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Abstract

A constraint satisfaction problem has compactness if any in-
finite set of constraints is satisfiable whenever all its finite
subsets are satisfiable. We prove a sufficient condition for
compactness, which holds for a range of problems includ-
ing those based on the well-known Interval Algebra (IA) and
RCC8. Furthermore, we show that compactness leads to a
useful necessary and sufficient condition for the recently in-
troduced patchwork property, namely that patchwork holds
exactly when every satisfiable finite network (i.e., set of con-
straints) has a canonical solution, that is, a solution that can
be extended to a solution for any satisfiable finite extension of
the network. Applying these general theorems to qualitative
reasoning, we obtain important new results as well as signif-
icant strengthenings of previous results regarding IA, RCC8,
and their fragments and extensions. In particular, we show
that all the maximal tractable fragments of IA and RCC8
(containing the base relations) have patchwork and canonical
solutions as long as networks are algebraically closed.

Introduction
A constraint satisfaction problem (CSP) has compactness if
any infinite set of constraints is satisfiable whenever all its
finite subsets are satisfiable. While its anologue in first-order
logic is well known, compactness for CSPs does not hold in
general. For example, if h is a natural number, then every
finite subset of {h > 1, h > 2, . . .} is clearly satisfiable, yet
the whole infinite set is not: There is no natural number that
is greater than all natural numbers.

It is known, however, that compactness holds in the case
of finite domains (Cowen 1998); hence we shall focus on
CSPs over infinite domains, as is typical, for example, in
qualitative spatial and temporal reasoning where domains
are infinite sets of spatial or temporal entities.

The present paper establishes two major results on com-
pactness of CSPs, with a number of useful corollaries. Our
approach is the model-theoretic one that formulates each
CSP as satisfiability of a set of first-order sentences in some
relational structure 〈A, R〉, called a template, where A and
R correspond to the domain and relations of the CSP. For ex-
ample, P = 〈Q, {=, <,>}〉 is the rational numbers Q with
the usual comparison relations, and hence CSP(P) is the
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problem of deciding whether a set of equalities and inequal-
ities between rational variables is satisfiable, which corre-
sponds to the well-known CSP for the Point Algebra (Vilain
and Kautz 1986).

Our first result shows that CSP(A) has compactness if the
template A is ω-categorical, that is, if A is the unique count-
able model, up to isomorphism, of the set of all first-order
sentences that are true in A. The structure P mentioned
above, for example, is ω-categorical (Hirsch 1996), imply-
ing that the CSP for the Point Algebra has compactness.

While compactness involves infinite constraint networks,
our second result shows that it has useful consequences
where we are dealing only with finite networks. Specifi-
cally, we show that where compactness holds, the recently
introduced patchwork property (Lutz and Milic̆ić 2007) is
equivalent to the existence of a canonical solution for every
finite satisfiable network, which is a solution that can be ex-
tended into a solution for any finite satisfiable extension of
the network.

These two results for general CSPs have important corol-
laries that significantly strengthen and expand previous re-
sults in the field of qualitative reasoning:

• A range of problems, most notably those over the Inter-
val Algebra (IA) (Allen 1983) and RCC8 (Randell, Cui,
and Cohn 1992), are known to have formulations with ω-
categorical templates (Hirsch 1996; Bodirsky and Wölfl
2011); hence we conclude that these CSPs all have com-
pactness, which strengthens previous results showing the
compactness of the CSPs for atomic IA and RCC8 net-
works (Li and Wang 2006; Lutz and Milic̆ić 2007).

• It is known that the CSPs for the atomic fragments of
IA and RCC8, respectively, both have patchwork (Lutz
and Milic̆ić 2007); hence we conclude that every satis-
fiable atomic IA or RCC8 network has a canonical so-
lution, which strengthens a previous result showing the
existence of one-shot extensible solutions for satisfiable
atomic RCC8 networks (Li and Wang 2006).

• Ligozat (1996) gave a result that implies the existence
of canonical solutions for the CSP over the algebraically
closed ORD-Horn (Nebel and Bürckert 1995) fragment
of IA; hence we conclude that networks in this fragment
of IA have patchwork, which strengthens the previous re-
sult (Lutz and Milic̆ić 2007) that networks over atomic IA



relations (a subset of ORD-Horn) have patchwork.
• We show that the three known maximal tractable frag-

ments of RCC8 (Renz and Nebel 1999; Renz 1999)—
Ĥ8, C8,Q8—all have canonical solutions when networks
are algebraically closed. This further implies that they all
have patchwork. Thus we have shown that all the maxi-
mal tractable fragments of IA and RCC8 (containing the
base relations) have patchwork when networks are alge-
braically closed, which as we shall discuss can have a sig-
nificant positive impact on the efficiency and scalability
of practical reasoning algorithms.

• Finally, we extend our analysis and results to the n-
dimensional Block Algebra (Balbiani, Condotta, and del
Cerro 1999b), RCC5 (Bennett 1994), and Cardinal Direc-
tion Calculus (CDC) (Ligozat 1998).
The remainder of the paper is structured as follows. We

(1) describe the notational setup to be used throughout the
paper; (2) define compactness and prove a sufficient condi-
tion for it; (3) define the notion of canonical solutions and
prove its equivalence to the patchwork property in the pres-
ence of compactness; (4) discuss implications of these re-
sults for qualitative reasoning, particularly as regards IA,
RCC8, and their fragments and extensions; and (5) finally
conclude the paper. Related work will be discussed through-
out the paper in comparison with the new results we present.

Preliminaries
We start by providing the formal background that will al-
low us to cast a CSP as satisfiability of a set of first-order
sentences in a given structure, and then to define and reason
about compactness.

