
Issues in Machine-checking the Decidability of

Implicational Ticket Entailment

Jeremy E. Dawson⋆ and Rajeev Goré

Research School of Computer Science, Australian National University

Abstract. The decidability of the implicational fragment T→ of the rel-
evance logic of ticket entailment was recently claimed independently by
Bimbó and Dunn, and Padovani. We present a mechanised formalisation,
in Isabelle/HOL, of the various proof-theoretical results due to Bimbó
and Dunn that underpin their claim. We also discuss the issues that
stymied our attempt to verify their proof of decidability.

1 Introduction

Sequent calculi are useful in many areas of logic, particularly for decidability
arguments. Here, we consider the complications that arise when dealing with a
substructural logic where one or more of the rules of associativity, commutativity,
weakening and contraction are missing. We focus on the implicational fragment
T→ of the substructural logic of “ticket entailment”, recently claimed as decidable
independently by Bimbo and Dunn [BD13], and by Padovani [Pad11].

As is well-known, pen-and-paper proofs about sequent calculi are notoriously
tedious and error-prone [GR12], particularly when the authors elide proofs be-
cause “the proof is similar”. The proofs of Bimbo and Dunn are intricate, some
requiring a triple induction over the “grade”, “height” and “contraction degree”
of the instance of cut. They state in a footnote that these complicated inductions
appear to be necessary [BD12, footnote 9]. Moreover, they use the “dangerous”
phrases described above, so how can we be sure that their proofs are sound?

To check, we first formulate the various sequent and “consecution” calculi
from [BD12,BD13]. We then describe how we encoded these calculi into the
interactive proof-assistant Isabelle/HOL and how we mechanised the various
proof-theoretical results of these various calculi. We then explain the issues that
stymied our attempt to verify the proof of their main theorem in Isabelle/HOL.

Previously, we have machine-checked various types of calculi: multiset-based
sequent calculi with explicit structural rules [DG10], display calculi [DG02], and
(shallow and deep) nested sequent calculi [DCGT14]. Here, we needed two nov-
elties: singletons on the right and (non-display) “consecution” calculi built from
“structures” (binary trees) where all internal nodes contain a non-commutative
and non-associative binary operator “ ; ” and where all leaves are formulae.

Notation: we use A,B,C for formulae, use Γ , Γ1, Γ2 for multisets, use
U, V,X, Y, Z for structures, and use X{Y } instead of A[B]. We use π and τ

for the transformations on derivations, but use δ for derivations instead of ∆.

⋆ Supported by Australian Research Council Discovery Grant DP120101244.

Name Axioms Logic
T→ T t

→ R→ Rt

→

(A1) A → A X X X X

(A2) (A → B) → (C → A) → (C → B) X X X X

(A3) (A → B → C) → (B → A → C) X X

(A4) (A → A → B) → (A → B) X X X X

(A5) (A → B) → (B → C) → (A → C) X X

Name Rules of Inference

(R1) from A → B and A, deduce B X X X X

(R2) ⊢ A // ⊢ t → A X X

Fig. 1. Axiomatisations of various logics

2 Summary of Various Calculi of Bimbó and Dunn

The formulae of our logics are built from an infinite supply of atomic formulae
using the BNF grammar below where p is any atomic formula and t is a constant:

A ::= p | t | A → A

The superscript t determines whether or not the verum constant t is in the
syntax. As usual, we drop parentheses and write A → B → C for A → (B → C).
The various logics are defined in Figure 1 [BD12].

A sequent Γ ⊢ C consists of a finite, possibly empty, multiset Γ of formulae
and a formula C. We prefer Greek letters in keeping with modern usage in
sequent calculi. The specific sequent calculi that we deal with are tabled in
Figure 2. The “consecution” calculi of Bimbó and Dunn use structures where:
every formula is a structure, and if X and Y are structures then so is (X ; Y).
Note: there is no empty structure [BD12]! A consecution X ⊢ C consists of a
structure X and a formula C. We write X ; Y ; Z for ((X ; Y) ; Z) [BD12].

A structure is thus a binary tree where all internal nodes contain “ ; ” and
the leaves contain formulae. Suppose X is such a structure (tree) and let Y

be the substructure that appears at some particular node in this tree: written
X{Y }. If we now replace this occurrence of Y by an occurrence of the structure
Z, we obtain the structure X{Z}. In the rules shown in Figure 3, the premises
locate the node at which a particular substructure appears in a larger structure.
The conclusion shows the result of replacing the substructure occurrence at that
node by some structure occurrence, as just described. We use X{Y } instead of
the X[Y] used by Bimbó and Dunn since the latter can cause confusion with the
use of brackets to capture limited contraction in the [→⊢]-rule from Figure 2.

3 Our Isabelle mechanisation

Our mechanisation builds on our previous work on mechanising traditional se-
quent calculi [DG10]. That work is a deep embedding of rules and of the variables
in them, which permits explicit substitution functions for the variables in a small

2

(id)
A ⊢ A

Γ1 ⊢ A B,Γ2 ⊢ C
(→⊢)

Γ1, A → B,Γ2 ⊢ C

Γ,A ⊢ B
(⊢→)

Γ ⊢ A → B

Γ,A,A ⊢ C
(W⊢)

Γ,A ⊢ C

Γ ⊢ C(t ⊢)
t, Γ ⊢ C

(⊢ t)
⊢ t

Γ1 ⊢ A B,Γ2 ⊢ C
[→⊢] †

[Γ1, A → B,Γ2] ⊢ C

† is the condition that [Γ1, A → B,Γ2] is a sub-multiset of Γ1, A → B,Γ2 such that:

(a) A → B occurs at least once in [Γ1, A → B,Γ2] but may have 0, 1 or 2 fewer
occurrences than in Γ1, A → B,Γ2

(b) if D, which is distinct from A → B, occurs in Γ1, Γ2 then D occurs at least
once in [Γ1, A → B,Γ2] but may have 0 or 1 fewer occurrences than in Γ1, Γ2.

