
Issues in Machine-checking the Decidability of
Implicational Ticket Entailment

Jeremy Dawson, Rajeev Goré

Logic and Computation Group
Research School of Computer Science
The Australian National University

jeremy.dawson@anu.edu.au

September 29, 2017

jeremy.dawson@anu.edu.au

Overview

The logics, and their calculi

Modelling derivations in Isabelle (sample!)

Admissibility results confirmed

Relations between the calculi

The decidability argument

Axiomatisations of various logics

Name Axioms Logic
T→ T t

→ R→ Rt
→

(A1) A→ A X X X X
(A2) (A→ B)→ (C → A)→ (C → B) X X X X
(A3) (A→ B → C)→ (B → A→ C) X X
(A4) (A→ A→ B)→ (A→ B) X X X X
(A5) (A→ B)→ (B → C)→ (A→ C) X X
Name Rules of Inference

(R1) from A→ B and A, deduce B X X X X
(R2) ` A // ` t→ A X X

(Multiset) Sequent Rules and Calculi

(id)
A ` A

Γ1 ` A B, Γ2 ` C
(→`)

Γ1,A→ B, Γ2 ` C

Γ,A ` B
(`→)

Γ ` A→ B

Γ,A,A ` C
(W`)

Γ,A ` C
Γ ` C(t `)
t, Γ ` C

(` t) ` t

Γ1 ` A B, Γ2 ` C
[→`] †

[Γ1,A→ B, Γ2] ` C

In the [→`] rule, [Γ1,A→ B, Γ2] ` C means
Γ1,A→ B, Γ2 ` C , then some contraction

(id) (→`) (`→) (W`) (t `) (` t) [→`]

LR→ X X X X
LRt
→ X X X X X X

[LR→] X X X X
[LRt
→] X X X X X X

(Structure) Consecution Rules and Calculi

LT t
→

(id;)
A ` A

U{X ; Y ; Y } ` C
(W`;)

U{X ; Y } ` C

V ` A U{B} ` C
(→`;)

U{A→ B ; V } ` C

U ; A ` B
(`→;)

U ` A→ B

U{X ; (Y ; Z)} ` C
(B`;)

U{X ; Y ; Z} ` C

U{X ; (Z ; Y)} ` C
(B′ `;)

U{Z ; X ; Y } ` C

U{Y } ` C
(KIt `;)

U{t ; Y } ` C

U{t ; t} ` C
(Mt `;)

U{t} ` C

LT©t→ := LT t
→ + (Kt `;) + (Tt `;)

U{Y } ` C
(Kt `;)

U{Y ; t} ` C

U{Y ; t} ` C
(Tt `;)

U{t ; Y } ` C

Goal is decidability of T t
→

I There is a decidable sequent calculus [LRt
→] for Rt

→
I There is a consecution calculus LT©t→ for Rt

→
I There is a consecution calculus LT t

→ for T t
→

I

I LT©t→ is LT t
→ plus two more rules

I

I Aim is decidability of T t
→ by

I look at all proofs in [LRt
→]

I translate them to proofs in consecution calculus LT©t→
I if any is in LT t

→, then theorem of T t
→, else non-theorem

Derivability in Isabelle
I Capture the implicit fact of derivability

’a psc = "’a list * ’a" (* single inference *)

derl :: "’a psc set => ’a psc set"

derrec :: "’a psc set => ’a set => ’a set"
I Neat example theorems

"derrec ?rls (derrec ?rls ?ps) = derrec ?rls ?ps"

"derl (derl ?rls) = derl ?rls"

"derrec (derl ?rls) ?prems = derrec ?rls ?prems"
I Alternatively, concrete structure representing explicit

derivation tree
datatype ’a dertree = Der ’a (’a dertree list)

| Unf ’a (* unfinished, unproved leaf *)

I Link these implicit and explicit concepts

Theorem
c ∈ derrec rls {} iff ∃ dt. valid dt & conclDT dt = c
c is rls-derivable iff there is a valid derivation tree dt with
conclusion c

Substitution in a hole in a structure

I Example: (X ; (Y ;Z), X ;Y ;Z) ∈ rls

I We build the structure around the required substitution
inductive "sctxt r"

intrs

scL "(a, b) : sctxt r ==> (C;a, C;b) : sctxt r"

scR "(a, b) : sctxt r ==> (a;C, b;C) : sctxt r"

scid "(a, b) : r ==> (a, b) : sctxt r"

I (U{X ; (Y ;Z)}, U{X ;Y ;Z}) ∈ sctxt rls

I We turn this into a one-premise rule which does this
substitution in the antecedent
inductive "lctxt r"

intrs

I "(As, Bs) : sctxt r ==>

([As |- E], Bs |- E) : lctxt r"

