Issues in Machine-checking the Decidability of Implicational Ticket Entailment

Jeremy Dawson, Rajeev Goré

Logic and Computation Group Research School of Computer Science The Australian National University jeremy.dawson@anu.edu.au

September 29, 2017

Overview

The logics, and their calculi Modelling derivations in Isabelle (sample!) Admissibility results confirmed Relations between the calculi The decidability argument

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Axiomatisations of various logics

Name	Axioms	Logic				
		$T_{ ightarrow}$	T_{\rightarrow}^{t}	R_{\rightarrow}	$R^{\mathbf{t}}_{\rightarrow}$	
(A1)	$A \rightarrow A$	\checkmark	\checkmark	\checkmark	\checkmark	
(A2)	$(A \rightarrow B) \rightarrow (C \rightarrow A) \rightarrow (C \rightarrow B)$	\checkmark	\checkmark	\checkmark	\checkmark	
(A3)	$(A \rightarrow B \rightarrow C) \rightarrow (B \rightarrow A \rightarrow C)$			\checkmark	\checkmark	
(A4)	(A ightarrow A ightarrow B) ightarrow (A ightarrow B)	\checkmark	\checkmark	\checkmark	\checkmark	
(A5)	$(A \rightarrow B) \rightarrow (B \rightarrow C) \rightarrow (A \rightarrow C)$	\checkmark	\checkmark			
Name	Rules of Inference					
(R1)	from $A \rightarrow B$ and A , deduce B	\checkmark	\checkmark	\checkmark	\checkmark	
(R2)	$\vdash A // \vdash \mathbf{t} \rightarrow A$		\checkmark		\checkmark	

(Multiset) Sequent Rules and Calculi

$$\begin{array}{c} (\mathsf{id}) \overline{A \vdash A} \quad (\rightarrow \vdash) \frac{\Gamma_1 \vdash A \quad B, \Gamma_2 \vdash C}{\Gamma_1, A \rightarrow B, \Gamma_2 \vdash C} \quad (\vdash \rightarrow) \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} \\ (\mathsf{W}\vdash) \frac{\Gamma, A, A \vdash C}{\Gamma, A \vdash C} \quad (\mathbf{t}\vdash) \frac{\Gamma \vdash C}{\mathbf{t}, \Gamma \vdash C} \quad (\vdash \mathbf{t}) \frac{\Gamma}{\vdash \mathbf{t}} \\ [\rightarrow \vdash] \frac{\Gamma_1 \vdash A \quad B, \Gamma_2 \vdash C}{[\Gamma_1, A \rightarrow B, \Gamma_2] \vdash C} \dagger \end{array}$$

In the $[\rightarrow \vdash]$ rule, $[\Gamma_1, A \rightarrow B, \Gamma_2] \vdash C$ means $\Gamma_1, A \rightarrow B, \Gamma_2 \vdash C$, then *some* contraction

	(id)	$(\rightarrow \vdash)$	$(\vdash \rightarrow)$	(W⊢)	(t ⊢)	(⊢ t)	$[\rightarrow \vdash]$
LR_{\rightarrow}	\checkmark	\checkmark	\checkmark	\checkmark			
$LR^{\mathbf{t}}_{\rightarrow}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$[LR_{\rightarrow}]$	\checkmark	\checkmark	\checkmark				\checkmark
$[LR^{t}_{\rightarrow}]$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