(id) (→⊢) (⊢→) (W⊢) (t ⊢) (⊢ t) [→⊢]

LR→ X X X X

LRt

→ X X X X X X

[LR→] X X X X

[LRt

→] X X X X X X

Fig. 2. Various Sequent Rules

finite set of rules: see [DG10] for our understanding of what this means, and for
more details. Here, we have a deep embedding of rules but a shallow embedding
of variables, which means that where we set out the text of a “rule”, Isabelle
interprets this as all instances of (the variables in) that rule. We define a rule
as a data structure, a pair of a list of premises and a conclusion, and Isabelle
provides the infinitely many substitution instances of these rules.

3.1 Formalising Formulae, Sequents and Sequent Rules

We first encode the grammar for recognising formulae as below:

datatype formula = BImp formula formula ("_ -> _" [61,61] 60)

| T

| FV string (* formula variable *)

| PP string (* primitive proposition *)

Here, there are four type constructors BImp, T, FV and PP. The first two encode
the implication connective → and the verum constant t while the second two
encode formula variables such as A and primitive propositions (atomic formulae)
such as p and q. The constructor BImp takes two formulae as arguments while FV
and PP each take one string argument which is simply the string we want to use
for that variable or atomic formula. The code at the end of the first line declares
-> as an alternative symbol for BImp. For example, BImp (FV "A") (PP "q")

encodes A → q, but it can also be written as (FV "A") -> (PP "q").

3

LT t

→

(id;)
A ⊢ A

U{X ; Y ; Y } ⊢ C
(W⊢;)

U{X ; Y } ⊢ C

V ⊢ A U{B} ⊢ C
(→⊢;)

U{A → B ; V } ⊢ C

U ; A ⊢ B
(⊢→;)

U ⊢ A → B

U{X ; (Y ; Z)} ⊢ C
(B⊢;)

U{X ; Y ; Z} ⊢ C

U{X ; (Z ; Y)} ⊢ C
(B′ ⊢;)

U{Z ; X ; Y } ⊢ C

U{Y } ⊢ C
(KIt ⊢;)

U{t ; Y } ⊢ C

U{t ; t} ⊢ C
(Mt ⊢;)

U{t} ⊢ C

LRt

→ := LT t

→ + (C⊢;) = LT t

→ + (CI⊢;)

U{X ; Z ; Y } ⊢ C
(C⊢;)

U{X ; Y ; Z} ⊢ C

U{Y ; X} ⊢ C
(CI⊢;)

U{X ; Y } ⊢ C

LT©t
→ := LT t

→ + (Kt ⊢;) + (Tt ⊢;)

U{Y } ⊢ C
(Kt ⊢;)

U{Y ; t} ⊢ C

U{Y ; t} ⊢ C
(Tt ⊢;)

U{t ; Y } ⊢ C

Fig. 3. Various Consecution Rules

Structures are encoded using a parameter ’f as a type variable:

datatype ’f structr = Sf ’f

| SemiC "’f structr" "’f structr" ("_; _" [20,21] 20)

Thus Sf f forms an atomic structure from a formula f, while SemiC s1 s2 forms
a binary structure from two substructures. A shorthand notation for SemiC allows
us to write ((FV "A" -> FV "B") ; (PP "q")) for ((A → B) ; q).

A sequent is encoded using two parameters ’l and ’r as type variables:

datatype (’l, ’r) sequent =

Sequent "’l" "’r" ("((_)/ |- (_))" [6,6] 5)

An alternative is to replace the prefix Sequent with an infix |-. So the sequent
A,B ⊢ C is represented as Sequent {A,B} C or as {A,B} |- C. The HOL
expression formula multiset captures the type of formula multisets.

A rule type psc is represented as a pair consisting of a list of premises and a
conclusion over some parametric type using the type variable ’a:

types ’a psc = "’a list * ’a"

4

Using it, we can define the (→⊢) rule as below:

consts impL :: "(formula multiset, formula) sequent psc set"

inductive "impL"

intrs I "([alpha |- A, mins B beta |- C],

mins (A -> B) alpha + beta |- C) : impL"

Here, we first declare that impL accepts only sequents built from an antecedent
multiset and a single formula succedent: thus ’a must be ((formula multiset,

formula) sequent). The function mins stands for “multiset insert”. The func-
tion + returns the multiset union of its two arguments, where the number of
occurrences of each item is the sum of the number of occurrences in the two mul-
tisets. So mins B alpha + beta forces alpha and beta to be of type multiset,
and returns the result of inserting one occurrence of B into their multiset-union.
The sequents alpha |- A and mins B beta |- C are separated by a comma
and enclosed in [and] to create a list as the first component of the pair formed
using (,). The conclusion mins B alpha + beta |- C is the second compo-
nent of this pair, thus forming a rule. The word inductive declares impL as the
smallest set constructed from such pairs (using all possible values for A, B, C,
alpha and beta), which also explains the final set in its type declaration.

