \beta \equiv (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$

$\omega \models \alpha$: ω is a model of α, ω satisfies α
Truth of Sentences

$Burglary \lor Earthquake \rightarrow Alarm$

$\omega_1 = \{Burglary, Earthquake, Alarm\}$

$\omega_2 = \{Burglary, Earthquake, \overline{Alarm}\}$
Each sentence is a function

- Plug in values (1/0) for variables
- Get value (1/0) for whole sentence

Function depends only on the mapping, not composition of sentence

Different sentences can define same function

- \(A \lor (B \land C) \)
- \((A \lor B) \land (A \lor C) \)
Sentences as Boolean Functions

Set of models determines function

For n variables

- # possible sentences infinite
- # possible worlds 2^n
- # possible sets of models 2^{2^n}
- # possible functions 2^{2^n}
Completeness of Connectives

Is every Boolean function represented by some sentence?

Depends on the connectives allowed

Not if only \(\{\land, \lor\} \) allowed, e.g.

- Cannot express \(\neg A \)
- Proof by noting monotonicity
Completeness of Connectives: \(\{ \land, \lor, \neg \} \)

Function \(\equiv \) set of models

\(\{ \overline{ABC}, \overline{A\overline{B}C}, ABC \} \)

\(\rightarrow \neg A \land B \land C \)

\(\rightarrow A \land \neg B \land C \)

\(\rightarrow A \land B \land C \)

\((\neg A \land B \land C) \lor (A \land \neg B \land C) \lor (A \land B \land C) \)

Set of models \(\Rightarrow \) sentence using only \(\{ \land, \lor, \neg \} \)
Completeness of Connectives: \(\{\land, \neg\} \)

Can express \(\lor \) using \(\{\land, \neg\} \)

\[A \lor B \equiv \neg(\neg A \land \neg B) \]

Similarly, \(\{\lor, \neg\} \) is complete

\[A \land B \equiv \neg(\neg A \lor \neg B) \]
Completeness of Connectives: \{↑\}

NAND: \(A \uparrow B \stackrel{\text{def}}{=} \neg(A \land B) \)

\(\land, \lor, \neg\) can be expressed with \(\uparrow\) alone

- \(A \land B \equiv (A \uparrow B) \uparrow \top \)
- \(A \lor B \equiv (A \uparrow \top) \uparrow (B \uparrow \top) \)
- \(\neg A \equiv A \uparrow \top \)

\(\top\): true

\(\bot\): false

Similarly, \{\downarrow\} (NOR alone) is complete
Useful Identities

DeMorgan’s

- $\neg(A \land B) \equiv \neg A \lor \neg B$
- $\neg(A \lor B) \equiv \neg A \land \neg B$

Distribution

- $A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$
- $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$
Reasoning Tasks

Satisfiability (SAT)
- Given α, does α have a model?
- $\exists \omega, \omega \models \alpha$

Validity
- Given α, is α 1 in all worlds?
- $\forall \omega, \omega \models \alpha$
- Reducible to SAT: α is valid iff $\neg \alpha$ is not SAT
Reasoning Tasks

Entailment

- Given \(\alpha \) and \(\beta \), is \(\beta \) 1 whenever \(\alpha \) is 1?
- \(\alpha \models \beta \): \(\text{models}(\alpha) \subseteq \text{models}(\beta) \)
- Reducible to validity: \(\alpha \models \beta \) iff \(\alpha \rightarrow \beta \) is valid

Equivalence

- \(\alpha \equiv \beta \): \(\text{models}(\alpha) = \text{models}(\beta) \)
- Reducible to entailment: \(\alpha \models \beta \) and \(\beta \models \alpha \)
How is Logic Useful?

Knowledge base Δ

- $okX \rightarrow (A \leftrightarrow \neg B)$
- $okY \rightarrow (B \leftrightarrow \neg C)$

Is $A \overline{C}$ normal?

- Is it possible for okX and okY to be both 1?
- Is $(A \land \neg C \land okX \land okY \land \Delta) \text{ SAT}$?
How is Logic Useful?

Diagnosis
- Is observation normal?
- What components might be broken?

Verification
- Does circuit/program correctly implement specification?
- Can some “bad” behavior happen?