(Structure) Consecution Rules and Calculi

$$\begin{array}{cccc} & LT_{\rightarrow}^{\mathbf{t}} \\ (\mathrm{id};) & \overline{A \vdash A} \\ & (\mathrm{W}\vdash;) & \overline{U\{X \; ; \; Y \; ; \; Y\} \vdash C} \\ (\to\vdash;) & \overline{U\{A \rightarrow B \; ; \; V\} \vdash C} \\ & (\to\vdash;) & \overline{U\{X \; ; \; Y \; ; \; Z\} \vdash C} \\ & (\vdash\to;) & \overline{U\{X \; ; \; Y \; ; \; Z\} \vdash C} \\ & (B\vdash;) & \overline{U\{X \; ; \; Y \; ; \; Z\} \vdash C} \\ & (B\vdash;) & \overline{U\{X \; ; \; Y \; ; \; Z\} \vdash C} \\ & (\mathrm{K}_{\mathbf{t}}\vdash;) & \overline{U\{Y\} \vdash C} \\ & (\mathrm{K}_{\mathbf{t}}\vdash;) & \overline{U\{Y\} \vdash C} \\ & LT_{\rightarrow}^{(\underline{\mathbf{t}})} & = & LT_{\rightarrow}^{\underline{\mathbf{t}}} + & (\mathrm{K}_{\mathbf{t}}\vdash;) + & (\mathrm{T}_{\mathbf{t}}\vdash;) \\ & (\mathrm{K}_{\mathbf{t}}\vdash;) & \overline{U\{Y\} \vdash C} \\ & (\mathrm{T}_{\mathbf{t}}\vdash;) & (\mathrm{T}_{\mathbf{t}}\vdash;) \\ & (\mathrm{T}_{\mathbf{t}}\vdash;) & (\mathrm{T}_{\mathbf{t}$$

Goal is decidability of $\mathcal{T}^{\mathbf{t}}_{\rightarrow}$

- ▶ There is a decidable sequent calculus $[LR_{\rightarrow}^{t}]$ for R_{\rightarrow}^{t}
- There is a consecution calculus $LT^{(t)}_{\rightarrow}$ for R^{t}_{\rightarrow}
- There is a consecution calculus LT_{\rightarrow}^{t} for T_{\rightarrow}^{t}
- $LT^{(t)}_{\rightarrow}$ is LT^{t}_{\rightarrow} plus two more rules
- ►
- Aim is decidability of $\mathcal{T}_{\rightarrow}^{\mathbf{t}}$ by
 - ▶ look at all proofs in $[LR_{\rightarrow}^{t}]$
 - translate them to proofs in consecution calculus $LT^{(t)}_{\rightarrow}$
 - ▶ if any is in LT^{t}_{\rightarrow} , then theorem of T^{t}_{\rightarrow} , else non-theorem

Derivability in Isabelle

Capture the implicit fact of derivability

'a psc = "'a list * 'a" (* single inference *)
derl :: "'a psc set => 'a psc set"
derrec :: "'a psc set => 'a set => 'a set"

Neat example theorems

"derrec ?rls (derrec ?rls ?ps) = derrec ?rls ?ps"
"derl (derl ?rls) = derl ?rls"

"derrec (derl ?rls) ?prems = derrec ?rls ?prems"

 Alternatively, concrete structure representing explicit derivation tree

datatype 'a dertree = Der 'a ('a dertree list)

| Unf 'a (* unfinished, unproved leaf *)

Link these implicit and explicit concepts

Theorem

 $c \in \textit{derrec rls } \{\} \textit{ iff } \exists \textit{ dt. valid dt \& conclDT } \textit{dt} = c$

c is rls-derivable iff there is a valid derivation tree dt with conclusion c

Substitution in a hole in a structure

- Example: $(X; (Y; Z), X; Y; Z) \in rls$
- > We build the structure around the required substitution inductive "sctxt r" intrs scL "(a, b) : sctxt r ==> (C;a, C;b) : sctxt r" scR "(a, b) : sctxt r ==> (a;C, b;C) : sctxt r" scid "(a, b) : r ==> (a, b) : sctxt r"

•
$$(U{X; (Y; Z)}, U{X; Y; Z}) \in \text{sctxt } rls$$

 We turn this into a one-premise rule which does this substitution in the antecedent

```
inductive "lctxt r"
```

intrs

([As |- E], Bs |- E) : lctxt r"