We now explain our encoding of the “square bracket” conditions in rule [→⊢]:

consts sqbr :: "’a => ’a multiset => ’a multiset set"

inductive "sqbr dist fmls"

intrs I "cms <= mins dist fmls ==>

set_of (mins dist fmls) = set_of cms ==>

ALL fml. count fmls fml <= Suc (count cms fml)

==> cms : sqbr dist fmls"

Here, sqbr accepts two arguments: dist of type ’a and fmls of multisets over
type ’a. It returns a set of multisets over type ’a. The line beginning intrs

declares that the conclusion multiset cms is a submultiset of the multiset obtained
by inserting one occurrence of the distinguished formula dist into the multiset
fmls. The next line declares that, as sets, the objects cms and mins dist fmls

are identical: they differ only in the number of occurrences of some formulae
in them, including dist. The third line declares that if n is the number of
occurrences of any formula fml in fmls and m is the number of occurrences of
fml in cms then n ≤ m + 1: in other words, n − 1 ≤ m ≤ n if fml 6= dist else
n− 1 ≤ m ≤ n+ 1 if fml = dist. The rule [→⊢] is then encodes as sbimpL:

inductive "sbimpL" intrs

I "cms : sqbr (A -> B) (alpha + beta) ==>

([alpha |- A, mins B beta |- C], cms |- C) : sbimpL"

Thus premises alpha |- A and mins B beta |- C and conclusion cms |- C

must obey the definition of sbimpL, where A -> B is dist and alpha + beta is
fmls, given that cms is some possible set in sqbr (A -> B) (alpha + beta).

We define the other rules in a similar way, giving rise to our various calculi.
Here is the definition of the calculus LR→.

5

Definition 1 (LRi). The rule instance psc is in the sequent calculus LRi if it
is an instance of any of the rules iid rls, impL, impR and lctr rls:

inductive "LRi"

intrs

id "psc : iid_rls ==> psc : LRi"

impL "psc : impL ==> psc : LRi"

impR "psc : impR ==> psc : LRi"

W "psc : lctr_rls ==> psc : LRi"

Here, LRi is the smallest set of instances of premises-conclusion pairs that obeys
the four clauses id, impK, impR, and W. Each clause checks whether a premises-
conclusion pair is an instance of some rule: for example impL. If so, then it adds
that premises-conclusion pair to the set of instances in LRi.

Formalising structures, consecutions and consecution rules is similar, except
that our basic types are structures, rather than multisets, built from formulae.

3.2 Derivability Predicates derrec and derl

We also use some general functions to describe derivability. An inference rule
of type ’a psc is a list ps of premises and a conclusion c. Then derl rls is
the set of rules derivable from the rule set rls while derrec rls prems is the
set of sequents derivable using rules rls from the set prems of premises. The
special case derrec rls {} when prems is the empty set {} captures the set of
rls-derivable end-sequents. We defined these functions using Isabelle’s package
for inductively defined sets, and a more detailed expository account of these,
with many useful lemmas, is given elsewhere [Gor09].

derl :: "’a psc set => ’a psc set"

derrec :: "’a psc set => ’a set => ’a set"

3.3 Inductive Multi-cut Admissibility via gen step2

Suppose the conclusions cl and cr have respective derivations as shown below:

pl1 . . . pln ρl
cl

pr1 . . . prm ρrcr. (cut ?)
?

The bottom-most rules of the respective derivations are the rules ρl and ρr with
respective premises psl = [pl1, · · · , pln] and psr = [pr1, · · · , prm]. Since some
premises may be identical, the constructs set psl and set psr return the sets
of premises formed from the respective lists. Suppose now that we want to prove
an arbitrary property P of these derivations, such as (multi)cut-admissibility
for a cut-formula A. In previous work, we have shown how to generalise cut-
admissibility proofs using a predicate called gen step2sr [DG10]. Here we use
a slight variant of this principle which we call gen step2 as described next.

6

Definition 2 (gen step2). For property P, formula A, a subformula relation
sub, two sets of sequents dls and drs, inference rules (psl, cl) and (psr,

cr), the property gen step2 holds iff P A (cl, cr) holds whenever all of the
following hold: P A’ (dl, dr) holds for all subformulae A’ of A and all sequents
dl in dls and dr in drs; for each pl ∈ psl, pl ∈ dls and P A (pl, cr) holds;
for each pr ∈ psr, pr ∈ drs and P A (cl, pr) holds; cl ∈ dls and cr ∈ drs.

gen_step2 ?P ?A ?sub (dls, drs) ((psl, cl), (psr, cr)) =

(ALL A’. (A’, ?A) : ?sub -->

(ALL dl:dls. ALL dr:drs. ?P A’ (dl, dr))) -->

(ALL pl:set psl. pl : dls & ?P ?A (pl, cr)) -->

(ALL pr:set psr. pr : drs & ?P ?A (cl, pr)) -->

cl : dls --> cr : drs --> ?P ?A (cl, cr))

Given two sequents cl and cr, suppose we want P A cl cr to capture cut-
admissibility of a particular cut-formula A. By letting dls and drs be the set of
derivable sequents, the definition of gen step2 captures that we can assume:

(a) cut admissibility holds in respect of a smaller cut-formula A’
(b) cut admissibility holds between the sequent cr on the right and the preceding

sequents psl in the derivation on the left
(c) cut admissibility holds between the sequent cl on the left and the preceding

sequents psr in the derivation on the right.

The main theorem gen step2 lem below for proving an arbitrary property P

states that if seqa and seqb are derivable, and gen step2 P holds generally, then
P A holds between seqa and seqb. In this theorem, the constructions derrec

?rlsa {} and derrec ?rlsb {} are respectively the set of sequents recursively
derivable from the empty set {} of premises using the rule sets rlsa and rlsb,
which potentially could be different rule sets, but are both the same in our case.