Relational Structures
A relational structure A is a pair 〈A, R〉 where A, the do-
main, is a nonempty set and R is a set of relations on A. For
each R ∈ R, let PR be a predicate symbol of the same arity
in some first-order language LR. Further, let LR contain no
other predicates, and no function symbols. Let IR be an in-
terpretation for the language LR that maps PR to R for all
R ∈ R. In the following, we may refer to A = 〈A, R〉 as
models for LR, where the actual models meant are 〈A, IR〉.

Two models 〈A1, I1〉 and 〈A2, I2〉 for the language LR

are isomorphic if they are essentially the same up to re-
naming of domain elements, that is, if there is a bijection
f : A1 7→ A2 such that

I1(PR)(a1, . . . , ar)⇔ I2(PR)(f(a1), . . . , f(ar))
for all R ∈ R and for all a1, . . . , ar ∈ A1 where r is the
arity of relation R.

The theory of a relational structure A, denoted ThA, is the
set of all first-order sentences of LR that are true in A. A is
said to be ω-categorical if all countable models of ThA are
isomorphic to A.

Constraint Satisfaction
Given a relational structure A = 〈A, R〉 where A is count-
able and R is finite, let C be a countable set of constant
(nullary function) symbols, and expand LR to L = LR∪C.

A constraint is an atomic formula PR(c1, . . . , cr) where
PR is a predicate symbol in LR with arity r, and
c1, . . . , cr ∈ C; pred(Ψ) denotes the predicate symbol in
constraint Ψ. A constraint network is a set of constraints.
For a constraint network Ψ, VΨ denotes the set of con-
stant symbols that appear in Ψ; sometimes we also refer to
these as the variables of the constraint network. For a set
of constant symbols V, ΨV denotes the maximal subset of
Ψ whose constant symbols are all from V. Finally, we say
that Ψ is a subnetwork of Φ, and Φ is an extension of Ψ,
denoted Ψ ≺ Φ, if Ψ = ΦVΨ

.
An instantiation of a constraint network Ψ is a map IΨ :

VΨ 7→ A that assigns an element of the domain to every
variable of the network. For instantiations I and I ′, we say
that I ′ extends I, and I is the projection of I ′ on dom(I), if
dom(I) ⊆ dom(I ′) and I(c) = I ′(c) for all c ∈ dom(I),
where dom gives the domain of the map.

CSP(A) is the problem of deciding the existence of an
instantiation IΨ, called a solution, such that 〈A, IR, IΨ〉 is
a model of a given constraint network Ψ (regarded as a set
of first-order sentences). When a solution exists, we say that
the constraint network Ψ is satisfiable (in A).

It is sometimes useful to place a restriction X on the con-
straint networks of a CSP(A), so that one may study proper-
ties of the restricted class of networks that might not hold in
general; in that case we will refer to the restricted problem as
CSP(A)X . A particular restriction we will use is algebraic
closure (Ligozat and Renz 2004), which we shall introduce
in a later section where it becomes relevant.

Properties of First-Order Logic
In establishing the first main result of this paper, we shall
make use of two well-known theorems in first-order logic.
The first is the compactness theorem:

Theorem 1 (Compactness of First-Order Logic) An infi-
nite set of first-order sentences is satisfiable if all its finite
subsets are satisfiable.

As we have in fact formulated CSPs as satisfiability of sets
of first-order sentences, one might wonder why CSPs do not
automatically have compactness. The reason is the follow-
ing: Given an infinite set of constraints Ψ for a CSP(A), if all
its finite subsets are satisfiable (in A), then Theorem 1 only
guarantees the satisfiability of Ψ in some structure, which
may not be A. In the following section we will see that un-
der a certain condition we will be able to guarantee the sat-
isfiability of Ψ in A, with the help of a second well-known
theorem in first-order logic, a version of which sufficient for
our purposes is given below (here a “countable first-order
theory” means a set of first-order sentences using a count-
able set of predicate and function symbols):

Theorem 2 (Downward Löwenheim-Skolem Theorem)
A countable first-order theory has a countable model if it
has an infinite model.

We are now ready to formulate a notion of compactness
for CSPs, and prove a sufficient condition for it.



Compactness
Given our first-order formulation of CSPs, we define com-

pactness for CSPs in a way completely analogous to its
counterpart in first-order logic (Lutz and Milic̆ić, 2007, used
a slightly different but essentially equivalent definition):

Definition 1 (Compactness) CSP(A) has compactness if
any infinite set of constraints over A is satisfiable whenever
all its finite subsets are satisfiable.

We now proceed directly to establish a simple sufficient
condition for compactness. In a later section we shall see
that this condition is in fact satisfied by a wide range of
CSPs of common interest, particularly in the field of qual-
itative reasoning. The intuitive idea behind the proof of this
condition is the following: Given that Theorem 1 guaran-
tees the existence of some model satisfying the infinite set
of atomic formulas, we use two techniques, respectively, to
ensure that this model (i) is countable, and (ii) can be turned
into a model based on A, the template of the CSP, thus show-
ing the satisfiability of the infinite constraint network.

Proposition 1 (Sufficient Condition for Compactness)
CSP(A) has compactness if A is ω-categorical.

Proof: Let Ψ be an infinite set of constraints over A =
〈A, R〉, where A is countable and R is finite. Suppose that
every finite subset of Ψ is satisfiable in A, and that A is ω-
categorical. We wish to prove that Ψ is satisfiable in A.