• $([U{X; (Y; Z)} \vdash C], U{X; Y; Z} \vdash C) \in \text{lctxt } rls$

The complexity this adds to cut-admissibility proofs

- Cut-admissibility proofs require re-ordering rule applications
- ➤ Define: (u, v) ∈ strrep S, u and v same except may differ at (several) subterms u' and v', where (u', v') ∈ S inductive "strrep S" intrs same "(s, s) : strrep S" repl "p : S ==> p : strrep S" sc "(u, v) : strrep S ==> (x, y) : strrep S ==> (u; x, v; y) : strrep S"

"Closing the loop" lemma: if

$$\frac{\mathcal{C}[p]}{\mathcal{C}[c_A]} \stackrel{A \to X}{\longrightarrow} C_X$$

then there exist \mathcal{C}' and c_X st $\mathcal{C}_X = \mathcal{C}'[c_X]$ where

$$\frac{\mathcal{C}[p] \xrightarrow{A \to X} \mathcal{C}'[p]}{\mathcal{C}[c_{A}] \xrightarrow{A \to X} \mathcal{C}'[c_{X}]} \quad \text{and} \quad c_{A} \xrightarrow{A \to X} c_{X}$$

Inductive Multi-cut Admissibility via gen_step2

Suppose the conclusions cl and cr have respective derivations as shown below:

$$\frac{\operatorname{pl}_1 \dots \operatorname{pl}_n}{\operatorname{cl}} \underset{?}{\rho_l} \frac{\operatorname{pr}_1 \dots \operatorname{pr}_m}{\operatorname{cr}} \underset{(cut)}{\rho_r}$$

- We want to prove an arbitrary property P of these derivations, eg (multi)cut-admissibility for a cut-formula A
- ▶ Proof is first, by induction on *A*, then on "stage in the proof"
- Induction on "stage in the proof" assumes P holds for each pl_i with cr, and for cl with each pr_i
- gen_step2 expresses a single case of the inductive argument
- ▶ we have a lemma that this is enough for *P* to hold generally

Results for LR_{\rightarrow} , LR_{\rightarrow}^{t} , $[LR_{\rightarrow}]$, and $[LR_{\rightarrow}^{t}]$ in Isabelle

Theorem LR_{\rightarrow} and LR_{\rightarrow}^{t} enjoy multi-cut admissibility.

Theorem $[LR_{\rightarrow}]$ and $[LR_{\rightarrow}^{t}]$ enjoy contraction admissibility.

Corollary

 $[LR_{\rightarrow}]$ and $[LR_{\rightarrow}^{t}]$ enjoy multi-cut admissibility.

- Proved in a different order from the paper (we couldn't reproduce the proof indicated briefly in B&D)
- OOPS! We actually needed

Theorem

 $[LR_{\rightarrow}]$ and $[LR_{\rightarrow}^{t}]$ enjoy height-preserving contraction admissibility. This one uses the analogue, for concrete derivation trees, of the gen_step2 definition and lemmas Multi-cut admissibility for LT^{t}_{\rightarrow} and LT^{t}_{\rightarrow}

► For (multiset) sequents, "multi-cut" meant this:

$$\frac{X \vdash A \quad A^n, Y \vdash B}{X, Y \vdash B}$$

(just one 'X' in the consequent)

 For (structure) consecutions, we have to define what we mean by multi-cut admissibility.

$$(\mathsf{multicut}) \frac{X \vdash A \qquad Y\{A\}\{A\} \cdots \{A\} \vdash B}{Y\{X\}\{X\} \cdots \{X\} \vdash B}$$

(multiple occurrences of 'X' in the consequent)

Theorem LT^{t}_{\rightarrow} and $LT^{\textcircled{t}}_{\rightarrow}$ enjoy multi-cut admissibility.