Theorem 1 (gen step2 lem). An arbitrary property P holds of an arbitrary
formula B, and a pair of arbitrary sequents seqa and seqb if: B is in the well-
founded part of the subformula relation; sequent seqa is rlsa-derivable; sequent
seqb is rlsb-derivable; and for all formulae A, and all rlsa-rules (psl, cl)

and rlsb-rules (psr, cr), our induction step condition gen step2 ?P A ?sub

(derrec ?rlsa {}, derrec ?rlsb {}) ((psa, ca), (psb, cb)) holds:

[| ?B : wfp ?sub ;

?seqa : derrec ?rlsa {} ; ?seqb : derrec ?rlsb {} ;

ALL A. ALL (psa, ca):?rlsa. ALL (psb, cb):?rlsb.

gen_step2 ?P A ?sub (derrec ?rlsa {}, derrec ?rlsb {})

((psa, ca), (psb, cb)) |] ==> ?P ?B (?seqa, ?seqb)

Next we define the general property P to be that the sequent that results
from multi-cutting cl and cr on cut-formula A is rls-derivable.

Definition 3 (mcd rls). The predicate mcd ?rls ?A (?cl, ?cr) means that
the conclusion Xl,Xr ⊢ B of a multicut-instance is recursively derivable from
the empty set of premises using rule set rls if cl = Xl ⊢ A and cr = Xr, A

n ⊢ B,
where n > 0, are the left and right premises, respectively, of the multicut:

7

mcd ?rls ?A (?cl, ?cr) = (ALL Xl Xr n B.

?cl = (Xl |- ?A) & ?cr = (Xr + times (Suc n) {#?A#} |- B)

--> (Xl + Xr |- B) : derrec ?rls {})

Multicut admissibility is mca, which requires that cl and cr are derivable.

Definition 4 (mca). For any rule set rls, any formula A, and any sequents
cl and cr, the predicate mca rls A (cl, ?cr) means: if cl and cr are rls-
derivable then mcd rls A (cl, cr) holds:

mca ?rls ?A (?cl, ?cr) = (?cl : derrec ?rls {} -->

?cr : derrec ?rls {} --> mcd ?rls ?A (?cl, ?cr))

Using multicut instead of cut avoids the difficulty caused by the contraction rule.

3.4 Modular Multicut Instances

The file LRica.ML is relevant here. Bimbó and Dunn [BD12] begin with the
sequent calculus LR→ and its slight extension LRt

→. Now when admissibility of
cut, or of any other rule, holds of a calculus, it does not necessarily hold in a
larger calculus. But each proof-step in cut-admissibility for LR→ is mimicked in
LRt

→, requiring extra steps only for the extra rules contained in LRt
→.

From Theorem 1, proving cut-admissibility requires proving gen step2 (mcd

rls) for each possibility of the last rules used to derive the premises of the pro-
posed cut. We now show how to express these results in a way which allows them
to be used for any containing logic. We refer to the diagram above Definition 2.

Lemma 1 (gsm impR R). If the rule set rls contains (⊢→), and the rule ρr on
the right is an instance of the (⊢→) rule, then gen step2 (mcd rls) holds:

impR <= ?rls

==> gen_step2 (mcd ?rls) ?A ?any (?drsl, derrec ?rls {})

((?psl, ?cl), ([mins ?G ?alpha |- ?H], ?alpha |- ?G -> ?H))

Notice that it does not matter how the left premise cl is derived, just that (as
contained in the definition of gen step2) cut-admissibility (in the sense of mcd,
not mca), holds between it and the premises psr of the final rule ρr on the right.
The term ?drsl is derrec ?rls {} in this proof: see Definition 2.

The form of the theorem indicates which part of the inductive hypothesis is
used: for example, the third argument of gen_step is either ?any or ipsubfml
depending on whether or not cut-admissibility for subformulae is needed.

4 Various Machine-checked Results

The Calculi LR→ and LR
t

→.

Definition 5 (LRit). A rule instance psc is in the calculus LRit (LRt

→) if it
is in the calculus LRi (LR→) or is an instance of the rule (t ⊢) or (⊢ t):

8

inductive "LRit"

intrs

LRi "psc : LRi ==> psc : LRit"

tL "psc : tL ==> psc : LRit"

tR "psc : tR ==> psc : LRit"

Theorem 2 (mca LRi). The sequent calculus LR→ enjoys multi-cut admissibil-
ity: mca LRi ?A (?cl, ?cr).

Theorem 3 (mca LRit). The calculus LRit enjoys multicut-admissibility:
mca LRit ?A (?cl, ?cr).

Corollary 1 (Theorem 2.2 of [BD12]). The single-cut rule is admissible in
LR→ and LRt

→: if Γ1 ⊢ A and Γ2, A ⊢ C are derivable then so is Γ1, Γ2 ⊢ C.

The Calculi [LR→] and [LR
t

→]. The file LRisbcca.ML is relevant here.
These calculi modify LR→ and LRt

→ by deleting the contraction rule (W ⊢),
but modifying the (→⊢) rule into a new rule called [→⊢] that allows a limited
amount of contraction. Bimbó and Dunn [BD12, Theorem 2.4] state that the cut
rule is admissible, by a proof similar to that for LRt

→ [BD12, Theorem 2.2]. We
were unable to prove the result in this way but we were able to prove contraction-
admissibility instead using a technique similar to that for cut-admissibility, but
simpler, as it is a property of one sequent, not two. Again, there are two versions.