Let Ψ′ = Ψ ∪ ThA ∪ {¬(c′i = c′j) | i, j ∈ N, i 6= j}
for a set of fresh constant symbols c′i, one for each natural
number. Clearly, every finite subset of Ψ′ is satisfiable (in
A); hence Ψ′ has a model by the compactness of first-order
logic. This model must be infinite, because the infinite set
of constants {c′i | i ∈ N} must be interpreted as distinct ob-
jects. Further, the language of Ψ′ is L ∪ {c′i | i ∈ N}, and
hence countable. Therefore, by the Downward Löwenheim-
Skolem Theorem, Ψ′ has a countable model.

Let 〈A′, I ′〉 denote this countable model of Ψ′. Since
ThA ⊆ Ψ′, 〈A′, I ′〉 is also a model of ThA; hence it is
isomorphic to A,1 that is, to 〈A, IR〉, by the ω-categoricity
of A. Let f be the bijection from A′ to A that witnesses the
isomorphism. For every predicate PR ∈ L with arity r and
any a′1, . . . , a

′
r ∈ A′, the isomorphism stipulates that

I ′(PR)(a′1, . . . , a
′
r)⇔ IR(PR)(f(a′1), . . . , f(a′r)).

But IR(PR) = R; hence

I ′(PR)(a′1, . . . , a
′
r)⇔ R(f(a′1), . . . , f(a′r)). (1)

Let I be a new interpretation such that I = IR for all predi-
cates and I = f ◦I ′ for all constants. Equation (1), together
with the fact that 〈A′, I ′〉 is a model of Ψ (another subset
of Ψ′), implies that 〈A, I〉 is also a model of Ψ; in other
words, the infinite set of constraints Ψ is satisfiable in A. �

In light of Proposition 1, we may now revisit the coun-
terexample given in the first paragraph of the paper, a version

1More precisely, the reduct of 〈A′, I′〉 to L is a model of ThA,
and is isomorphic to A.

Figure 1: An infinite number of networks (each Φ′i includes
Ψ) having a common subnetwork but otherwise disjoint.

of which can be formulated as an instance of CSP(N) where
N = 〈N, {<}〉 is the natural numbers with the usual “<”
relation. Specifically, take a total order among countably
many variables {c1 < c2 < . . .}, and add the constraints
{ci < h | i ∈ N} for a fresh variable h. The infinite network
obtained witnesses the lack of compactness for CSP(N), im-
plying that the template N is not ω-categorical.

Patchwork Property and Canonical Solutions
We show next that compactness has an important conse-
quence in the form of the equivalence between the patch-
work property (Lutz and Milic̆ić 2007) and existence of what
we shall define as canonical solutions.

Intuitively, patchwork ensures that the combination of two
satisfiable constraint networks that agree on their common
variables continues to be satisfiable. Below is a definition of
patchwork (Lutz and Milic̆ić 2007) phrased in our notation.

Definition 2 (Patchwork) A CSP has patchwork if for any
finite satisfiable constraint networks Ψ and Φ of the CSP
such that ΨVΨ∩VΦ

= ΦVΨ∩VΦ
, the constraint network

Ψ ∪Φ is satisfiable.

Note that the CSP in the above definition can be any
CSP(A) or CSP(A)X (i.e., a restricted class of networks),
and in the latter case, the network Ψ ∪Φ is not required to
satisfy the restriction X .

As has been noted by Lutz and Milic̆ić (2007), compact-
ness and patchwork together potentially allow an infinite
number of finite satisfiable networks to be “patched” to-
gether into an infinite satisfiable network. We now exploit
this idea to establish a necessary and sufficient condition for
patchwork in the presence of compactness. This condition
will be based on the following notion of canonical solutions:

Definition 3 (Canonical Solutions) For a given CSP, a so-
lution IΨ for a finite satisfiable constraint network Ψ is
canonical if every finite satisfiable extension of Ψ has a so-
lution that extends IΨ. We say that a CSP has canonical
solutions if every finite satisfiable network of the CSP has a
canonical solution.

Let us proceed to present the second general result of
this paper, where we show, interestingly, that compactness,
which concerns infinite networks, enables us to prove a re-
sult on patchwork and canonical solutions, both of which



concern only finite networks. The basic idea there is to patch
together an infinite number of finite satisfiable extensions
of a network (with variables suitably renamed), use com-
pactness to establish a solution for the infinite network, and
project the solution back on finite subsets of its variables to
obtain solutions to its finite subnetworks.

To simplify notation, the CSP in the proof of the following
proposition is represented as CSP(A); however, the proof
works as well for CSPs with restrictions, i.e., CSP(A)X for
some restriction X , where compactness is taken to mean that
of the unrestricted CSP(A).

Proposition 2 (Patchwork and Canonical Solutions)
A CSP (i) has canonical solutions if it has compactness
and patchwork, and (ii) has patchwork if it has canonical
solutions.

Proof: In what follows we shall have occasion to implicitly
appeal to two facts about countable sets: The set of all finite
strings over a countable alphabet is countable; the set of all
finite subsets of a countable set is countable.

Given a relational structure A = 〈A, R〉 where A is
countable and R is finite, recall that each constraint in
CSP(A) is a predicate over constants in the first-order lan-
guage L = LR ∪C where C = {c1, c2, . . .} is a countable
set of constant symbols. Let ∆(A) be the set of all con-
straints that can be written for CSP(A). We have that ∆(A)
is countable.