I ([U{X ; (Y ;Z)} ` C], U{X ;Y ;Z} ` C) ∈ lctxt rls

The complexity this adds to cut-admissibility proofs
I Cut-admissibility proofs require re-ordering rule applications
I Define: (u, v) ∈ strrep S , u and v same except may differ at

(several) subterms u′ and v ′, where (u′, v ′) ∈ S
inductive "strrep S"

intrs

same "(s, s) : strrep S"

repl "p : S ==> p : strrep S"

sc "(u, v) : strrep S ==> (x, y) : strrep S

==> (u; x, v; y) : strrep S"
I “Closing the loop” lemma: if

C[p]

C[cA] A→X−→ CX

then there exist C′ and cX st CX = C′[cX] where

C[p]
A→X−→ C′[p]

C[cA]
A→X−→ C′[cX]

and cA
A→X−→ cX

Inductive Multi-cut Admissibility via gen step2

Suppose the conclusions cl and cr have respective derivations as
shown below:

pl1 . . . pln ρl
cl

pr1 . . . prm ρrcr. (cut ?)
?

I We want to prove an arbitrary property P of these derivations,
eg (multi)cut-admissibility for a cut-formula A

I Proof is first, by induction on A, then on “stage in the proof”

I Induction on “stage in the proof” assumes P holds for each
pli with cr, and for cl with each prj

I gen step2 expresses a single case of the inductive argument

I we have a lemma that this is enough for P to hold generally

Results for LR→, LR
t
→, [LR→], and [LRt

→] in Isabelle

Theorem
LR→ and LRt

→ enjoy multi-cut admissibility.

Theorem
[LR→] and [LRt

→] enjoy contraction admissibility.

Corollary

[LR→] and [LRt
→] enjoy multi-cut admissibility.

I Proved in a different order from the paper (we couldn’t
reproduce the proof indicated briefly in B&D)

I OOPS! We actually needed

Theorem
[LR→] and [LRt

→] enjoy height-preserving contraction admissibility.

This one uses the analogue, for concrete derivation trees, of
the gen step2 definition and lemmas

Multi-cut admissibility for LT t
→ and LT©t→

I For (multiset) sequents, “multi-cut” meant this:

X ` A An,Y ` B

X ,Y ` B

(just one ‘X ’ in the consequent)

I For (structure) consecutions, we have to define what we mean
by multi-cut admissibility.

X ` A Y {A}{A} · · · {A} ` B
(multicut)

Y {X}{X} · · · {X} ` B

(multiple occurrences of ‘X ’ in the consequent)

Theorem
LT t
→ and LT©t→ enjoy multi-cut admissibility.

Soundness and Completeness

Theorem
LT t
→ is complete for T t

→
LT©t→ is complete for Rt

→

For the sequent systems, we have proved

Lemma
for each rule of LR→ there is a “corresponding” proof in R→ (for
some ordering of antecedents)

We still need to prove that any re-ordering of antecedents in
A1 → A2 → . . .→ An → B is provable in R→

Linking the sequent and consecution systems

Theorem
Given a derivation in LT©t→ , we can, by turning structures into
multi-sets, obtain an “equivalent” derivation in LRt

→.
(“equivalent” means “same” premises and conclusion, not
necessarily same proof steps)

I This is the transformation π, which we have not actually
defined, we have just shown it exists.

I For the converse (using the τ transformation), we need to
prove that the rules of LT©t→ permit any permutation and
grouping, into a structure, of any multiset of formulae.

I Lemmas 8,9 and 10 do this for up to 3 formulae (proved in
Isabelle, but not in that order!)

I Need to extend this to any number of formulae (we have
worked out argument, not proved)

Background to decidability argument

I multiset sequent system LRt
→ for Rt

→, includes contraction

I [LRt
→] incorporates limited contraction into →` rule, [→`]

I this gives height-preserving contraction admissibility, so
irredundant derivations, so decidable (Kripke, König lemmas)

I likewise LRt
→ and [LRt

→] for T t
→

I structure sequent systems LT©t→ for Rt
→, and LT t

→ for T t
→

I proof transformations:
I π, LT©t→ to LRt

→ (loses ordering/grouping)
I τ , LRt

→ to LT©t→ (recreates ordering/grouping)
I difference between T t

→ and Rt
→ (ie, between LRt

→ and LT©t→)
is (complete) availability of re-ordering

I τ produces several proofs in LT©t→ (choice of
ordering/grouping)

the decidability procedure

I get all proofs in [LRt
→]

I convert these into proofs in LRt
→

I transform them, using τ , to proofs in LT©t→
I examine which of these are proofs in LT t

→

Issues arising:

I τ involves “all permutations and groupings”:
should this be “all proofs of all permutations and groupings”?
(to find proof in LT t

→, if any)

I even so, τ produces only proofs whose `→, →` and W` are
in the same order as the given proof in LRt

→ — is this enough?