Definition 6 (lcd). For any rule set rls, and any formula A, and any sequent
c, the predicate lcd rls A c means: for all multisets X and all formulae B, if c
is X,A,A ⊢ B then the sequent X,A ⊢ B is rls-derivable.

lcd ?rls ?A ?c == ALL X B. ?c =

(X + {#?A#} + {#?A#} |- B) --> (X + {#?A#} |- B) : derrec ?rls {}

Definition 7 (lca). For any rule set rls, and any formula A, and any sequent
c, the predicate lca rls A c means: for all multisets X and all formulae B, if c
is rls-derivable then c enjoys lcd rls A c:

lca ?rls ?A ?c == ?c : derrec ?rls {} --> lcd ?rls ?A ?c

Definition 8 (LRisb and LRitsb). The rules of the sequent calculus LRisb

(resp. LRitsb) are those of LRi, Def 1 (resp. LRit, Def 5) omitting the ((W⊢))
rule, and changing the (→⊢) rule to the rule [→⊢] (see Fig 2)

inductive "LRisb"

intrs id "psc : iid_rls ==> psc : LRisb"

sbimpL "psc : sbimpL ==> psc : LRisb"

impR "psc : impR ==> psc : LRisb"

inductive "LRitsb"

intrs LRisb "psc : LRisb ==> psc : LRitsb"

tL "psc : tL ==> psc : LRitsb"

tR "psc : tR ==> psc : LRitsb"

9

Theorem 4 (lca LRisb and lca LRitsb). The contraction rule is admissible
in the calculi LRisb and LRitsb: lca LRisb ?A ?c and lca LRitsb ?A ?c.

Having proved contraction admissibility for LRisb and LRitsb, we prove their
equivalence to LRi and LRit respectively as follows.

Theorem 5 (LRi LRisb, LRisb LRi, LRisb eqv LRi). Each rule from LRi/LRisb
is admissible/derivable in LRisb/LRi. So LRi and LRisb are equivalent.

Theorem 6 (LRit LRitsb, LRitsb LRit). Each rule from LRit/LRitsb is ad-
missible/derivable in LRitsb/LRit, so LRit and LRitsb are equivalent.

These give part of [BD12, Lemma 2.5] and give [BD12, Lemma 2.4].

Theorem 7 (mca LRisb and mca LRitsb). Both LRisb and LRitsb enjoy multicut-
admissibility: mca LRisb ?A (?cl, ?cr) and mca LRitsb ?A (?cl, ?cr).

Corollary 2 (Kripke 1959). The single-cut rule is admissible in [LR→] and
[LRt

→]: if Γ1 ⊢ A and Γ2, A ⊢ C are derivable then so is Γ1, Γ2 ⊢ C.

The Calculi LT→ and LT
©t
→ . The file LTitca.ML is relevant here. We now

need to encode structures with a hole and encode consecutions and rules built
from consecutions where the action happens at the hole. We have explained
how to achieve this for nested sequent calculi elsewhere [DCGT14] and so the
sequel is rather terse. The main point here is that all the action happens in the
antecedent and so we concentrate on the relation holding between such contexts.

Definition 9 (sctxt). If (a, b) ∈ r then (a, b) ∈ sctxt r. Every (a, b)

∈ sctxt r can be extended by prefixing/postfixing with an arbitrary context C.

consts sctxt :: "’f structr relation trf"

(* closure of rule structure relation under context *)

inductive "sctxt r" intrs

scid "(a, b): r ==> (a, b) : sctxt r"

scL "(a, b): sctxt r ==> (C;a, C;b) : sctxt r"

scR "(a, b): sctxt r ==> (a;C, b;C) : sctxt r"

A structure with a hole (a context) is turned into a consecution by simply
adding a turnstile and a singleton on the right as follows. The relation between
the antecedents is also retained.

Definition 10 (lctxt). The set lctxt r is the smallest set of rule instances
obtained by extending every pair (As, Bs) ∈ sctxt r into the rule instance
([As |- E], Bs |- E) with premise As |- E and conclusion Bs |- E.

consts lctxt ::

"’f structr relation => (’f structr, ’f) sequent psc set"

inductive "lctxt r" intrs

I "(As, Bs) : sctxt r ==> ([As |- E], Bs |- E) : lctxt r"

10

We define LTit lc as the pairs (X,Y) giving us rules of the form
at right. Then lctxt LTit lc is the set of such deep structural
rules in LTit. First, LTit lcsub are the pairs (X,Y) which form
rules of the form at right where X and Y consist only of substi-
tutable structure variables (ie unlike the rules involving t).

U{X} ⊢ C

U{Y } ⊢ C

Definition 11. LTit lcsub is the smallest set of left-context action (pairs of
structural transformations) instances of the (combinator) permutations below.

inductive "LTit_lcsub" (* fully substitutable rules *)

intrs B "psc : lcB ==> psc : LTit_lcsub"

Bd "psc : lcBd ==> psc : LTit_lcsub"

W "psc : lcW ==> psc : LTit_lcsub"

Here, we define lcB, lcBd and lcW to give us the rules (B⊢;), (B′ ⊢;) and (W⊢;).
Next, we define the separate relation lcC to give (C ⊢;) similarly:

inductive "lcB" intrs I "(Bs; (Cs; Ds), Bs; Cs; Ds) : lcB"

inductive "lcBd" intrs I "(Bs; (Cs; Ds), Cs; Bs; Ds) : lcBd"

inductive "lcW" intrs I "(Bs; Cs; Cs, Bs; Cs) : lcW"

inductive "lcC" intrs I "(Bs; Cs; Ds, Bs; Ds; Cs) : lcC"

Here, we elide parentheses by associating to the left and writing (Bs; (Cs;

Ds), Bs; Cs; Ds) instead of ((Bs; (Cs; Ds)), (Bs; Cs; Ds)). So we now
have the permutations that correspond to the actions that happen at the hole.
We now need to turn these actions into rules formed from consecutions.