(i) Suppose that CSP(A) has compactness and patchwork.
Let Ψ be any finite satisfiable network of CSP(A); with-
out loss of generality let the constant symbols in Ψ be
c1, . . . , c|VΨ|. We shall show that Ψ has a canonical solu-
tion. Let Φ1, Φ2, . . . be an enumeration of all finite satis-
fiable networks of CSP(A) that are extensions of Ψ, which
is possible as each Φi is a finite subset of ∆(A) and hence
{Φi} is countable. We shall next rename the constant sym-
bols of all Φ’s so that no constant symbol outside VΨ is
shared between any Φ’s, as follows: For each i = 1, 2, . . .,
let g(i) = |VΨ| +

∑i−1
j=1 |VΦj

\VΨ|, and let Φ′i be Φi with
the constant symbols VΦi

\VΨ replaced, respectively, by
{cg(i)+1, . . . , cg(i+1)}. This transformation is well-defined
as g(i) is finite for each i. We now have {Φ′i} such that
Ψ ≺ Φ′i for all i and VΦ′

i
∩ VΦ′

j
= VΨ for all i 6= j, as

illustrated in Figure 1. This implies that the union of any
finite number of elements from {Φ′i} is satisfiable (by ap-
plying patchwork a finite number of times), which in turn
implies that any finite subset of

⋃
{Φ′i} is satisfiable, and

hence
⋃
{Φ′i} is satisfiable by compactness. Let IC be a

solution for
⋃
{Φ′i}, IΨ its projection on VΨ, and Ii its pro-

jection on VΦ′
i
. Clearly, IΨ is a solution for Ψ, and Ii is

a solution for Φ′i and an extension of IΨ. As Φi and Φ′i
are essentially the same network apart from the renaming of
constant symbols outside VΨ, Ii can be turned into a solu-
tion for Φi that continues to be an extension of IΨ. This
shows that IΨ is a canonical solution for Ψ.

(ii) Suppose that CSP(A) has canonical solutions. Let
Ψ and Φ be any two finite satisfiable networks such that
ΨVΨ∩VΦ

= ΦVΨ∩VΦ
= Γ. We wish to show that Ψ ∪ Φ

is satisfiable. Let IΓ be a canonical solution for Γ. Since

Γ ≺ Ψ, there is an extension IΨ of IΓ that is a solution for
Ψ; similarly, there is an extension IΦ of IΓ that is a solu-
tion for Φ. The combination of IΨ and IΦ (in the natural
way), which is well-defined as they agree on the intersection
of their domains, is a solution for Ψ ∪Φ. �

While the proof above illustrates the usefulness of com-
pactness, one may wonder whether compactness is inher-
ently necessary for part (i) of the proposition to hold. In par-
ticular, could patchwork somehow imply compactness? The
answer is unfortunately no. For a counterexample, consider
CSP(N)C , the class of networks over the template N that are
complete (i.e., where there is a constraint “<” between ev-
ery two variables). This CSP does not have compactness
as discussed at the end of the preceding section, but has
patchwork as the reader may easily verify: Any network of
CSP(N)C effectively defines a total order over natural num-
bers, and one can always choose numbers sufficiently far
apart so that the solution obtained for ΨVΨ∩VΦ

can be ex-
tended into solutions for both Ψ and Φ (as in Definition 2),
which are finite networks. On the other hand, CSP(N)C
does not have canonical solutions, because no matter how
far apart the numbers are, an extended network can always
pose the infeasible task of fitting too many distinct numbers
between them.

In the rest of the paper we will use part (ii) more often
than part (i) of Proposition 2 to derive new results. Never-
theless, we note that the significance of part (i) lies also in
that it provides the assurance that the sufficient condition we
have identified for patchwork is no stronger than necessary,
which will be useful in future work that attempts to estab-
lish patchwork for new CSPs. Previous work (Li, Huang,
and Renz 2009), by contrast, used the condition of strong
n-consistency, which is much stronger and not satisfied by
many CSPs that in fact have patchwork as we show later.

Qualitative Reasoning
Having established two general results (Propositions 1 and
2) involving compactness of CSPs, we proceed to discuss a
number of their implications with respect to concrete prob-
lems in qualitative (spatial and temporal) reasoning, where
infinite domains are typical. Interestingly, some of these im-
plications turn out to significantly strengthen several previ-
ous results, some of which can have a direct positive impact
on the efficiency of practical reasoning algorithms.

These problems in qualitative reasoning can each be for-
mulated as a CSP whose template is a qualitative calculus.
In this work we consider only qualitative calculi with binary
relations, which are relational structures 〈A, R〉 satisfying
the following conditions: (i) All relations in R are binary.
(ii) There exists B ⊆ R such that the relations B form a par-
titioning of A ×A. In other words, over any two (ordered)
elements of A, exactly one relation in B holds. These are
known as base or atomic relations. It is assumed that B con-
tains the identity relation and is closed under converse. (iii)
R = {

⋃
S |S ⊆ B}; that is, relations in R are generated by

taking all possible unions of (zero or more) base relations.
We denote such a set R by B∗.



For qualitative reasoning we assume that any constraint
network contains at most one constraint for any (unordered)
pair of variables (constant symbols). For notational conve-
nience, we introduce a function `Ψ : C×C 7→ R for every
constraint network Ψ such that `Ψ(ci, cj) gives the relation
specified in Ψ over variables ci and cj (i.e., if Ψ ∈ Ψ is a
constraint over ci and cj , then `Ψ(ci, cj) = IR(pred(Ψ));
`Ψ(ci, cj) is defined to be the converse of `Ψ(cj , ci) if Ψ
contains a constraint over (cj , ci), and defined to be the uni-
versal relation, i.e., A×A, if Ψ does not contain a constraint
between ci and cj at all. Sometimes we refer to `Ψ(ci, cj)
as the label of the edge (ci, cj) of the network.