Planning
- Is there sequence of actions to reach goal?
Reasoning Methods: Is α SAT?

Semantic reasoning
- Search for ω such that $\omega \models \alpha$

Syntactic reasoning (inference, proof)
- Create new sentences from α by applying syntactic rules
- Stop when proof of UNSAT is produced
- Rules should be sound and complete
 - UNSAT proof will be produced iff α is not SAT
Negation Normal Form (NNF)

\{\land, \lor, \neg\} only

\neg applied to variables only

NNF

\begin{itemize}
 \item (A \land \neg B) \lor C
 \item (A \lor B) \land (B \lor \neg C)
\end{itemize}

Not NNF

\begin{itemize}
 \item A \rightarrow (B \lor C)
 \item \neg(\neg(A \land B) \land (C \lor D))
\end{itemize}
Conversion to NNF

Eliminate connectives other than \land, \lor, \neg
- Always possible by completeness of $\{\land, \lor, \neg\}$

Push \neg all the way to variables
- Always possible by DeMorgan’s laws

$\neg(\neg(A \land B) \land (C \lor D))$ becomes

$(A \land B) \lor (\neg C \land \neg D)$
Conjunctive Normal Form (CNF)

Literal: variable or its negation
- $A, \neg A, B, \neg B, C, \neg C, \ldots$

Clause: disjunction (\lor) of literals
- $A \lor \neg B \lor C$
- $A, \neg B, C$ (unit clauses)

CNF: conjunction (\land) of clauses
- Often regard as set of clauses
Conversion to CNF

Start with NNF

Push \lor all the way to literals

- Always possible by distribution laws

$$(A \land B) \lor (\neg C \land \neg D)$$ becomes

$$(A \lor \neg C) \land (B \lor \neg C) \land (A \lor \neg D) \land (B \lor \neg D)$$

Potential issue?
Conversion to CNF: Complexity

- Can get too many clauses
 - Can be exponential in size of original formula

\[\text{CNF}_1 \lor \text{CNF}_2 \]
 - Result has \(|\text{CNF}_1| \cdot |\text{CNF}_2|\) clauses

\[\text{CNF}_1 \lor \text{CNF}_2 \lor \ldots \lor \text{CNF}_n \]
 - If \(\text{CNF}_i\) each has 2 clauses, result has \(2^n\) clauses

Exponential worst case inevitable
Conversion to CNF: Polynomial Method

Do not insist on equivalence

Convert Δ to Δ'

- Δ' is in CNF
- Δ' has extra variables
- $|\Delta'|$ is polynomial in $|\Delta|$

How can Δ' be useful if $\Delta' \neq \Delta$?

- All we need is $\text{SAT}(\Delta) \equiv \text{SAT}(\Delta')$
Conversion to CNF: Polynomial Method

\[\Delta = \Delta_1 \lor \Delta_2, \text{ assume } \Delta_1, \Delta_2 \text{ already in CNF} \]

- \[\Delta_1 = g_1 \land g_2 \land \ldots \land g_p \]
- \[\Delta_2 = h_1 \land h_2 \land \ldots \land h_q \]

Original conversion of \(\Delta_1 \lor \Delta_2 \) produces \(pq \) clauses

Introduce new variable \(X \), let \(\Delta' \) have following clauses

- \[X \lor g_1, X \lor g_2, \ldots, X \lor g_p \]
- \[\neg X \lor h_1, \neg X \lor h_2, \ldots, \neg X \lor h_q \]

\[|\Delta'| = p + q \]
Conversion to CNF: Preservation of SAT

Δ' with new variable X

$\bullet X \lor g_1, X \lor g_2, \ldots, X \lor g_p$
$\bullet \neg X \lor h_1, \neg X \lor h_2, \ldots, \neg X \lor h_q$

$SAT(\Delta = \Delta_1 \lor \Delta_2) \Rightarrow SAT(\Delta')$

$\bullet \exists \omega, \omega \models \Delta$
$\bullet \omega \models \Delta_1$ or $\omega \models \Delta_2$, assume former
$\bullet \forall i, \omega \models g_i$
\bullet Let $\omega'(X) = 0$ and $\omega' = \omega$ otherwise
$\bullet \omega' \models \Delta'$
Conversion to CNF: Preservation of SAT

