
Factored Planning Using Decomposition Trees

Elena Kelareva
University of Melbourne

Melbourne, Victoria 3010 Australia
e.kelareva@ugrad.unimelb.edu.au

Olivier Buffet, ∗ Jinbo Huang, Sylvie Thiébaux
National ICT Australia and Australian National University

Canberra, ACT 0200 Australia
{firstname.lastname}@nicta.com.au

Abstract

Improving AI planning algorithms relies on the
ability to exploit the structure of the problem at
hand. A promising direction is that of factored
planning, where the domain is partitioned into sub-
domains with as little interaction as possible. Re-
cent work in this field has led to an detailed theoret-
ical analysis of such approaches and to a couple of
high-level planning algorithms, but with no prac-
tical implementations or with limited experimen-
tations. This paper presentsdTreePlan , a new
generic factored planning algorithm which uses a
decomposition tree to efficiently partition the do-
main. We discuss some of its aspects, progres-
sively describing a specific implementation before
presenting experimental results. This prototype al-
gorithm is a promising contribution—with major
possible improvements—and helps enrich the pic-
ture of factored planning approaches.

1 Introduction

Improving AI planning algorithms relies on the ability to ex-
ploit the structure of the problem at hand. Being particularly
interested in composite systems, i.e., in planning in a network
of components, we investigate a promising direction known
as factored planning, where the domain is partitioned into
subdomains with as little interaction as possible.

Factored planning is related toabstract planning, as both
involve planning on abstracted versions of the original prob-
lem. Abstract planning usually involves progressively refin-
ing a plan while going down a sequence of decreasingly ab-
stract domains, backtracking if the current plan cannot be re-
fined further[Knoblocket al., 1991]. Factored planning may
take a different path: two recent approaches amount to simul-
taneously finding all plans (up to a given length) in different
subdomains, then trying to merge them into a global solution
[Amir and Engelhardt, 2003; Brafman and Domshlak, 2006].
They avoid backtracking at the cost of computing all possi-
ble plans for the subdomains, which may be potentially very
expensive.

∗Olivier Buffet is now at LAAS-CNRS, France.

Our approach is different in that our algorithm is a form
of abstract planning which makes use of the factorisation of
the problem. In this respect, it is more related to localised
planning[Lansky and Getoor, 1995], having the same advan-
tage of not being limited to domains with explicit hierarchi-
cal structure. A characteristic of our algorithm is that it uses
a decomposition tree (dtree)[Darwiche, 2001], rather than a
junction tree, for domain factorisation. The resulting algo-
rithm, dTreePlan , is rather generic, and is a first attempt to
design a new algorithm for factored planning with backtrack-
ing. It can benefit from different improvements and different
choices for the underlying planner are possible.

We also present a particular implementation based on
planning as satisfiability[Kautz and Selman, 1992], using
zChaff as the low-level planner[Moskewiczet al., 2001].
We explore several implementation details, mostly aiming at
reducing backtracking, such as different forms of abstrac-
tion and the use of caching techniques. This results in au-
tomated algorithms both for factorisation and for planning.
The experiments show encouraging results, and the analysis
of dTreePlan leads to various directions where improve-
ments are possible, making it a very promising algorithm.

Our setting and background knowledge on factored plan-
ning are presented in Section 2. The genericdTreePlan
algorithm is introduced in Section 3. Details of the imple-
mentation and improvements are described in Section 4. Sec-
tion 5 presents experimental results, followed by a discussion
and conclusion.

2 Background

2.1 Planning Problem

Our planning problem formulation uses STRIPS operators
with conditional effects and goals as conjunctions of literals.
Yet, a large part of our algorithm extends to more complex
settings (negative preconditions, multi-valued variables...).
Only the restricted form of objective is a rigid assumption in
this paper. The optimality criterion we consider is the length
of the complete plan.

A running example we will use in the remainder of this
paper is thewindow problem, described in Figure 1, where
someone wants to throw a ball into a room without breaking
the window.