Several standard concepts in qualitative reasoning may
now be introduced. Let Ψ and Ψ′ be constraint networks
for qualitative CSP(〈A, R = B∗〉).
• Ψ is complete if it includes a constraint for every (un-

ordered) pair of its variables.

• Ψ is atomic if the label of every edge is a base relation,
that is, if `Ψ(ci, cj) ∈ B for all ci, cj ∈ VΨ.

• Ψ′ is a refinement of Ψ if Ψ′ specifies a stronger relation
than Ψ for every pair of variables, that is, if `Ψ′(a, b) ⊆
`Ψ(a, b) for all a, b ∈ VΨ, a 6= b.

• The weak composition of relations R1, R2 ∈ R, denoted
R1 � R2, is the minimal relation in R that contains the
(standard set-theoretic) composition of R1 and R2, or for-
mally, R1 � R2 =

⋃
{R |R ∈ B, R ∩ (R1 ◦ R2) 6= ∅},

where ◦ denotes composition (� and ◦ are identical if R
is closed under composition).

• Ψ is algebraically closed (a-closed) 2 if ∅ 6= `Ψ(ci, ck) ⊆
`Ψ(ci, cj) � `Ψ(cj , ck) for all ci, cj , ck ∈ VΨ (if weak
composition is identical to composition, then a-closure is
identical to the standard notion of path consistency).3

Let C denote the restriction that networks be complete,
and AC denote the restriction that networks be a-closed.
The CSP for the atomic networks of a calculus 〈A, R = B∗〉
can thus be written as CSP(〈A, B〉)C .

We are now ready to discuss implications of Proposi-
tions 1 and 2 for concrete qualitative CSPs. We will fo-
cus on IA and RCC8, two of the best-known examples of
qualitative calculi, and briefly discuss several others after-
wards. In presenting our results, we shall make use of a basic
fact that first-order interpretations preserve ω-categoricity4

(Hodges 1993), and in particular its direct consequence that

2Some authors use the term transitively closed.
3This definition of a-closure is a semantic one as it is relative

to the template of the CSP. If one takes a qualitative calculus to be
a relation algebra, which is syntactically equipped with the (weak)
composition table, the same definition of a-closure would become
a purely syntactic one. In Footnote 8 we will indeed have occasion
to refer to a syntactic version of a-closure.

4That is, if A can be interpreted in B, then A is ω-categorical
if B is. While we omit a formal definition of interpretation, the
following example should give the general idea: The (field of) ra-
tionals can be interpreted in the (ring of) integers as each rational
can be defined by a pair of integers (hence the interpretation in this
case is called 2-dimensional), and each operation (addition, multi-
plication, etc.) on rationals can be defined by a formula on integers.

Figure 2: IA base relations: six shown above, their con-
verses, and the identity relation.

if 〈A, B〉 is ω-categorical, then so is 〈A, B∗〉 (Bodirsky and
Wölfl 2011).

Interval Algebra
IA (Allen 1983) is intended to model relations between in-
tervals on the infinite time line. The domain of IA can be
conveniently taken to be the set of intervals on the ratio-
nal numbers:5 Intv = {(b, e) | b, e ∈ Q, b < e}. The
base relations of IA are BIA ={before, after, meets, met-
by, overlaps, overlapped-by, equals, during, includes, starts,
started-by, finishes, finished-by}. These capture the intu-
itive relations, illustrated in Figure 2, that hold between time
intervals, and can be readily defined in a formal way; for
example, before= {((b1, e1), (b2, e2)) | (b1, e1), (b2, e2) ∈
Intv, e1 < b2} (we shall not burden the reader with defini-
tions of the rest).

The structure 〈Intv, BIA〉 is known to be ω-categorical
(Ladkin and Maddux 1994); hence IA = 〈Intv, B∗IA〉 is
ω-categorical as well, and by Proposition 1 we have:
Proposition 3 CSP(IA) has compactness.

Since B∗IA is much larger than BIA, Proposition 3 is a
significant strengthening of the previous result (Lutz and
Milic̆ić 2007) that CSP(〈Intv, BIA〉)C , the CSP for atomic
IA networks, has compactness.

CSP(〈Intv, BIA〉)C is known to have patchwork (Lutz
and Milic̆ić 2007); hence by Proposition 2 it has canonical
solutions. In fact, in this case one can establish a stronger
result that every solution is a canonical solution, because
satisfiable atomic IA networks over n variables are known
to be strongly n-consistent (van Beek and Cohen 1990).

Our next result concerns ORD-Horn, a large sub-
set of B∗IA containing 868 of the 213 relations, identi-
fied as the maximal subset R′ of B∗IA containing BIA

such that CSP(〈Intv, R′〉)C is tractable, i.e., solvable by
a known polynomial-time algorithm (Nebel and Bürckert
1995). Since ORD-Horn contains the universal re-
lation, the CSP for ORD-Horn networks is precisely
CSP(〈Intv, ORD-Horn〉). Ligozat (1996) gave an alter-
native proof of tractability for this CSP by showing that a
solution can be generated for every finite a-closed satisfi-
able network of the CSP by instantiating one variable at a

5Although IA has historically been introduced as a relation al-
gebra, it is now standard practice to regard it as a qualitative cal-
culus, hence a relational structure (which provides a representation
for the algebra). Also, using real numbers results in an equivalent
problem, since the set C of constant symbols of a CSP is assumed
to be countable.



time without backtrack. The procedure, which is guaranteed
to succeed (Theorem 2, Ligozat 1996), calls for assigning an
interval to each variable, in any order, such that relevant con-
straints are respected and the endpoints of previously used
intervals are avoided whenever possible. It follows that:

Proposition 4 CSP(〈Intv, ORD-Horn〉)AC has canoni-
cal solutions.