Definition 12 (LTit lc). LTit lc is the smallest set of rule instances psc

formed by extending hole permutation pairs into consecution rules

inductive "LTit_lc"

intrs sub "psc : LTit_lcsub ==> psc : LTit_lc"

KIt "psc : KIt T ==> psc : LTit_lc"

Mt "(Sf T; Sf T, Sf T) : LTit_lc"

inductive "KIt fml" intrs I "(Bs, Sf fml; Bs) : KIt fml"

Here, the construction Sf T casts the formula T into an atomic structure.
We now need to turn these pairs into proper rules built out of consecutions

and also add the usual logical rules.

Definition 13 (LTit). LTit is the smallest set of rule instances psc which are
instances of the logical rules lcid, lcimpR, lcimpL, and of the structural rules
corresponding to the combinator permutations B, Bd and W:

inductive "LTit" intrs

id "psc : lcid ==> psc : LTit"

impR "psc : lcimpR ==> psc : LTit"

impL "psc : lcimpL ==> psc : LTit"

lcrules "psc : lctxt LTit_lc ==> psc : LTit"

Here, we have omitted the definitions of the consecution rules lcid, lcimpR,
lcimpL. Similar definitions to LTit allows us to compose the rule sets LRitsc,
and LTitc (omitted) corresponding to the consecution calculi LRt

→ and LT©t
→ .

11

4.1 A Structural Analogue of Multicut

Since these calculi contain a contraction rule we prefer to show admissibility
of multicut rather than cut. Following Dunn [Dun73], given premise sequents
X ⊢ A and Y ⊢ B, we consider the “multicut” that replaces each one of n

(rather than all) occurrences of A in Y by an X, to give Z (say):

X ⊢ A Y {A}{A} · · · {A} ⊢ B
(multicut)

Y {X}{X} · · · {X} ⊢ B

The relationship between Y and Z described above, is encoded as strrep.

Definition 14 (strrep).

consts strrep :: "’f structr pair set => ’f structr pair set"

inductive "strrep S" intrs

same "(s, s) : strrep S"

repl "p : S ==> p : strrep S"

sc "(u, v) : strrep S ==>

(x, y) : strrep S ==> (u; x, v; y) : strrep S"

This introduces the issue that where P{A} and C{A} are (say) the an-
tecedents of the premise and conclusion of a rule, and (P{A}, C{A}) ∈ sctxt r

for a relation (set of pairs) r, eg r = {(B;(C;D), B;C;D)} (for the (B ⊢;) rule),
and multicutting with X ⊢ A would give C{X}, ie (C{A}, C{X}) ∈ strrep

{(Sf A, X)}, then we need to “close the box” with P{X}, where (P{A}, P{X}) ∈
strrep {(Sf A, X)} and (P{X}, C{X}) ∈ sctxt r. The easiest instance is
where r is a set of pairs which are entirely substitutable: for example the pair
{(B;(C;D), B;C;D)} for (B ⊢;), rather than the pair {A, (t;A)} for (KIt ⊢;).

Lemma 2 (strrep sctxt lcsub).

[| (?PA, ?CA) : sctxt LTit_lcsub ;

(?CA, ?CX) : strrep {(Sf ?A, ?X)} |] ==>

EX PX. (?PA, PX) : strrep {(Sf ?A, ?X)}

& (PX, ?CX) : sctxt LTit_lcsub

Here LTit_lcsub from Definition 13 is the set of pairs of the form found in
the rules (B ⊢;), (B′ ⊢;), (W ⊢;) from LT t

→.
For the verum constant T, the corresponding result is (for example):

Lemma 3 (strrep sctxt KIt).

[| (?PA, ?CA) : sctxt (KIt T); ?A ~= T;

(?CA, ?CX) : strrep {(Sf ?A, ?X)} |] ==> EX PX.

(?PA, PX) : strrep {(Sf ?A, ?X)} & (PX, ?CX) : sctxt (KIt T)

So the multicut-admissibility property we prove inductively is mclcd.

Definition 15 (mclcd). The predicate mclcd means: if cl = Xl ⊢ A and cr =
Xr ⊢ B and Y is obtained from Xr by replacing some instances of A by Xl,
then Y ⊢ B is rls-derivable.

12

mclcd ?rls ?A (?cl, ?cr) =

(ALL Xl Xr Y B. ?cl = (Xl |- ?A) --> ?cr = (Xr |- B) -->

(Xr, Y) : strrep {(Sf ?A, Xl)} --> (Y |- B) : derrec ?rls {})

The version conditional on cl and cr being derivable is

Definition 16 (mclca). The predicate mclca says that if cl = Xl ⊢ A and
cr = Xr ⊢ B are rls-derivable, and Y is obtained from Xr by replacing some
instances of A by Xl, then Y ⊢ B is rls-derivable.

mclca ?rls ?A (?cl, ?cr) = (?cl : derrec ?rls {} -->

?cr : derrec ?rls {} --> mclcd ?rls ?A (?cl, ?cr))