Variables:

open ? {true, false}
broken ? {true, false}
ball ? {inside, outside}

Actions:

Open:
(open=false) -> Set(open=true)

Close:
(open=true & broken=false) -> Set(open=false)

Throw:
(open=true & ball=outside) -> Set(ball=inside)
(open=false & ball=outside) -> Set(ball=inside

& broken=true & open=true)

Init state:ball=outside & open=false & broken=false

Goal state:ball=inside & open=false & broken=false

Figure 1: The window problem.

2.2 Factored Planning
Factored planning raises two questions: how to factor a given
problem and how to plan using this factorisation. Factoring
is the process of partitioning a domain into possibly overlap-
ping subdomains. Then, planning starts by solving simple
abstracted problems, and tries to merge their solutions or im-
prove them to get solutions to more complex problems, up to
solving the original problem.

To create subdomains, we need to cluster actions from the
original domain. A subdomaindi is then defined by:

1. the variables appearing in its cluster of actionsci and
2. its actions, made ofreal actions(actions within the clus-

ter) plus possiblyabstract actions(abstracted versions
of actions from some other clusters).

A sequence of consecutive abstract actions is aholein a plan.
In the window problem we consider one cluster per action.
Abstract actions make it possible for theOpen cluster to
close the window.

We are mainly interested in composite systems, where a
set of controllable components are interacting through shared
variables (representing communications and possibly indirect
interactions) and organized under a network topology. This
leads us to a first suggestion for factoring: using components
c ∈ C as building blocks, seen asclusters of actionsin the
causal graph of the problem. This is an intuitively appealing
choice as actions within a component are prone to act and
depend on the same internal variables. Yet this does not tell
us how this set of blocks should be organised. Indeed, we will
not apply the same tree decomposition of the components’
network as most other approaches.

Existing Factored Planners
Two recent factored planners arePartPlan [Amir and
Engelhardt, 2003] and LID-GF [Brafman and Domshlak,
2006]. Both use a tree decomposition with actions distributed
among all nodes, and plan recursively by computing all pos-
sible plans (with holes for other actions) in all subtrees of a
node before planning in the current node by merging subplans
and inserting actions local to the node. Among the incomplete
plans produced in a node, many will turn out to be infeasible,
if there is no possibility to complete them (fill their holes).

This gives a dynamic programming algorithm since planning
starts at the leaves and goes up to the root, where the plan
to be executed is selected. The only form of backtracking is
when restarting the algorithms with plans of lengthl+1 if no
plan of length at mostl was found.

Even though actions in lower levels of the tree are ab-
stracted out in higher levels and many subplans disappear be-
cause they cannot be merged in some way, the approach has
potentially huge memory requirements and its practicability
has not been established yet. Moreover, the local planners
(inside a given node) do not know anything about actions in
non-descendant nodes, whereas some knowledge could help
prune some infeasible plans: plans with holes that cannot be
filled. Finally, these two planners extend the length of plans in
all subdomains at the same time, leading to local optimality,
but not guaranteeing minimum length of the complete plan
[Brafman and Domshlak, 2006].

3 Algorithm
3.1 An Abstract Planner
We first introduce a particular abstract planning proce-
dure, using an arbitrary ordering over the action clusters
c1, . . . , c|C| (supposed to be already selected). The planning
process consists in planning in these clusters in order (c1 be-
ing the root). In clusterci, a planning problem is defined by:
Actions = ci’s real actions, plus abstract actions replacing

actions fromci+1, . . . c|C| when inci.
Variables = Variables appearing inci’s real actions only.

This is not necessarily a subset or a superset of variables
in other clusters.

Goal = Forc1, the goal is defined by the original problem.
For any other clusterci, the goal is to fill a set of holes
Λ = {λ1, · · · , λ|Λ|} passed on byci−1 and projected on
ci’s variables.

Actions and variables define thesubdomain at leveli,
which depends onci and on the clusters down the tree.

The complete plan can be seen as a tree in which a node is
a plan whose holes are completed by children subplans. De-
pending on whetherci−1 passes on its holes toci one at a time
or all at once, the process is either a depth-first or a breadth-
first traversal. If no plan is found that can be completed by
child ci, a failure is signified to its parentci−1. The window
problem (Figure 2a) is easy to solve if theThrow cluster is
c1, as it quickly produces a first plan withThrow preceded
by some abstract action makingopen true and followed by
another one makingopen false.