\(\Delta' \) with new variable \(X \)

- \(X \lor g_1, X \lor g_2, \ldots, X \lor g_p \)
- \(\neg X \lor h_1, \neg X \lor h_2, \ldots, \neg X \lor h_q \)

\(\text{SAT}(\Delta') \Rightarrow \text{SAT}(\Delta = \Delta_1 \lor \Delta_2) \)

- \(\exists \omega', \omega' \models \Delta' \)
- \(\omega'(X) = 0 \) or \(\omega'(X) = 1 \), assume former
- \(\forall i, \omega' \models g_i \)
- \(\omega' \models \Delta_1 \)
- \(\omega' \models \Delta \)
Conversion to CNF

Any sentence can be put in CNF (using extra variables) in polynomial time preserving SAT

Will assume input to reasoning task is in CNF
Reasoning Methods: Is α SAT?

Semantic reasoning

- Search for ω such that $\omega \models \alpha$

Syntactic reasoning (inference, proof)

- Create new sentences from α by applying syntactic rules
- Stop when proof of UNSAT is produced
- Rules should be sound and complete
 - UNSAT proof will be produced iff α is not SAT
Syntactic Reasoning: Resolution

\[
A \lor \neg B \lor C, \quad \neg C \lor D \lor \neg E
\]

\[
A \lor \neg B \lor D \lor \neg E
\]

\[
g \lor X, \quad \neg X \lor h
\]

\[
g \lor h
\]

New clause called *resolvent*

If \(g = h = \emptyset \), empty clause \(\emptyset \) is generated
Resolution

Repeat until saturation or generation of \emptyset
 ➤ Will always terminate as \neq clauses is finite

Sound and complete
 ➤ CNF Δ is SAT iff \emptyset is not generated
Resolution: Soundness

Generation of $\emptyset \Rightarrow \text{UNSAT}(\Delta)$

$g \lor X, \neg X \lor h$

$\frac{g \lor h}{g \lor h}$

- $(\omega \models g \lor X)$ and $(\omega \models \neg X \lor h) \Rightarrow (\omega \models g \lor h)$
- $(\omega \models \Delta) \Rightarrow (\omega \models \text{all added clauses})$
- $(\omega \models X)$ and $(\omega \models \neg X)$ impossible
- $\text{SAT}(\Delta) \Rightarrow \text{no } \emptyset$
Resolution: Completeness

\[\text{UNSAT}(\Delta) \Rightarrow \text{generation of } \emptyset \]

No \(\emptyset \Rightarrow \text{SAT}(\Delta) \)

Consider all clauses at termination, repeat for \(i = 1, \ldots, n \)

- Set \(\omega(X_i) \) to either 1/0 without any clause being falsified by assignments so far
- Will always succeed

\(\omega \models \text{all clauses; hence SAT}(\Delta) \)
Can always set $\omega(X_i)$ to 1/0 without any clause falsified by assignments so far, because otherwise

- $\exists X_i \lor g, \neg X_i \lor h$, g and h are falsified
- But $g \lor h$ exists (due to saturation), so failure must have occurred earlier
- Base case is the first iteration ($i = 1$), which cannot fail because there are no X and $\neg X$
Resolution

Will always prove SAT/UNSAT

Purely syntactic, not directly concerned with existence of models

How well does it work in practice?
Resolution: Practical Considerations

Can generate exponential # resolvents

Many may not contribute to proof (i.e., \(\emptyset \))

How do we decide which resolvents to generate?

Let’s come back to this issue
Reasoning Methods: Is α SAT?

Semantic reasoning

- Search for ω such that $\omega \models \alpha$

Syntactic reasoning (inference, proof)

- Create new sentences from α by applying syntactic rules
- Stop when proof of UNSAT is produced
- Rules should be sound and complete
 - UNSAT proof will be produced iff α is not SAT
\{\overline{A} \lor B, \overline{B} \lor C\} \text{ (alternative notation } \overline{A} \text{ for compactness)}

Is formula SAT?