4.2 Results for Consecution Calculi

The next result is an example of many results (omitted) expressed to apply to
a rule set which is a superset of a given set. Thus it and the omitted results
are useful for all of the consecution calculi LT t

→, LRt

→ and LT©t
→ . In fact we

combined all these results to get

Lemma 4 (gsmcl LTit). If rls contains LTit and rules (psl, cl) and (psr,

cr) are from LTit then gen step2 (mclcd rls) holds:

[| LTit <= ?rls ; (?psl, ?cl) : LTit ; (?psr, ?cr) : LTit |]

==> gen_step2 (mclcd ?rls) ?A ipsubfml

(derrec ?rls {}, derrec ?rls {}) ((?psl, ?cl), ?psr, ?cr)

Theorem 8 (mclca LTit). The consecution calculus LT t

→ enjoys multi-cut ad-
missibility: if the consecution V ⊢ A and the consecution U{A}{A} · · · {A} ⊢ C

are derivable then the consecution U{V }{V } · · · {V } ⊢ C is derivable.
mclca LTit ?A (?cl, ?cr).

We obtain the single-cut admissibility result for LT t

→ which is only asserted
by Bimbó and Dunn [BD12, line 10, pg 500] since it is proved elsewhere.

Corollary 3 (Bimbó and Dunn line 10, pg 500 [BD12]). The single-cut
rule is admissible in LT t

→: if the consecutions V ⊢ A and U{A} ⊢ C are derivable
then so is the consecution U{V } ⊢ C.

Extending the proof to the other calculi was quite easy since we only needed
to deal with the cases involving a few additional rules on either side.

Theorem 9 (mclca LTitc and mclca LRitsc). The consecution calculi LT©t
→

and LRt

→ ; enjoy multi-cut admissibility: if the consecution V ⊢ A and consecu-
tion U{A}{A} · · · {A} ⊢ C are derivable then so is U{V }{V } · · · {V } ⊢ C.

mclca LTitc ?A (?cl, ?cr)

mclca LRitsc ?A (?cl, ?cr)

Corollary 4 (Bimbó and Dunn Thm 3.2 and Thm 5.2 [BD12]). The
single-cut rule is admissible in LRt

→ ; and LT©t
→ : if the consecutions V ⊢ A and

U{A} ⊢ C are derivable then so is the consecution U{V } ⊢ C.

13

[LRt

→]

(3) mk sb (pi dt) is an [LRt

→]-proof of A

(4) mk lctr irred (mk sb (pi dt)) is an irredundant [LRt

→]-proof of A

(5) so find {δ1, · · · , δm}, the set of all irredundant [LRt

→]-proofs of A

(6) hence ∃j. δj = mk lctr irred (mk sb (pi dt)) by (4) and (5)

dest sb

��

LRt

→ and (⊢ t)-free LRt

→

(2) pi dt is an LRt

→-proof of A

dest sb turns δ1, · · · , δj , · · · , δm into LRt

→-proofs δ′1, · · · , δ
′
j , · · · , δ

′
m of A

mk tRfree turns δ′1, · · · , δ
′
j , · · · , δ

′
m into (⊢ t)-free LRt

→-proofs δ′′1 , · · · , δ
′′
j , · · · , δ

′′
m of A

(7) so dest sb (mk lctr irred (mk sb (pi dt))) is an LRt

→-proof of A

(8) mk tRfree (dest sb (mk lctr irred (mk sb (pi dt)))) is a (⊢ t)-free LRt

→-proof of A

(9) ∃j.δ′′j = mk tRfree (dest sb (mk lctr irred (mk sb (pi dt))))

mk sb

KK

τ

��

LT t

→ ⊂ LT©t
→

(1) dt is one of an infinite number of LT t

→-proofs of A

τ(δ′′j) ⊆
⋃m

i=1
τ(δ′′i) by definition

(10) hence τ(δ′′j) ⊆ tau (mk tRfree (dest sb (mk lctr irred (mk sb (pi dt)))))

(11) hence ∃ dtt ∈ tau (mk tRfree (dest sb (mk lctr irred (mk sb (pi dt)))))

(12) but we cannot see why dtt must be an LT t

→-proof of A

π

NN

Fig. 4. Proof Plan

5 A Proof Plan of The Crucial Lemma 11

A putative constructive proof plan of [BD13, Lemma 11] is in Figure 4.

Assertion 1 If there is an LT t

→-proof dt of A then there exists an [LRt

→]-proof
dtsb of A and there exists an LT t

→-proof dtt of A.

Proof Plan: We start with (1) some given LT t

→-proof dt of A. Applying π gives
us (2) there is some LRt

→-proof pi dt of A. By completeness of [LRt

→], (3) there
is an [LRt

→]-proof mk sb (pi dt) of A. Then, (4) there must be an irredundant
such [LRt

→]-proof mk lctr irred (mk sb (pi dt)) of A. Then (7) the function
dest sb transforms an [LRt

→]-proof into an LRt

→-proof by replacing the rule

14

[→⊢] with an instance of the (→⊢) rule followed by the appropriate number of
explicit applications of the contraction rule (W ⊢) thereby “destroying the square
brackets”. Then (8) the function mk tRfree transforms the resulting LRt

→-proof
into a (⊢ t)-free LRt

→-proof. Finally, tau transforms this (⊢ t)-free LRt

→-proof
into possibly many LT©t

→ proofs, hence (11) there must exist some LT©t
→ -proof

dtt of A. But (12) why should (any such) dtt be an LT t

→-proof of A?
So, how to complete our proof plan? The first point is that the existence of

dt must lead to a dtt. There are two plausible approaches:

(a) dtt is equal, similar or somehow related to dt

(b) τ must produce enough proofs to guarantee that if there is an LT t

→-proof
for A, then τ will give us one. To guarantee this, we may have to apply τ to
all [LRt

→]-proofs of A (after applying dest sb and mk tRfree to them).

