Issues in Machine-checking the Decidability of
Implicational Ticket Entailment

Jeremy Dawson, Rajeev Goré

Logic and Computation Group
Research School of Computer Science
The Australian National University
jeremy.dawson@anu.edu.au

September 29, 2017

jeremy.dawson@anu.edu.au

Overview

The logics, and their calculi

Modelling derivations in Isabelle (sample!)
Admissibility results confirmed

Relations between the calculi

The decidability argument

Axiomatisations of various logics

Name | Axioms Logic

T | TS | Ry | RY
(Al) A=A v v v v
(A2) (A=-B)—»(C—A)—-(C—B)| v v v v
(A3) [(A=-B—=C)—=(B—-A—=C() v v
(Ad) ((A-A—=B)—(A—B) v v v v
(A5) [(A=B)—=(B—=C)—»(A—=C)| vV v
Name |Rules of Inference
(R1) |from A — B and A, deduce B v v v v
(R2) [FA// Ft—A v v

(Multiset) Sequent Rules and Calculi

(id) ———+ M-A B+FC LAEB
AFA OO a5 B nLrc ") Tras B
LAAFC _Irec (Ft)——
WO —are "erre t
MEA B,I,-C
F
e B N o ey
In the [—F] rule, [F1,A— B,I2] F C means
IN,A— B,I2F C, then some contraction
(id) | (=F) | (F=) | WH) | (tF) | (Ft) | [=H]
LR, v v v v
LR, v v v v v v
[LRS] | v v v v
[LRY] | Vv v v v v v

(Structure) Consecution Rules and Calculi

LT,
A e e
N gasE e T UEASE
(BF) UU{{XX;;(;; 2}:5 (B') UJ{XZ;;(Q »?:cc
(Kle) U({jt{;y\}/l}_l—CC (Me H)m
LTO = LT, + (Keb) + (Tek)
(et —dVIEC (Tery LY it C

Goal is decidability of Tt

v

There is a decidable sequent calculus [LR,] for R,

There is a consecution calculus LT® for Rt,

v

v

There is a consecution calculus LTY, for Tt

v

LT® is LT, plus two more rules

v

Aim is decidability of T%, by
» look at all proofs in [LRY,]
> translate them to proofs in consecution calculus LT®
» if any is in LTY,, then theorem of T, else non-theorem

Derivability in Isabelle

» Capture the implicit fact of derivability

’a psc = "’a list * ’a" (* single inference *)
derl :: "’a psc set => ’a psc set"
derrec :: "’a psc set => ’a set => ’a set"

» Neat example theorems

"derrec ?rls (derrec ?rls ?ps) = derrec ?rls 7ps"

"derl (derl ?rls) = derl ?7rls"

"derrec (derl 7rls) 7prems = derrec 7rls 7prems"
> Alternatively, concrete structure representing explicit

derivation tree

datatype ’a dertree = Der ’a (’a dertree list)
| Unf ’a (* unfinished, unproved leaf *)

» Link these implicit and explicit concepts
Theorem

c € derrec rls {} iff 3 dt. valid dt & conclDT dt = ¢

c is rls-derivable iff there is a valid derivation tree dt with
~ancliicion

Substitution in a hole in a structure

v

Example: (X;(Y;Z), X;Y;Z)els
We build the structure around the required substitution
inductive "sctxt r"

intrs

scL "(a, b) : sctxt r ==> (C;a, C;b) : sctxt r"
scR "(a, b) : sctxt r ==> (a;C, b;C) : sctxt r"
scid "(a, b) : r ==> (a, b) : sctxt r"

(U{X;(Y;2)}, U{X;Y;Z}) € sctxt rls
We turn this into a one-premise rule which does this
substitution in the antecedent
inductive "lctxt r"
intrs
I "(As, Bs) : sctxt r ==>
([As |- E], Bs |- E) : lctxt "

([U{X; (Y5 2) ECL, U{X; Y Z}F C) € Lletxt rls

The complexity this adds to cut-admissibility proofs

» Cut-admissibility proofs require re-ordering rule applications
> Define: (u,v) € strrep S, u and v same except may differ at
(several) subterms v’ and v/, where (/,v') € S
inductive "strrep S"

intrs

same "(s, s) : strrep S"

repl "p : S ==>p : strrep S"

sc "(u, v) : strrep S ==> (x, y) : strrep S
==> (u; x, v; y) : strrep S"