Soundness and Completeness

Theorem

 $LT^{\mathbf{t}}_{\rightarrow}$ is complete for $T^{\mathbf{t}}_{\rightarrow}$ $LT^{\underline{\mathbf{t}}}_{\rightarrow}$ is complete for $R^{\mathbf{t}}_{\rightarrow}$

For the sequent systems, we have proved

Lemma

for each rule of LR_{\rightarrow} there is a "corresponding" proof in R_{\rightarrow} (for some ordering of antecedents)

We still need to prove that any re-ordering of antecedents in $A_1 \rightarrow A_2 \rightarrow \ldots \rightarrow A_n \rightarrow B$ is provable in R_{\rightarrow}

Linking the sequent and consecution systems

Theorem

Given a derivation in $LT^{\textcircled{t}}_{\rightarrow}$, we can, by turning structures into multi-sets, obtain an "equivalent" derivation in LR^{t}_{\rightarrow} . ("equivalent" means "same" premises and conclusion, not necessarily same proof steps)

- This is the transformation π, which we have not actually defined, we have just shown it exists.
- For the converse (using the τ transformation), we need to prove that the rules of LT^[®] permit any permutation and grouping, into a structure, of any multiset of formulae.
- Lemmas 8,9 and 10 do this for up to 3 formulae (proved in Isabelle, but not in that order!)
- Need to extend this to any number of formulae (we have worked out argument, not proved)

Background to decidability argument

- ▶ multiset sequent system LR_{\rightarrow}^{t} for R_{\rightarrow}^{t} , includes contraction
- ▶ $[LR^{t}_{\rightarrow}]$ incorporates limited contraction into $\rightarrow \vdash$ rule, $[\rightarrow \vdash]$
- this gives height-preserving contraction admissibility, so irredundant derivations, so decidable (Kripke, König lemmas)
- likewise $LR^{\mathbf{t}}_{\rightarrow}$ and $[LR^{\mathbf{t}}_{\rightarrow}]$ for $T^{\mathbf{t}}_{\rightarrow}$
- ▶ structure sequent systems $LT^{(t)}_{\rightarrow}$ for R^{t}_{\rightarrow} , and LT^{t}_{\rightarrow} for T^{t}_{\rightarrow}
- proof transformations:
 - π , $LT^{(t)}_{\rightarrow}$ to LR^{t}_{\rightarrow} (loses ordering/grouping)
 - τ , LR^{t}_{\rightarrow} to $LT^{(t)}_{\rightarrow}$ (recreates ordering/grouping)
 - ► difference between T^t_→ and R^t_→ (ie, between LR^t_→ and LT⁽⁾_→) is (complete) availability of re-ordering

τ produces several proofs in LT[⊕] (choice of ordering/grouping)

the decidability procedure

- get all proofs in $[LR^{t}_{\rightarrow}]$
- convert these into proofs in $LR^{\mathbf{t}}_{\rightarrow}$
- transform them, using τ , to proofs in $LT \xrightarrow{(t)}{\rightarrow}$
- examine which of these are proofs in LT_{\rightarrow}^{t}

Issues arising:

- *τ* involves "all permutations and groupings":
 should this be "all *proofs of* all permutations and groupings"?
 (to find proof in LT^t_→, if any)
- ► even so, \(\tau\) produces only proofs whose \(\begin{array}{c} \cdots, \beta\) and W\(\begin{array}{c} are in the same order as the given proof in LR_{-}^t \begin{array}{c} is this enough? \end{array}
- ► that is, the algorithm produces only LT[®]→ -proofs in which contains these rules in a the same order as a proof in [LR^t→] what if the only LT^t→ -proof contains them in a different order?
- (note that deriving an [LR^t→]-proof from an LR^t→-proof changes the order of these rules)

Lemmas supporting au transformation

- 8 If C[A; B] ⊢ A provable in LT^① then so is C[t; (B; A)] ⊢ A
 (C is any structure with a "hole")
- 9 If $C[A_1; A_2; A_3] \vdash A$ provable in $LT^{\textcircled{1}}$ then so are $C[t; A_i; A_j; A_k] \vdash A$ and $C[t; A_i; (A_j; A_k)] \vdash A$ (for all permutations i, j, k of 1, 2, 3)
- 10 If $C[A_1; A_2; A_3] \vdash A$ provable in $LT^{\textcircled{0}}_{\rightarrow}$ then so are $C[t; (A_i; A_j; A_k)] \vdash A$ and $C[t; (A_i; (A_j; A_k))] \vdash A$
 - The proof we found for 9 actually uses 10, which we proved first: we didn't find the proof used by B&D
 - We also formulated an argument to deal with four or more substructures

(日) (同) (三) (三) (三) (○) (○)

Do we actually need these lemmas?