I that is, the algorithm produces only LT©t→ -proofs in which
contains these rules in a the same order as a proof in [LRt

→] —
what if the only LT t

→-proof contains them in a different order?

I (note that deriving an [LRt
→]-proof from an LRt

→-proof
changes the order of these rules)

Lemmas supporting τ transformation

8 If C[A;B] ` A provable in LT©t→ then so is C[t; (B;A)] ` A
(C is any structure with a “hole”)

9 If C[A1;A2;A3] ` A provable in LT©t→ then so are
C[t;Ai ;Aj ;Ak] ` A and C[t;Ai ; (Aj ;Ak)] ` A
(for all permutations i , j , k of 1, 2, 3)

10 If C[A1;A2;A3] ` A provable in LT©t→ then so are
C[t; (Ai ;Aj ;Ak)] ` A and C[t; (Ai ; (Aj ;Ak))] ` A

I The proof we found for 9 actually uses 10, which we proved
first: we didn’t find the proof used by B&D

I We also formulated an argument to deal with four or more
substructures

Do we actually need these lemmas?

I Lemmas 8,9 and 10: used to prove any permutation/grouping
of antecedents is provable in LT©t→ .

I The constructions described translate LRt
→-proofs to LT©t→

I We haven’t yet found the result (that there exists an
LT©t→ -proof) to be necessary.

I The constructions may be relevant to an argument that we
will find a proof in LT t

→, if one exists;

I BUT: if there is no proof in LT t
→, does it matter if these is no

proof in LT©t→ either?

I We noticed this only when putting together the skeleton of a
proof in Isabelle.

Proof trees and König’s Lemma

I König’s Lemma:
an infinite, finitely branching, tree has an infinite branch

I When we build a proof tree, bottom (endsequent) up, the
intermediate stages have leaves yet unproved.

I We call these partial proof trees. We represent an “infinite
proof tree” by an increasing sequence of partial proof trees:

I By König’s Lemma, if such a sequence is infinite, then there
must be a single infinitely increasing branch

I Note: finite branching property, because each rule has finitely
many premises

I And by Kripke’s lemma there is no infinite irredundant branch
of a (partial) proof tree in [LRt

→]

I Where does this get us?

Proof search trees and König’s Lemma

Now consider a proof search tree:

I node: partial proof tree,
edge: extending a partial proof tree by adding one rule.

I This is a different tree!! This one is finitely branching because
I a partial proof tree has only finitely many unproved leaves, and
I at each leaf, only finitely many rules can be applied.

I The previous result (“no infinite proof tree”) says proof search
tree has no infinite branch.

I König’s Lemma, again, tells us that the proof search tree is
finite, that is, complete proof search is a finite process

I so this logic is decidable.

I This outline uses König’s Lemma twice! Is this necessary?

I Literature seems to use König’s Lemma just once!
and to confuse proof trees with proof search trees

Proving decidability

I To really formalise decidability, we would need to formalise
steps of computation (very low level)

I A finite proof search tree is not enough:
I imagine a logic L, and we define a new logic L’, by

I Axioms of L’: theorems of L
I Rules of L’: none

I In L’, proof search tree (for given endsequent) is tiny,
but L’ (may be) not decidable.

I We need further informal arguments, eg, that at any point it
is straightforward to determine which rules are applicable.

Formalisation

use of Isabelle: work verified in Isabelle theorem prover

value of formal verification: detects gaps which may be overlooked
in a proof

value of formalisation without verification: even
planning/preparing for formal verification alerts us to
problems in a proof

difficult issues: König’s lemma: what is an infinite proof tree?
how to formalise branch of it

Our main issue

I all LRt
→-proofs −→ all LT©t→ -proofs

I well, let’s suppose so
I actually depends on details of “all proofs of all permutations

and groupings”

I so all LRt
→-proofs −→ (including) all LT t

→-proofs

I but we need: all LRt
→-proofs from [LRt

→]-proofs −→ at least
one LT t

→-proof (if such exists)

I Question: are all LRt
→-proofs from [LRt

→]-proofs sufficiently
representative of all LRt

→-proofs to ensure this?

I Note: are all LRt
→-proofs from [LRt

→]-proofs, and the resulting
LT©t→ -proofs, have limits on where contractions can appear