The discussion by Bimbó and Dunn regarding π mentioned in the last two
lines of the proof of their Lemma 11 seems only relevant to (a) above. The only
relevance of π can be for an argument along the lines shown in Figure 4.

However, the proof of Lemma 11 of Bimbó and Dunn does not start with a
given LT t

→-proof dt of A, but appears to follow option (b) outlined above. That
is, it uses their Lemma 5 to deduce that A being a theorem of T t

→ implies the
existence of some [LRt

→]-proof of A. So it starts by (5) finding all irredundant
[LRt

→]-proofs of A, transforming them into LRt

→-proofs by simply making con-
tractions explicit, then transforming them to remove all applications of the (⊢ t)
rule, and turning the resulting proofs into LT©t

→ -proofs by applying τ . Their
argument that one of these must be an LT t

→-proof requires considering “all per-
mutations” of the structures involved. But this whole procedure starts with only
those proofs which have the contractions allowed by the “square bracket” cal-
culi. Moreover, the decision procedure starts at point (5), but the proof of its
completeness starts at point (1), at the hypothesis that A is a theorem of T t

→.
Our proof plan and their proof align if at (5) we find all irredundant [LRt

→]-
proofs of A, and then (6) one of them, say δj , must be the one we are focusing
on. So (8) the result of applying both dest sb and mk tRfree to δ′j is a (⊢ t)-free

LRt

→-proof δ′′j of A and (9) δ′′j must be one of the proofs obtained by doing these
transformations to all of the proofs from (5). Finally, τ transforms any one of
these (⊢ t)-free LRt

→-proofs into possibly many proofs and hence dtt is in τ(δ′′j).

But again, (12), we cannot see why this final proof has to be an LT t

→-proof.
Indeed (12), and our proof plan would hold if we could prove that dt = dtt.

Assertion 2 (tau irr sb pi) If dt is an LT t

→-proof of A then
dt ∈ tau (mk tRfree (dest sb (mk lctr irred (mk sb (pi dt))))).

We cannot see why this assertion should hold. Allowing that it would be true that
dt is in τ(π(dt)), we should consider the differences between the proofs π(dt) and
mk tRfree (dest sb (mk lctr irred (mk sb (pi dt)))). Now mk lctr irred

excises parts of a proof and uses height-preserving contraction admissibility,
so it (probably) simplifies a proof. Also, mk tRfree makes changes which are
probably insignificant. But the dest sb (... mk sb ...) combination moves

15

contractions around, relative to occurrences of (→⊢), since mk sb must remove
contractions that are not immediately below (→⊢), and then make up for their
removal by inserting appropriate contractions immediately below the (→⊢) rules.
But π alone does not do such movements by [BD13, Lemma 6].

6 Conclusions

We have machine-checked all of the proof-theoretic claims made by Bimbó
and Dunn [BD12,BD13] including the three lemmata which are at the heart
of the decidability argument [BD13, Lemmata 8,9,10]. However, we were not
able to prove them in that order as our proof of Lemma 9 depends upon our
proof of Lemma 10. Moreover, we are yet to be convinced of the correctness
of Lemma 11 which ensures that no LT t

→ derivation is lost in the transforma-
tions of proofs which correspond to [LRt

→]-proofs: see Figure 4. Our files are at
http://users.cecs.anu.edu.au/~jeremy/isabelle/2005/bimbo-dunn/ and
the URL address http://users.cecs.anu.edu.au/~jeremy/isabelle/2005/

bimbo-dunn/ticket-instructions.html contains instructions for running them.

Acknowledgements. We are grateful to Katalin Bimbó, Michael Dunn and John
Slaney for their helpful comments. All remaining errors are our own.

References

[BD12] Katalin Bimbó and J Michael Dunn. New consecution calculi for Rt

→. Notre

Dame Journal of Formal Logic, 53(4), 2012.
[BD13] Katalin Bimbó and J Michael Dunn. On the decidability of implicational

ticket entailment. The Journal of Symbolic Logic, 78(1), March 2013.
[DCGT14] Jeremy E. Dawson, Ranald Clouston, Rajeev Goré, and Alwen Tiu. From

display calculi to deep nested sequent calculi: Formalised for full intuition-
istic linear logic. In Proc 8th Theoretical Comp Sci, pp 250–264, 2014.

[DG02] Jeremy E. Dawson and Rajeev Goré. Formalised cut admissibility for display
logic. In Proc TPHOLs, pages 131–147, 2002.

[DG10] Jeremy E. Dawson and Rajeev Goré. Generic methods for formalising se-
quent calculi applied to provability logic. In Proc LPAR-17, pages 263–277.

[Dun73] J. M. Dunn. (abstract only) A ’Gentzen system’ for positive relevant impli-
cation. Journal of Symbolic Logic, 38:356–357, 1973.

[Gor09] Rajeev Goré. Machine checking proof theory: An application of logic to
logic. In Proc ICLA, pages 23–35, 2009.

[GR12] Rajeev Goré and Revantha Ramanayake. Valentini’s cut-elimination for
provability logic resolved. Rew. Symb. Logic, 5(2):212–238, 2012.

[Pad11] Vincent Padovani. Ticket entailment is decidable. CoRR, abs/1106.1875,
2011.

16