The depth-first version is detailed in Algorithm 1, omit-
ting projections on subdomains. Taking a holeλi−1 given
by ci−1 (except wheni = 1), ci tries each planπi made of
ci’s real and abstract actions and satisfyingλi−1 until πi’s
holes can be filled by FillHoles(). Each call of PlanForHole()
returns a new plan, up to exhaustion. Subplans returned by
FillHoles() are attached toπi’s holes (as children in a tree).
AbstractReplan() and ReFillHoles() are used when Fill-
Holes() has to backtrack. They make it possible to look for
the next plan (and subplans) filling a given hole. The loop
stops whenci returns a valid plan with subplans, or when
there is no more plan to try.

Algorithm 1 : Abstract Planner (Depth-First)
ABSTRACTPLAN (λi−1: hole passed on byci−1)
if isLeaf(this) then return PlanForHole(λi−1)
repeat

πi ← PlanForHole(λi−1)
if failure(πi) then return failure
Π′ ← FillHoles(πi.holes())

until ¬ failure(Π′)
return πi.attach(Π′)
FILL HOLES(Λi−1: list of holes)
if isEmpty(Λi−1) then return ∅
π ← child.AbstractPlan(Λi−1.head())
if failure(π) then return failure
Π′ ←FillHoles(Λi−1.tail())
while failure(Π′) do

π ← child.AbstractReplan(Λi−1.head())
if failure(π) then return failure
Π′ ←FillHoles(Λi−1.tail())

return {π}
⋃

Π′

ABSTRACTREPLAN(λi−1: hole passed on byci−1)
if isLeaf(this) then return PlanForHole(λi−1)
Π′ ← ReFillHoles(πi.holes())
while failure(Π′) do

πi ← PlanForHole(λi−1)
if failure(πi) then return failure
Π′ ← FillHoles(πi.holes())

return πi.attach(Π′)

REFILL HOLES(Λi−1: list of holes)
if isEmpty(Λi−1) then return failure
Π′ ←ReFillHoles(Λi−1.tail())
while failure(Π′) do

π ← child.AbstractReplan(Λi−1.head())
if isEmpty(π) then return failure
Π′ ←FillHoles(Λi−1.tail())

return {π}
⋃

Π′

From now on, the clusters visited after (before) clusterci

are calledfuture(past) clustersfor ci.

3.2 Ordering the Action Clusters
To make Algorithm 1 more efficient, it is very important to
choose the visiting order of clusters (which specifies the sub-
domains). The ordering could be dynamic: which cluster to
visit next could depend on which variables appear in the holes
to fill. But we will focus on fixed ordering in this work.

Choosing an ordering requires analysing the actions and
the variables they depend on. We have already mentioned
that subdomains should regroup real actions whose precon-
ditions and effects are linked to the same group of variables
(here using actions within a cluster). But if two partitions of
a domain should share as few variables as possible, theor-
dering of the resulting subdomains should be such that two
consecutive subdomains share as many variables as possible,
with a view to early backtracking by quickly identifying un-
satisfiable constraints.

To sort the clusters we propose using adecomposition tree
(dtree)[Darwiche, 2001], which recursively splits the orig-

inal domain into subdomains up to leaves corresponding to
individual clusters of actions. A dtree’s subtrees can be seen
as neighbourhoods, which are a good basis for finding an or-
dering on its leaves. Dtrees correspond tobranch decom-
positionsknown in graph theory[Robertson and Seymour,
1991], and were used in[Darwiche, 2001] to specify recur-
sive decompositions of a Bayesian network down to its fam-
ilies. In [Huang and Darwiche, 2003], dtrees were used to
specify recursive decompositions of a CNF formula down to
its clauses. For our purposes here, a dtree is a full binary tree
whose leaves correspond to clusters of actions of the planning
problems; see Figure 2b, where all clusters (leaves) contain a
single action and each node is annotated with the variables
shared between its subtrees. We assume that the children of a
dtree node will be visited from left to right.