» “Closing the loop” lemma: if

Clp]
Cleal =5 ¢«
then there exist C' and cx st Cx = C’[cx] where

Clel =5 ¢'lp]

Clea] 225 ¢'ex]

A—=X
and cA — Cx

Inductive Multi-cut Admissibility via gen_step2

Suppose the conclusions c1 and cr have respective derivations as
shown below:

pl; ... pl, pry ... pr,,

» We want to prove an arbitrary property P of these derivations,
eg (multi)cut-admissibility for a cut-formula A

» Proof is first, by induction on A, then on “stage in the proof”

» Induction on “stage in the proof” assumes P holds for each
pl; with cr, and for c1 with each pr;

> gen_step2 expresses a single case of the inductive argument

> we have a lemma that this is enough for P to hold generally

Results for LR, LR, [LR.], and [LRY] in Isabelle

Theorem
LR, and LR, enjoy multi-cut admissibility.

Theorem
[LR_,] and [LRY,] enjoy contraction admissibility.

Corollary
[LR_,] and [LRY,] enjoy multi-cut admissibility.
» Proved in a different order from the paper (we couldn't

reproduce the proof indicated briefly in B&D)
» OOPS! We actually needed

Theorem

[LR_,] and [LRY,] enjoy height-preserving contraction admissibility.
This one uses the analogue, for concrete derivation trees, of
the gen_step?2 definition and lemmas

Multi-cut admissibility for LTt and LT®

» For (multiset) sequents, “multi-cut” meant this:

XFA A"YEB
X,.YFB

(just one ‘X" in the consequent)

» For (structure) consecutions, we have to define what we mean
by multi-cut admissibility.

XEA Y{AHA} .- -{A F B
Y{XHX}- - {X}F B

(multiple occurrences of ‘X" in the consequent)

(multicut)

Theorem
LT, and LT® enjoy multi-cut admissibility.

Soundness and Completeness

Theorem
LTt is complete for T,
LT® is complete for Rt,

For the sequent systems, we have proved
Lemma

for each rule of LR_, there is a “corresponding” proof in R_, (for
some ordering of antecedents)

We still need to prove that any re-ordering of antecedents in
AL — A — ... > A, — Bis provable in R_,

Linking the sequent and consecution systems

Theorem

Given a derivation in LT@, we can, by turning structures into
multi-sets, obtain an “equivalent” derivation in LR, .

(“equivalent” means “same” premises and conclusion, not
necessarily same proof steps)

» This is the transformation 7, which we have not actually
defined, we have just shown it exists.

» For the converse (using the 7 transformation), we need to
prove that the rules of LTgD permit any permutation and
grouping, into a structure, of any multiset of formulae.

» Lemmas 8,9 and 10 do this for up to 3 formulae (proved in
Isabelle, but not in that order!)

» Need to extend this to any number of formulae (we have
worked out argument, not proved)

Background to decidability argument

» multiset sequent system LR", for RY,, includes contraction
» [LRY,] incorporates limited contraction into —F rule, [—+]

> this gives height-preserving contraction admissibility, so
irredundant derivations, so decidable (Kripke, Konig lemmas)
> likewise LR, and [LRY,] for T*,
» structure sequent systems LT® for Rt,, and LT%, for Tt
» proof transformations:
» 7, LT® to LRY, (loses ordering/grouping)
» 7, LR, to LT® (recreates ordering/grouping)
» difference between Tt, and R!, (ie, between LR, and LT®)
is (complete) availability of re-ordering
» 7 produces several proofs in LT® (choice of
ordering/grouping)

the decidability procedure

» get all proofs in [LRY,

» convert these into proofs in LRY,

» transform them, using 7, to proofs in LT®
» examine which of these are proofs in LT*,

Issues arising:

» 7 involves “all permutations and groupings”:
should this be “all proofs of all permutations and groupings”?
(to find proof in LT, if any)

» even so, 7 produces only proofs whose F—, —F and Wk are
in the same order as the given proof in LR, — is this enough?