Hence by Proposition 2, we have:

Proposition 5 CSP(〈Intv, ORD-Horn〉)AC has patch-
work.

Proposition 5 is a significant strengthening of the previ-
ous result that atomic IA networks have patchwork,6 and
can have an important positive impact on the efficiency of
practical reasoning algorithms that often rely on an efficient
a-closure test. Specifically, it has been shown that because
atomic IA networks have patchwork, in testing the existence
of an a-closed atomic refinement of an IA network Ψ, one
may identify a subset of the node triples, based on a de-
composition of the network (into subnetworks that can be
“patched” back together), that need not be examined, hence
reducing the complexity of the test (Li, Huang, and Renz
2009).7 This discovery has resulted in instances of the gen-
eral CSP(IA) to be solved much more efficiently, and much
larger instances to be solved, as CSP(IA) can be reduced
to the existence of an a-closed atomic refinement of the net-
work (Vilain and Kautz 1986).

A direct implication of Proposition 5 is that the above-
described technique can be generalized to reasoners that rely
on finding not just atomic refinements of networks, but also
ORD-Horn refinements, such as GQR (Gantner, Westphal,
and Wölfl 2008), one of the state-of-the-art qualitative rea-
soners. This will potentially have an impact similar to that
observed by Li, Huang, and Renz (2009), but on a much
broader class of algorithms.

We note here that the discussion above will become rele-
vant again when we later provide a set of new results on the
patchwork property for the tractable fragments of RCC8.

Region Connection Calculus RCC8
RCC8 (Randell, Cui, and Cohn 1992) is intended to model
relations between topological regions, such as “discon-
nected” and “partially overlapping.” Unfortunately, the con-
cept of “regions,” unlike that of time intervals, does not have
a single simple definition. As a result, RCC8 is in fact not
a single structure, but rather a class of structures satisfying
a set of axioms that are intended to encode a concept of re-
gions and their relations. These structures are referred to as
RCC models and the set of axioms as a RCC theory.

In order to develop a mathematically precise context in
which our formal Propositions may be directly applied, it is

6For atomic IA networks, a-closure is equivalent to
satisfiability (Vilain and Kautz 1986); hence patchwork
for CSP(〈Intv,BIA〉)C is the same as patchwork for
CSP(〈Intv,BIA〉)C,AC . The same holds for atomic networks of
all the other calculi we shall discuss in this work.

7The cited work uses the atomic network amalgamation prop-
erty, which is equivalent to patchwork for atomic networks.

Figure 3: RCC8 base relations.

necessary to trace the history of RCC8 to the present point
where the reasoning problem for RCC8 may be cast as a
single CSP over an ω-categorical template. This we do next.

Historical Formulation of RCC8
There are different formulations of the RCC theory. In the
formulation adopted by Bodirsky and Wölfl (2011), for ex-
ample, a RCC model is built on top of a Boolean algebra,
which is a structure 〈G, ·, +,−, 0, 1〉 satisfying a set of ax-
ioms Γ1 that govern the behavior of the three functions
·, +,− and the two distinguished elements 0, 1 of the do-
main G (RCC models further require that 0 and 1 not be
identical). We may start to think of the elements of G as re-
gions with 0 being the empty region and 1 being the union of
all regions, and the functions ·, +,− as intersection, union,
and complement, respectively.

The structure G is then extended into a Boolean contact
algebra (Bennett and Düntsch 2007) by adding a single rela-
tion C intended to encode the connectedness of two regions.
Again this intention is captured by a set of axioms Γ2.

This new structure is now further aug-
mented with a set of 8 base relations
BRCC8 ={DC,EC,PO,EQ,TPP,NTPP,TPPi,NTPPi},
governed by a new set of axioms Γ3 defining them in terms
of C and ensuring that they form a partitioning of G×G as
well as capture the intuitive notions of the following spatial
relations (illustrated in Figure 3): disconnected, externally
connected, partially overlapping, equal, tangential proper
part, nontangential proper part, and converses of the last
two.

The set of axioms Γ = Γ1 ∪ Γ2 ∪ Γ3 (contents
omitted) is then a RCC theory, and for any model T =
〈G, ·, +,−, 0, 1, {C} ∪ BRCC8〉 of Γ, there is a corre-
sponding qualitative reasoning problem CSP(〈G, B∗RCC8〉),
which we shall also denote by CSP(T) (with a slight abuse
of notation).

From Semantic to Syntactic Formulation
This is a very different picture from that of IA, and the lack
of a single simple formulation of the CSP for RCC8 would
have caused much inconvenience in both theory and practice
but for the following discoveries: (i) A constraint network is
satisfiable in some RCC model iff it is satisfiable in a partic-
ular RCC model T that corresponds to a certain topological
space where regions are its regular closed subsets (Li 2006).
(ii) A finite atomic network is satisfiable in T iff it is a-closed
(Nebel 1995). (iii) An infinite atomic network is satisfiable



in T iff all its finite subsets are satisfiable in T (Li and Wang
2006).

These three results combined bring us to a situation simi-
lar to that with IA. Specifically, reasoning over RCC8 can
now be taken to be the following single problem: Given
a constraint network of CSP(T), does it have an a-closed
atomic refinement?