Throw

Open

Close
{open}

{open}

{open,

broken}

{open,

broken,

ball}

{open,

broken,

ball}

ball,

{ }

Throw

Open

Close

a) Top-Down View b) Dtree View

Figure 2: Two views of our running example

To generate a dtree, we use the tool described in[Darwiche
and Hopkins, 2001], which employs the technique ofhyper-
graph partitioning. Our hypergraph is constructed by hav-
ing a node for each action and a hyperedge for each vari-
able, connecting all nodes (actions) in which this variable ap-
pears. The hypergraph is then recursively partitioned into two
(balanced) parts while attempting to minimize the number of
edges across. The resulting dtree is expected to have rela-
tively small cutsets, i.e., few variables shared between sub-
trees.

Such a dtree specifies a recursive decomposition of the do-
main down to actions. However, one will generally wish for
a subdomain to contain more than just a single action. This
can be accomplished simply by regarding an internal node
of the dtree as a subdomain (containing all the actions rep-
resented by the leaves under that node). Specifically, we im-
plemented a clustering process where, given a dtree of depth
d and a clustering levelcl ∈ [0, 1], all dtree nodes at depth
(1 − cl) × d are treated as subdomains in which no further
decomposition takes place. In Section 5 we also experiment
with an alternative scheme where action clusters correspond
to components in the original planning problem, and a dtree
is built with these pre-formed clusters as leaves.

Reordering Subtrees
As explained above, a dtree only specifies neighbourhood re-
lationships between leaves. Since we assume that children of
a dtree node are visited from left to right, flipping the children
of any node produces a different ordering of subdomains. To
decide on the order of children we employ a simple heuris-

tic inspired from goal-regression. It takes the list of variables
appearing in the goal definition and rearranges the dtree to
put the cluster able to modify most of them in the first vis-
ited (leftmost) leaf. Then the process is repeated with the
list of variables appearing as (pre)conditions in this first clus-
ter, so as to place the next “best” cluster on the second leaf.
This means that, assuming theClose node on Figure 2 was
a complex subtree and leafThrow had just been placed at the
leftmost position, variables appearing inThrow ’s precondi-
tions would be used inOpen’s subtree to position its best leaf.
This is a simple recursive process happening while traversing
the tree (and rearranging it on the way); see Algorithm 2.

Algorithm 2 : reOrder
REORDER()
goalV ars← variables in the goal definition
reOrderRec(goalV ars)
REORDERREC(vars: list of variables)
if isLeaf(this) then return this.preCondVars()
#l←nSharedVars(vars, leftChild.modifiedVars())
#r ←nSharedVars(vars, rightChild.modifiedVars())
if #l < #r then swap(leftChild, rightChild)
vars′ ←reOrderRec(leftChild, vars)
vars”←reOrderRec(rightChild, vars′)
return vars”

3.3 dTreePlan
Visiting the leaves in order can be achieved by a simple dtree
traversal. The result is shown in Algorithm 3, where we omit
ReDTreePlan() and ReFillHoles(). dTreePlan returns a plan-
tree whose leaves may have unfilled holes.π.holes() returns
these holes in an ordered list. Note that the traversal of the
plan—seen as a tree—is neither a depth-first nor a breadth-
first traversal: holes are refined one at a time within each
“neighbourhood” (sub-dtree).

4 Implementation Details, Improvements
This section presents a particular implementation of
dTreePlan used for experimentation and including several
improvements.

4.1 Abstract Actions
Abstract actions can be more or less informative regarding fu-
ture clusters’ abilities. We have defined two types of abstract
actions with a view to evaluating their relative efficiency. Def-
initions below take the point of view of one cluster (one level
of abstraction):

• H(ole) actions:1 Actions changing any variable shared
with future clusters. One way of implementing them is
to create one action violating the frame axiom in that any
shared variable can get any value after this action. This
action should not have any preconditions and should not
modify any other variable.

1Hole actions are quite similar to fluent-setting actions in[Amir
and Engelhardt, 2003].