> that is, the algorithm produces only LT@—proofs in which
contains these rules in a the same order as a proof in [LRY,] —
what if the only LT* -proof contains them in a different order?

» (note that deriving an [LRY,]-proof from an LR, -proof
changes the order of these rules)

Lemmas supporting 7 transformation

8 If C[A; B] - A provable in LT® then so is C[t; (B; A)] - A
(C is any structure with a “hole")

9 If C[A1; Ao; As] F A provable in LT® then so are
Clt; Ai; Aj; Al = A and C[t; Aj; (Aj; Ak)l F A
(for all permutations /,j, k of 1,2,3)

10 If C[A1; Ag; As] - A provable in LT® then so are
Clt; (Ai; Aj; A)l A and C[t; (Ai; (A Ak)) A

» The proof we found for 9 actually uses 10, which we proved
first: we didn't find the proof used by B&D

» We also formulated an argument to deal with four or more
substructures

Do we actually need these lemmas?

» Lemmas 8,9 and 10: used to prove any permutation/grouping
of antecedents is provable in LT®.

» The constructions described translate LR®,-proofs to LT®

» We haven't yet found the result (that there exists an
LT®-proof) to be necessary.

» The constructions may be relevant to an argument that we
will find a proof in LT, if one exists;

» BUT: if there is no proof in LTY,, does it matter if these is no
proof in LT® either?

» We noticed this only when putting together the skeleton of a
proof in Isabelle.

Proof trees and Konig's Lemma

> Konig's Lemma:
an infinite, finitely branching, tree has an infinite branch

» When we build a proof tree, bottom (endsequent) up, the
intermediate stages have leaves yet unproved.

» We call these partial proof trees. We represent an “infinite
proof tree” by an increasing sequence of partial proof trees:

» By Konig's Lemma, if such a sequence is infinite, then there
must be a single infinitely increasing branch

» Note: finite branching property, because each rule has finitely
many premises

» And by Kripke's lemma there is no infinite irredundant branch
of a (partial) proof tree in [LR",]

» Where does this get us?

Proof search trees and Konig's Lemma

Now consider a proof search tree:
> node: partial proof tree,
edge: extending a partial proof tree by adding one rule.
» This is a different tree!! This one is finitely branching because

> a partial proof tree has only finitely many unproved leaves, and
> at each leaf, only finitely many rules can be applied.

» The previous result (“no infinite proof tree”) says proof search
tree has no infinite branch.

» Konig's Lemma, again, tells us that the proof search tree is
finite, that is, complete proof search is a finite process

» so this logic is decidable.
» This outline uses Konig's Lemma twice! Is this necessary?

> Literature seems to use Konig's Lemma just once!
and to confuse proof trees with proof search trees

Proving decidability

> To really formalise decidability, we would need to formalise
steps of computation (very low level)
> A finite proof search tree is not enough:
» imagine a logic L, and we define a new logic L', by

» Axioms of L': theorems of L
» Rules of L': none

» In L', proof search tree (for given endsequent) is tiny,
but L' (may be) not decidable.
> We need further informal arguments, eg, that at any point it
is straightforward to determine which rules are applicable.

Formalisation

use of Isabelle: work verified in Isabelle theorem prover

value of formal verification: detects gaps which may be overlooked
in a proof

value of formalisation without verification: even
planning/preparing for formal verification alerts us to
problems in a proof

difficult issues: Konig's lemma: what is an infinite proof tree?
how to formalise branch of it

Our main issue

» all LRt -proofs — all LT®-proofs
> well, let's suppose so

» actually depends on details of “all proofs of all permutations
and groupings”

» so all LR*,-proofs — (including) all LT*, -proofs

» but we need: all LR, -proofs from [LR',]-proofs — at least
one LTY -proof (if such exists)

» Question: are all LR, -proofs from [LR*,]-proofs sufficiently
representative of all LR®,-proofs to ensure this?

» Note: are all LR*,-proofs from [LR*,]-proofs, and the resulting
LT@—proofs, have limits on where contractions can appear