8 assignments to ABC: enumerate & check, until model found, e.g., $A = B = C = 1$

Exponential in $\# \text{ variables}$ in worst case (fine, but can try to do better in average case)
Search

\{ \overline{A} \lor B, \overline{B} \lor C \}\
Conditioning

\[
\{ \overline{A} \lor B, \overline{B} \lor C \} \mid_A \quad \{ B, \overline{B} \lor C \} \mid_B \quad \{ C \}
\]
Conditioning

\{\overline{A} \lor B, \overline{B} \lor C\}_A \quad \{B, \overline{B} \lor C\}_B \quad \{C\}

Simplifies formula
 - false literal disappears from clause
 - true literal makes clause disappear

Leaves of search tree
 - empty clause generated: formula falsified
 - all clauses gone: formula satisfied

Not necessarily 2^n leaves, even in case of UNSAT
Early Backtracking

Backtrack as soon as empty clause generated

Can we do even better?

What about unit clauses?
\[\{ \overline{A} \lor B, \overline{B} \lor C \} \mid_A \{ B, \overline{B} \lor C \} \]

\(B \) must be true, no need for two branches

Setting \(B = 1 \) may lead to more unit clauses, repeat till no more (or till empty clause)

Known as unit propagation
Algorithm: DPLL

Same kind of search tree, each node augmented with unit propagation

- multiple assignments in one level
 - decision & implications
- may not need n levels to reach leaf

What (completely) determines search tree?
DPLL: Variable Ordering

Can have huge impact on efficiency

Example: unit propagation lookahead, as in SATZ
- short clauses are good, more likely to result in unit propagation
- tentatively try each variable, count new binary clauses generated
- select variable with highest score:
 \[w(X) \cdot w(\overline{X}) \cdot 1024 + w(X) + w(\overline{X}) \]

Generally different orders down different branches: dynamic ordering
Given variable ordering, search tree is fixed

How can we possibly reduce search tree further?

Backtrack earlier

Backtracking occurs (only) when empty clause generated

Empty clause generated (only) by unit propagation
Empowering Unit Propagation

Unit propagation determined by set of clauses

More clauses \Rightarrow (potentially) more propagation, earlier empty clause (backtrack), smaller search tree

What clauses to add?

- not already in CNF
- logically entailed by CNF (or correctness lost)
- empower UP
Clause Learning

| | $\Delta|_A$ | $\Delta|_{A,B}$ | $\Delta|_{A,B,C}$ | $\Delta|_{A,B,C,X}$ |
|----------|----------------|-----------------|-------------------|---------------------|
| A, B | $\overline{A}, \overline{X}, Y$ | X, Y | \overline{X}, Y | \overline{X}, Y |
| B, C | \overline{A}, X, Z | X, Z | X, Z | Y, Z |
| | \overline{A}, Y, Z | \overline{Y}, Z | \overline{Y}, Z | \overline{Y}, Z |
| | $\overline{A}, X, \overline{Z}$ | X, \overline{Z} | X, \overline{Z} | $\overline{Y}, \overline{Z}$ |
| | $\overline{A}, Y, \overline{Z}$ | $\overline{Y}, \overline{Z}$ | $\overline{Y}, \overline{Z}$ | $\overline{Y}, \overline{Z}$ |

- **Conflict in level 3:** $\Delta|_{A,B,C} \Rightarrow \overline{X}$
- **B, C irrelevant:** $\Delta|_A \Rightarrow \overline{X}$
- **What clause would have allowed UP to derive \overline{X} in level 0?** $\overline{A} \lor \overline{X}$ (A → \overline{X})
Clause Learning

\[\Delta |_A \]

\(A, B \)
\(B, C \)
\(\overline{A}, \overline{X}, Y \)
\(\overline{A}, \overline{X}, Z \)
\(\overline{A}, \overline{Y}, Z \)
\(\overline{A}, \overline{X}, \overline{Z} \)
\(\overline{A}, \overline{Y}, \overline{Z} \)
\(\overline{A}, \overline{X} \)

\(\overline{A} \lor \overline{X} \) satisfies criteria

- not in CNF
- entailed by CNF
- empowers UP

Learn clause in level 3

Backtrack to level 0, start over

How to learn? How far to backtrack?