Algorithm 3 : dTreePlan (Depth-First)
DTREEPLAN (λ: hole passed on by parent)
if isLeaf(this) then return PlanForHole(λ)
πl ← leftChild.dTreePlan(λ)
if failure(πl) then return failure
Πr ← FillHoles(πl.holes())
while failure(Πr) do

πl ← leftChild.ReDTreePlan(λ)
if failure(πl) then return failure
Πr ← FillHoles(πl.holes())

return πl.attach(Πr)

FILL HOLES(Λ′: list of holes)
if isEmpty(Λ′) then return ∅
πl ← rightChild.dTreePlan(Λ′.head())
if failure(πl) then return failure
Π′ ←FillHoles(Λi−1.tail())
while failure(Π′) do

π ← rightChild.ReDTreePlan(Λi−1.head())
if failure(π) then return failure
Π′ ←FillHoles(Λi−1.tail())

return {π}
⋃

Π′

• V(irtual) actions: Abstracted versions of the actions
in future clusters (with non-shared variables removed).
This is a many-to-one mapping from real actions in fu-
ture clusters to abstract actions in the current cluster.

Note: “hole” = “sequence of abstract actions” (6= “H action”).
Other types of abstract actions could be proposed. H ac-

tions have the advantage of not requiring any knowledge of
future clusters apart from the variables they share with the
current cluster. This could help design a planning process
going through independent components who want to keep
their capabilities private. V actions are much more informa-
tive, which should help avoid infeasible holes, but which also
brings us closer to central planning.

4.2 Tree Traversal
We use the depth-first algorithm because it makes use of the
domain factorisation: it turns out to be a compromise between
refining one hole at a time and working preferably within
neighbourhoods. Note that the breadth-first version is strictly
equivalent to a classical breadth-first abstract planner.

The tree traversal also depends onπ.holes(). This func-
tion can return one hole for each sequence of consecutive ab-
stract actions, or for each abstract action. Although the for-
mer seems more promising to reduce backtracking, our ex-
periments use the latter.

4.3 Caching
When backtracking, it will be quite common for a given node
to be asked several times to solve the same subproblem. A
good way to avoid such replanning is to cache solutions to
such subproblems, or to keep track of subproblems which
cannot be solved. The strategy we adopted is mixing both
ideas:

• in each leaf node are stored all already computed plans
for each already encountered subproblem, and

• in each internal node are stored all encountered subprob-
lems known to be unsolvable.

The latter is less informative and thus produces smaller
savings, but helps reduce space complexity. Note that caching
all plans and using H actions would lead to an algorithm shar-
ing similarities withPartPlan orLID-GF as it would com-
pute subplans only once and store them in memory.

4.4 Planning as Satisfiability
SAT planners, as introduced in[Kautz and Selman, 1992],
encode a planning problem into a propositional formula to
be solved by a SAT solver. We adopt this approach in the
implementation ofdTreePlan , using the publicly available
zChaff SAT solver[Moskewiczet al., 2001].

The choice of a SAT planner as the low-level planner
has several advantages. First, it makes it possible to give
an incomplete plan as a problem for some subdomain: this
amounts to specifying values for some variables at appropri-
ate time steps. Second, H actions are easily encoded by SAT
by locally removing the frame axiom for variables shared
with future clusters: it suffices to specify that their values at
time t are not related to their values at timet + 1. Third, one
can use abstract actions placed by past clusters as constraints,
requiring that the action replacing it matches its definition.

Controlling the plan length
As is typical with SAT planners, we search for increasingly
longer plans while no solution is found. This guarantees op-
timality while PartPlan andLID-GF only guarantee local
optimality.

Moreover, as the need for backtracking partially depends
on the number of holes generated in each plan,dTreePlan
also iterates over an increasing number of abstract actions in
each subplan. This increase is not linear, as it would lead to
adding a huge number of clauses. Instead, the algorithm plans
with (1) no abstract action, (2) one abstract action, and then
(3) any number of abstract actions.

5 Experiments
5.1 Improvements
A first set of experiments has aimed at evaluating the effect of
the different improvements added to our basicdTreePlan
algorithm (with H actions). It uses the Robot-Charger prob-
lem described in[Amir and Engelhardt, 2003], where a robot
wants to upgrade its battery charger but needs to charge
its batteries while achieving this goal. We designed vari-
ants by changing the number of batteries and lines (named
xbatyline).