This is a purely syntactic problem, given that the weak
composition of every pair of base relations in T is known, in
the form of a RCC8 composition table, here denoted RCC8-
CT(R,S), which gives R � S, as a set of base relations
(whose union gives R�S), for every pair of relations R,S ∈
BRCC8. The full composition table may be found in Cui,
Cohn, and Randell (1993); as examples we cite here two
of its entries: RCC8-CT(DC,EC)={DC,EC,PO,TPP,NTPP},
RCC8-CT(EC,TPPi)={DC,EC}.

Back to Semantic Formulation
Very recently, Bodirsky and Wölfl (2011) gave an alternative
formulation of the RCC theory, based not on a Boolean con-
tact algebra but on the RCC8 composition table. This theory
has only two simple parts (Definition 2, Bodirsky and Wölfl,
2011):

1. Axioms on the basic behavior of the base relations: (a)
BRCC8 is a partitioning of G×G; (b) EQ is the identity
relation; (c) DC, EC, and PO are symmetric; (d) TPPi and
NTPPi are respectively converses of TPP and NTPP.

2. ∀xyz(PR(x, y)∧PS(y, z)→ PT1(x, z)∨. . .∨PTk
(x, z)),

for every pair of base relations R,S ∈ BRCC8, where
RCC8-CT(R,S)= {T1, . . . , Tk}.
Given that the second part of the theory above effec-

tively “encodes” the RCC8 composition table, if R =
〈G, BRCC8〉 is a model of the theory such that all finite
and countable models of the theory embed into it,8 then
CSP(G = 〈G, B∗RCC8〉) is equivalent to the syntactic for-
mulation of the RCC8 reasoning problem described earlier
(Bodirsky and Wölfl 2011). Furthermore, the same paper
presents such a model R that is, in addition, ω-categorical,
implying that G is also ω-categorical.

New Results
The reasoning problem for RCC8 being now formulated as a
single CSP(G) with an ω-categorical template G, by Propo-
sition 1, we finally arrive at the conclusion that:

Proposition 6 The CSP for RCC8 has compactness.

Again this is a significant strengthening of the previous
result that the CSP for atomic RCC8 networks has compact-
ness (Li and Wang 2006; Lutz and Milic̆ić 2007), which has

8A embeds into B if A is isomorphic to a substructure of B
(i.e., a subset of the domain of B with the same relations of B re-
stricted to the reduced domain). Hence this condition essentially
means that R satisfies every finite or countable atomic RCC8 net-
work that is a-closed (with respect to the RCC8 composition ta-
ble). Moreover, R will not satisfy networks that are not a-closed by
virtue of the second part of the theory above. Therefore, CSP(R)
is precisely the problem of deciding if an atomic RCC8 network is
a-closed.

itself been an important resolution of an open question raised
earlier (Balbiani, Challita, and Condotta 2003).

Note that in presenting our results on RCC8 (and later
RCC5) we omit the explicit mention of the template G and
its restrictions to various subcalculi. This does not affect
the validity of the comparison of these results with those
in previous work, since satisfiability in G is equivalent to
satisfiability in the standard model T as discussed earlier.

Since atomic RCC8 networks are also known to have
patchwork (Lutz and Milic̆ić 2007), we immediately obtain
the following by Proposition 2:

Proposition 7 The CSP for atomic RCC8 networks has
canonical solutions.

Proposition 7 may be contrasted with the previous result
(Li and Wang 2006) that every satisfiable atomic RCC8 net-
work has a one-shot extensible solution, which is a solution
that can be extended into a solution for any satisfiable atomic
extension of the network that has precisely one additional
variable and two additional constraints linking that variable
to two existing variables. It should be clear that the result
presented here is much stronger as it applies to extensions
of arbitrary size, not just one-shot extensions.

Our next set of results concerns Ĥ8, C8,Q8, the (only)
three maximal subsets of B∗RCC8 containing BRCC8 over
which reasoning is tractable (Renz 1999). We have dis-
cussed earlier (under Proposition 5) that the patchwork prop-
erty permits a decomposition of networks that can signifi-
cantly improve the efficiency and scalability of practical rea-
soning. While this method applies to both IA and RCC8, so
far the only known fragment of RCC8 that has patchwork
is the atomic fragment BRCC8 containing just the 8 base
relations, which limits the applicability of decomposition.

Here we show that the three large subsets Ĥ8, C8,Q8

(containing respectively 148,158, and 160 of the 28 rela-
tions) all lead to fragments of RCC8 that have patchwork,
thus greatly broadening the applicability of decomposition.
We first show that these fragments have canonical solutions;
again we require networks in these fragments to be a-closed:

Proposition 8 The three CSPs for a-closed Ĥ8, C8, and Q8

networks, respectively, all have canonical solutions.

Proof: We first note that a-closed Ĥ8, C8, or Q8 networks
are guaranteed to be satisfiable (Renz and Nebel 1999;
Renz 1999). For any X ∈ {Ĥ8, C8,Q8},
Renz (Lemma 20, 1999) exhibited a map
f : X 7→ BRCC8 that gives a unique satisfiable atomic
refinement for any a-closed X network Ψ, by replacing
every predicate PR in Ψ with Pf(R). Let f(Ψ) denote this
atomic refinement. By Proposition 7, f(Ψ) has a solution
IΨ that can be extended into a solution for any satisfiable
atomic extension of f(Ψ).

We claim that IΨ is a canonical solution for each of the
three CSPs mentioned in the Proposition: If Ψ′ is an exten-
sion of Ψ in one of these CSPs, then f(Ψ′) is an atomic
extension of f(Ψ), and hence IΨ can be extended into a so-
lution for f(Ψ′), which is also a solution for Ψ′. �



By Proposition 2, we have:

Proposition 9 The three CSPs for a-closed Ĥ8, C8, and Q8

networks, respectively, all have patchwork.