Jinbo Huang
Introduction to Propositional Logic
Implication Graph

1: \(A, B \)
2: \(B, C \)
3: \(\overline{A}, X, Y \)
4: \(\overline{A}, X, Z \)
5: \(\overline{A}, \overline{Y}, Z \)
6: \(\overline{A}, X, \overline{Z} \)
7: \(\overline{A}, Y, \overline{Z} \)
8: \(\overline{A}, \overline{X} \)
Conflict Analysis

1: A, B
2: B, C
3: $\overline{A}, \overline{X}, Y$
4: \overline{A}, X, Z
5: $\overline{A}, \overline{Y}, Z$
6: $\overline{A}, X, \overline{Z}$
7: $\overline{A}, \overline{Y}, \overline{Z}$

- Cut: roots (decisions) on one side, sink (contradiction) on other
- Arrows across cut together responsible for contradiction
- Conflict set: tail points of arrows
Conflict Set

1: \(A, B \)
2: \(B, C \)
3: \(\overline{A}, X, Y \)
4: \(\overline{A}, X, Z \)
5: \(A, Y, Z \)
6: \(\overline{A}, X, \overline{Z} \)
7: \(\overline{A}, Y, \overline{Z} \)

- Cut 1: \(\{ A, X \} \implies \overline{A} \lor X \)
- Cut 2: \(\{ A, Y \} \implies \overline{A} \lor Y \)
- Cut 3: \(\{ A, Y, Z \} \implies \overline{A} \lor Y \lor \overline{Z} \) (existing)

Which clause to learn?
Unique Implication Point (UIP)

Prefer shorter explanation
 - shorter clause closer to unit, more empowering

Never need > 1 node from latest level
 - latest decision + history always suffices

UIP: lies on all paths from decision to contradiction
1-UIP Learning

Work from sink backwards
Stop when conflict set includes a UIP, and no other nodes, of latest level: 1-UIP clause \((\overline{A} \lor \overline{Y})\)

- 2-UIP, 3-UIP, ..., All-UIP

Empirically shown effective, most common choice
Backtracking to Assertion Level

Learned clause: $\overline{A} \lor \overline{Y}$

- becomes unit (\overline{Y}) when erasing current level
- asserting clause: UP will assert \overline{Y} (empowerment)
Backtracking to Assertion Level

Backtrack as far as possible, as long as UP remains empowered

Assertion level: 2nd highest level in learned clause, or -1 if learned clause is unit

- \(A_0 \lor \overline{B}_1 \lor C_1 \lor X_4: aLevel = 1 \)
- \(X_4: aLevel = -1 \)
- learned unit clause asserted before any decision

Empirically shown effective, most common choice
Clause Learning: Putting It Together

\[
\text{REPEAT} \\
\text{IF no free variable} \\
\quad \text{RETURN} \ SAT \\
\text{pick free variable } X \text{ and set either } X \text{ or } \overline{X} \\
\text{IF contradiction} \\
\quad \text{IF level} < 0 \\
\quad \quad \text{RETURN} \ UNSAT \\
\text{learn clause} \\
\text{backtrack anywhere learned clause } \neq \emptyset
\]

- Will terminate because learned clause must be new, \(|\text{clauses}| \) finite
Efficient Unit Propagation

Need to detect unit clauses

Naively, keep track of clause lengths: when setting X, decrement lengths of clauses that contain \overline{X}
 - inefficient when CNF is large

Pick 2 literals to watch in each clause
 - watch A, B in $A \lor B \lor \overline{C} \lor D$
 - clause cannot be unit unless \overline{A} or \overline{B} is set
 - do nothing when C or D is assigned

Scales to millions of clauses in practice
Clause Learning and Resolution

Each learning step corresponds to a sequence of resolutions.

Each learned clause is the final resolvent of that sequence.
Syntactic and Semantic Reasoning Combined

Searching for model and performing resolutions at the same time

Terminates as soon as either thread terminates

Solves our earlier issue with resolution (as purely syntactic method)
 - Search behavior guides generation of resolvents

Addition of new clauses also influences search
 - Aim for “positive feedback loop”
SAT Resources

- SAT conferences, www.satisfiability.org
- SAT competitions, www.satcompetition.org
- SAT Live, www.satlive.org
- Handbook of satisfiability
Propositional Reasoning Beyond SAT

SAT answers a single query

Repeated queries on same knowledge base Δ?
- E.g., abnormality of different observations
- Each SAT query can be expensive
- Can we do some expensive work once, so that future queries can all be answered quickly?