Table 1 reports computation times (in seconds averaged
over 100 runs) on1bat1linewith a clustering level of0.5 and
the following versions ofdTreePlan :

Basic basic dTreePlan, with no improvement from Section 3.
IncrNAct Basic, with incremental number of actions.
IncrMaxH IncrNAct with incremental number of H actions.
Caching IncrMaxH with plan caching.

The reOrder() function was not used, so that four differ-
ent tree shapes were possible, denoted by the order of visited
clusters: Switch (S), Connect+AddLine (CA), Charge (C).

Table 1: Effect of various improvements

Algorithm Dtree Shape
S(CA)C CS(CA) (CA)CS C(CA)S

Basic 1.950 4.463 8.993 107.186
IncrNAct 1.036 2.698 25.655 6.731
IncrMaxH 1.169 2.645 24.613 6.447
Caching 0.898 1.159 2.332 1.263

As can be observed, each improvement clearly speeds up
the planning process, except the increase in the number of
holes, where the gain is limited. The main exception is with
dtree shape (CA)CS, where the vanilladTreePlan is made
slower by IncrNAct and IncrMaxH. Finally, it is important to
be aware that the reOrder() procedure would produce dtree
shape S(CA)C, which proves to be the most efficient.

5.2 Various Planning Parameters
Having decided to use the improvements mentioned in pre-
vious section, we conducted a second set of experiments to
evaluatedTreePlan with different parameters. In Table 2,
each column presents planning time (in seconds) for a given
clustering level (2 = component clustering) and a given type
of abstract action (H = H action, V = V action). The last col-
umn shows results with central planning (C):zChaff used
with no factorisation. The first column indicates the number
of batteries and segments in the Robot-Charger problem con-
sidered.

Table 2: Effect of clustering level and type of abstract action
#batt Planning Parameters
x#seg 0 H 0.5 H 0 V 0.5 V 2 V C
1x1 0.71 0.38 0.43 0.51 0.36 0.37
1x2 - 0.51 0.61 0.92 0.40 0.47
2x1 2.55 0.49 0.43 0.43 0.63 0.49
2x2 - 0.65 0.49 0.49 1.90 0.81
1x3 - 0.85 1.71 3.19 0.37 0.73
2x3 - 1.24 0.85 0.85 26.48 1.94
3x1 99.42 4.09 0.97 0.92 2.41 1.95
3x2 - 5.28 1.09 1.03 15.26 3.32
3x3 - 13.48 1.63 1.52 - 6.08
3x4 - 20.04 4.20 4.03 - 13.15
4x3 - - 13.33 12.38 - -
4x4 - - 16.50 15.60 - -
4x5 - - 30.71 30.03 - -

On small domain instances, most parameter settings ap-
pear more or less equivalent. Only clustering level 0 with
H actions has bad performance from the beginning. Cluster-
ing level 0 or 0.5 with V actions appears to scale better than
the centralised algorithm, even though their planning time ap-
pears unimpressive on some instances (as 1x3). This confirms
that V actions are a good means to prune out infeasible plans.
This experiment also shows that components may not be an
effective basis for decomposition. Finally, unknown values
(-) correspond to durations over 2 minutes or failures due to
memory exhaustion (probably linked to our caching strategy).

6 Discussion, Future Work

dTreePlan is a first attempt to design a new algorithm for
factored planning with backtracking. This paper has pre-
sented a specific implementation based on SAT planning to-
gether with several improvements. The experiments pre-
sented in previous section show that there is an advantage
over direct central planning if action clusters are visited in an
appropriate order.

A first direction for improvements is that of rearranging the
dtree. As discussed in Section 3, a dtree does not define the
ordering of subtrees: it specifies neighbourhood constraints
for the leaves rather than a precise ordering. It has been found
particularly useful to choose the ordering with a very crude
heuristic; hence an interesting avenue is to make use of more
knowledge of the planning problem to rearrange the dtree. As
in [Helmert, 2004; Brafman and Domshlak, 2006], the causal
graph of a planning problem seems to be a good starting point
for that. The order could also be changed on the fly, since
the current plan could suggest following the right child of a
node first, rather than the left one. But this would require
recomputing abstract actions for each cluster as they mainly
depend on future clusters.