- Lemmas 8,9 and 10: used to prove any permutation/grouping of antecedents is provable in LT^(€).
- The constructions described translate $LR^{\mathbf{t}}_{\rightarrow}$ -proofs to $LT^{(\mathbf{t})}_{\rightarrow}$
- We haven't yet found the result (that there exists an LT[⊕]→proof) to be necessary.
- ► The constructions may be relevant to an argument that we will find a proof in LT^t_→, if one exists;
- BUT: if there is no proof in LT^t→, does it matter if these is no proof in LT^①→ either?
- We noticed this only when putting together the skeleton of a proof in Isabelle.

Proof trees and König's Lemma

- König's Lemma: an infinite, finitely branching, tree has an infinite branch
- When we build a proof tree, bottom (endsequent) up, the intermediate stages have leaves yet unproved.
- We call these partial proof trees. We represent an "infinite proof tree" by an increasing sequence of partial proof trees:
- By König's Lemma, if such a sequence is infinite, then there must be a single infinitely increasing branch
- Note: finite branching property, because each rule has finitely many premises
- And by Kripke's lemma there is no infinite irredundant branch of a (partial) proof tree in [LR^t→]
- Where does this get us?

Proof search trees and König's Lemma

Now consider a proof search tree:

- node: partial proof tree,
 - edge: extending a partial proof tree by adding one rule.
- This is a different tree!! This one is finitely branching because
 - ▶ a partial proof tree has only finitely many unproved leaves, and
 - at each leaf, only finitely many rules can be applied.
- The previous result ("no infinite proof tree") says proof search tree has no infinite branch.
- König's Lemma, again, tells us that the proof search tree is finite, that is, complete proof search is a finite process
- so this logic is decidable.
- This outline uses König's Lemma twice! Is this necessary?
- Literature seems to use König's Lemma just once! and to confuse proof trees with proof search trees

Proving decidability

- To really formalise decidability, we would need to formalise steps of computation (very low level)
- A finite proof search tree is not enough:
 - imagine a logic L, and we define a new logic L', by
 - Axioms of L': theorems of L
 - Rules of L': none
 - In L', proof search tree (for given endsequent) is tiny, but L' (may be) not decidable.
- We need further informal arguments, eg, that at any point it is straightforward to determine which rules are applicable.

use of Isabelle: work verified in Isabelle theorem prover value of formal verification: detects gaps which may be overlooked in a proof

value of formalisation without verification: even planning/preparing for formal verification alerts us to problems in a proof

difficult issues: König's lemma: what is an infinite proof tree? how to formalise branch of it

Our main issue

- ▶ all LR^{t}_{\rightarrow} -proofs \longrightarrow all $LT^{(t)}_{\rightarrow}$ -proofs
 - well, let's suppose so
 - actually depends on details of "all proofs of all permutations and groupings"
- ▶ so all LR^{t}_{\rightarrow} -proofs \longrightarrow (including) all LT^{t}_{\rightarrow} -proofs
- but we need: all LR^t→-proofs from [LR^t→]-proofs → at least one LT^t→-proof (if such exists)
- ► Question: are all LR^t→-proofs from [LR^t→]-proofs sufficiently representative of all LR^t→-proofs to ensure this?
- Note: are all LR^t→-proofs from [LR^t→]-proofs, and the resulting LT^(t)→-proofs, have limits on where contractions can appear