Compile Δ into *tractable* form
Multiple Queries

\[
\begin{align*}
A \land \text{okX} &\rightarrow \neg B \\
\neg A \land \text{okX} &\rightarrow B \\
B \land \text{okY} &\rightarrow \neg C \\
\neg B \land \text{okY} &\rightarrow C
\end{align*}
\]

Compiler

Compiled Structure

Queries

Evaluator (Polytime)
What to Compile To

A \land \text{okX} \rightarrow \neg B
\neg A \land \text{okX} \rightarrow B
B \land \text{okY} \rightarrow \neg C
\neg B \land \text{okY} \rightarrow C

Queries

Compiler

Evaluator (Polytime)
Representations of Boolean functions
Systematic space of normal forms
Satisfy different sets of properties
Support different sets of operations
Reasoning by Knowledge Compilation

Identify forms that support desired operations

Pick most *succinct* one

Compile knowledge into target form

Perform reasoning
Negation Normal Form (NNF)

AND/OR circuit over literals
Negation Normal Form (NNF)

Any Boolean function can be represented in NNF (completeness)

Impose conditions/properties over NNF

Obtain subsets/restrictions of NNF

Consider only complete subsets
Decomposable NNF (DNNF)
Determinism
Deterministic DNNF (d-DNNF)
Flatness

```
<table>
<thead>
<tr>
<th>or</th>
</tr>
</thead>
<tbody>
<tr>
<td>and</td>
</tr>
<tr>
<td>and</td>
</tr>
<tr>
<td>and</td>
</tr>
<tr>
<td>and</td>
</tr>
</tbody>
</table>

X    Y    Z    -X    -Y    -Z
```
Simple Disjunction

\[
\begin{align*}
\text{and} & \quad \text{or} & \quad \text{or} & \quad \text{or} \\
X & \quad Y & \quad Z & \quad -X
\end{align*}
\]
Simple Conjunction

X \land Y \land Z \land \neg X \land \neg Y \land \neg Z
Prime Implicates (PI)

Conjunction of clauses

Includes every entailed clause

No clause subsumes another

Can obtain by running resolution to saturation, removing subsumed clauses
Prime Implicants (IP)

- Disjunction of terms
- Includes every entailing term
- No term subsumes another
- Can obtain by process dual to resolution
Decision node: **true**, **false**, or following fragment where α, β are decision nodes.
Decision Drawn Compactly

- or
- and
 - X
 - α
- and
 - ¬X
 - β

X
α
β
Binary Decision Diagrams (BDD)
Test-once
Ordering
Ordered BDDs (OBDD)

Jinbo Huang

Introduction to Propositional Logic
Succinctness

F at least as succinct as G, $F \leq G$, if

$\forall \Delta \in G, \exists \Delta' \in F, \Delta' \equiv \Delta, |\Delta'|$ polynomial in $|\Delta|$

F more succinct than G, $F < G$, if $F \leq G, G \not\leq F$
Succinctness

\[
\begin{align*}
\text{sd-DNNF} &= \text{d-DNNF} \\
\text{d-DNNF} &\rightarrow \text{DNNF} \\
\text{DNNF} &\rightarrow \neg \text{DNNF} \\
\neg \text{DNNF} &\rightarrow \text{NNF} \\
\text{NNF} &\rightarrow \text{CNF} \\
\text{CNF} &\rightarrow \text{PI} \\
\text{PI} &\rightarrow \text{MODS} \\
\text{MODS} &\rightarrow \text{OBDD} \\
\text{OBDD} &\rightarrow \text{DNF} \\
\text{DNF} &\rightarrow \text{FBDD} \\
\text{FBDD} &\rightarrow \text{sd-DNNF}
\end{align*}
\]
Further Topics

Operations supported by each form

Compiling knowledge into these forms

Reasoning with these forms
THE END