In the dTreePlan framework, both the caching strat-
egy and the SAT planner used could be replaced by alter-
native solutions. For example, it may not be necessary to
store complete feasible plans: one may just store the holes
they generate—the only thing required when searching for a
solution—and replan when the details of a stored plan are re-
quired. It is also possible to replacezChaff —which is a
generic SAT solver— by a SAT planner such as SATplan or
MAXplan.

A final possible improvement we mention is to compute a
lower bound on the plan duration. Given a node of the dtree
and its two children, a lower bound on the node’s plan length
can be computed by planning in both children on problem re-
stricted to their internal (non-shared) variables, or more pre-
cisely to variables no one else can modify. Adding the re-
sulting plan lengths gives a lower bound for the node. This
process can even be applied recursively from the leaves to the
root. A possible heuristic is also to estimate the overall plan
length by blindly adding the length of plans computed within
leaves using the overall goal and V actions in each case.

7 Conclusion

We have presenteddTreePlan , a generic factored planning
algorithm aiming at avoiding the space complexity of dy-
namic programming approaches and using a dtree for factori-
sation. Preliminary results show that a SAT-based implemen-
tation scales better than raw SAT planning. The algorithm is
complete, and could still benefit from major improvements.

This work also illustrates the connection between abstract
and factored planning. Apart from direct improvements,
research directions include the management of more com-
plex goals (objectives specified with temporal logic), the use
of non-deterministic/stochastic actions, and the problem of
dsitributing a plan over several components for execution.

Acknowledgments
This work has been supported in part via the SuperCom
project at NICTA. NICTA is funded through the Australian
government’sBacking Australia’s Capabilitiesinitiative, in
part through the Australian research council.

References
[Amir and Engelhardt, 2003] E. Amir and B. Engelhardt.

Factored planning. InEighteenth International Joint Con-
ference on Artificial Intelligence (IJCAI’03), 2003.

[Brafman and Domshlak, 2006] R. Brafman and C. Domsh-
lak. Factored planning: How, when and when not. In
Proceedings of the Twenty-First National Conference on
Artificial Intelligence (AAAI’06), 2006.

[Darwiche and Hopkins, 2001] A. Darwiche and M. Hop-
kins. Using recursive decomposition to construct elimi-
nation orders, join trees, and dtrees. InProceedings of
the Sixth European Conference for Symbolic and Quanti-
tative Approaches to Reasoning under Uncertainty (EC-
SQARU’01), 2001.

[Darwiche, 2001] A. Darwiche. Recursive conditioning.Ar-
tificial Intelligence Journal, 125(1–2):5–41, 2001.

[Helmert, 2004] M. Helmert. Planning heuristic based on
causal graph analysis. InProceedings of the Fourteenth
International Conference on Automated Planning and
Scheduling (ICAPS’04), pages 161–170, 2004.

[Huang and Darwiche, 2003] J. Huang and A. Darwiche. A
structure-based variable ordering heuristic for SAT. In
Proceedings of the Eighteenth International Joint Confer-
ence on Artificial Intelligence (IJCAI’03), 2003.

[Kautz and Selman, 1992] H. A. Kautz and B. Selman. Plan-
ning as satisfiability. InProceedings of the Tenth European
Conference on Artificial Intelligence (ECAI’92), 1992.

[Knoblocket al., 1991] C.A. Knoblock, J.D. Tenenberg, and
Q. Yang. Characterizing abstraction hierarchies for plan-
ning. InProceedings of the Ninth National Conference on
Artificial Intelligence (AAAI’91), 1991.

[Lansky and Getoor, 1995] A.L. Lansky and L.C. Getoor.
Scope and abstraction: Two criteria for localized planning.
In Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence (IJCAI’95), pages 1924–
1930, 1995.

[Moskewiczet al., 2001] M. W. Moskewicz, C. F. Madigan,
Y. Zhao, L. Zhang, and S. Malik. Chaff: engineering an
efficient SAT solver. InProceedings of the Thirty-Eighth
Conference on Design Automation, pages 530–535, 2001.

[Robertson and Seymour, 1991] N. Robertson and P. D.
Seymour. Graph minors X: Obstructions to tree-
decomposition.Journal of Combinatorial Theory, Series
B, 52(2):153–190, 1991.