Other Calculi
Having studied IA and RCC8 in some detail, we now further
extend our results to a number of related calculi.

Block Algebra
IA has a natural generalization to the n-dimensional space
Qn. The resulting algebra BAn = 〈Intvn, Bn

IA
∗〉 is

known as the n-dimensional Block Algebra (BA), or Rect-
angle Algebra in case n = 2 (Balbiani, Condotta, and del
Cerro 1998; 1999b).

It is straightforward to verify that for each n ≥ 2,
BAn has an n-dimensional (first-order) interpretation in
〈Intv, BIA〉, and therefore is ω-categorical. Hence by
Proposition 1 we have:

Proposition 10 CSP(BAn) has compactness.

By decomposing each instance of CSP(〈Intvn, Xn〉) into
n independent instances of CSP(〈Intv, X〉), and noting that
the n component instances must all be a-closed if the orig-
inal instance is, it can be seen that the patchwork property
(and existence of canonical solutions) for any subset X of
IA relations will extend to the corresponding subset Xn of
BA relations. Specifically, we have:

Proposition 11 CSP(〈Intvn, Bn
IA〉)C , the CSP for atomic

BAn networks, and CSP(〈Intvn, ORD-Hornn〉)AC , the
CSP for a-closed ORD-Hornn networks,9 both have
patchwork and canonical solutions.

RCC5
We now turn to RCC5 (Bennett 1994), which can be re-
garded as a subcalculus of RCC8 generated by 5 base re-
lations BRCC5 ={DR,PO,EQ,PP,PPi}, where DR (for “dis-
crete”) is DC ∪ EC, PP (for “proper part”) is TPP ∪ NTPP,
and PPi is the converse of PP; in other words, no signifi-
cance is attached to boundaries of regions.

Since B∗RCC5 is a subset of B∗RCC8, Propositions 8 and
9 immediately carry over to Ĥ8 ∩ B∗RCC5, C8 ∩ B∗RCC5,
andQ8 ∩B∗RCC5, the three corresponding tractable subsets
of RCC5. Specifically, with Ĥ5, C5, and Q5 denoting these
three sets respectively, we have:

Proposition 12 The three CSPs for a-closed Ĥ5, C5, and
Q5 networks, respectively, all have patchwork and canon-
ical solutions.

Since Ĥ5 contains all the base RCC5 relations (Renz and
Nebel 1999), we have in particular:

Proposition 13 The CSP for atomic RCC5 networks has
patchwork and canonical solutions.

9The set ORD-Hornn is also known as saturated preconvex
relations (Balbiani, Condotta, and del Cerro 1999a; 1999b).

Cardinal Direction Calculus
CDC (Ligozat 1998) has 9 base relations modeling the four
cardinal directions (N, E, S, W), the four intermediate di-
rections (NE, SE, SW, NW), plus the identity relation, and
can be conveniently formulated using the Point Algebra:
CDC = 〈Q2, {=, <,>}2∗〉 (Ligozat 1998).

It is well-known that 〈Q, {=, <,>}〉 is ω-categorical
(Bodirsky 2008). As in the case for BA, it is straightforward
to verify that CDC has a 2-dimensional (first-order) inter-
pretation in 〈Q, {=, <,>}〉, and therefore is ω-categorical.
Hence by Proposition 1 we have:

Proposition 14 CSP(CDC) has compactness.

Ligozat (1998) identified a maximal tractable subset
of the calculus, called the preconvex relations. Let
this subset be denoted by PCDC , and as usual, let
CSP(〈Q2,PCDC〉)AC be the CSP for a-closed CDC net-
works using only the PCDC relations. It was shown (The-
orem 2, Ligozat 1998) that a solution can be generated for
any network of CSP(〈Q2,PCDC〉)AC by instantiating one
variable at a time without backtrack, using a procedure anal-
ogous to the one for CSP(〈Intv, ORD-Horn〉)AC that we
described earlier. This implies that the a-closed precon-
vex subcalculus of CDC has canonical solutions, and hence
patchwork. Since this subcalculus includes all the base rela-
tions, we have in particular that atomic CDC networks have
these same properties. Formally, that is to say:

Proposition 15 CSP(〈Q2, {=, <,>}2〉)C and
CSP(〈Q2,PCDC〉)AC both have patchwork and canonical
solutions.

Again, the results presented above, among other things,
will allow the use of the decomposition-based method (Li,
Huang, and Renz 2009) described earlier for BA, RCC5, and
CDC in practical qualitative reasoners.

Conclusion
The first part of our contribution is two novel, general re-
sults regarding the compactness of CSPs: a sufficient condi-
tion which is satisfied by a range of CSPs of common inter-
est, and a consequence that reveals an intimate connection
between compactness and two other interesting properties
of CSPs, namely the patchwork property and the existence
of canonical solutions. The second part of our contribution
stems from applying these results to qualitative reasoning,
where we obtained a sequence of corollaries that signifi-
cantly strengthen and expand previous results regarding the
Interval Algebra, RCC8, and their fragments and extensions.
A complete summary of all our results is conveniently avail-
able in the form of Propositions 1–15.

These results can have a significant positive impact on the
performance of practical qualitative reasoning algorithms, as
they will potentially allow us to extend to a wider range of
qualitative CSPs a technique based on graph decomposition
(Li, Huang, and Renz 2009) that has been shown to signif-
icantly enhance the efficiency and scalability of reasoning.
They also have direct implications for other areas of theoret-
ical study, particularly providing new methods for extending
the decidability result of Lutz and Milic̆ić (2007) to a wider



range of relational structures (called “concrete domains” in
the cited work).
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