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Observer theories

We consider a formalisation of a notion of observer theories.

used in various “environment-sensitive” bisimulation for
process calculi, e.g., the spi-calculus.

describes the knowledge and capabilities of an observer

given a formal account using deductive systems

Two critical notions:

decidability of message deduction by the observer

consistency of a given theory

We formalise a theory in Isabelle/HOL, encoding observer theories
as pairs of symbolic traces.
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Messages

Messages are formed from

“names” (or flexible names), a, x , y : like variables

rigid names, a, b : like constants

pairs of messages, 〈M,N〉,
symmetric encryption, {M}K , (key K , message M)

datatype msg = Name nat
| Rigid nat
| Mpair msg msg
| Enc msg msg
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Message indistinguishability

Can an observer differentiate two processes based on the messages
output by the processes?

With encryption, indistinguishability is not just syntactic equality
(one encrypted message looks “just like” another).

For Γ an observer theory (a finite set of pairs of messages),
Γ ` M ↔ N means the observer cannot distinguish between M and
N, given the indistinguishability assumption Γ

In Isabelle, (Γ,M,N) ∈ indist

Data structures involving pairs of messages can be projected to the
first (or second) component. Thus πi (X ), i = 1, 2, for X a pair,
theory, bi-trace, sequent, etc.
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Proof system for message indistinguishability

x ∈ N
Γ ` x ↔ x

(var)
(M,N) ∈ Γ

Γ ` M ↔ N
(id)

Γ ` Ma ↔ Na Γ ` Mb ↔ Nb

Γ ` 〈Ma,Mb〉 ↔ 〈Na,Nb〉
(pr)

Γ ` Mp ↔ Np Γ ` Mk ↔ Nk

Γ ` {Mp}Mk
↔ {Np}Nk

(er)

Γ, (Ma,Na), (Mb,Nb) ` M ↔ N

Γ, (〈Ma,Mb〉, 〈Na,Nb〉) ` M ↔ N
(pl)

Γ ` Mk ↔ Nk Γ, (Mp,Np), (Mk ,Nk) ` M ↔ N

Γ, ({Mp}Mk
, {Np}Nk

) ` M ↔ N
(el)

Cut-admissibility and some invertibility results hold
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Observer theory consistency

Intuitively, is the theory plausibly a set of pairs of messages which
the observer would see as indistinguishable ?

For example, {({a}b, {c}d), (b, c)} is not consistent, since

one can decrypt {a}b using b, but

one cannot decrypt {c}d using c

Definition (consistent)

A theory Γ is consistent if for every M and N, if Γ ` M ↔ N then

M and N are of the same type of expressions, i.e., M is a pair
(an encrypted message, a (rigid) name) if and only if N is.

If M = {Mp}Mk
and N = {Np}Nk

then π1(Γ) ` Mk implies
Γ ` Mk ↔ Nk and π2(Γ) ` Nk implies Γ ` Mk ↔ Nk .

For any R, Γ ` M ↔ R implies R = N and Γ ` R ↔ N
implies R = M.
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Decidability of `

want consistency to be decidable — involves deciding Γ ` M ↔ N

Naive approach to testing Γ ` M ↔ N can loop:
in (el) rule, left premise can equal the conclusion

Finiteness argument shows decidability since backwards proof
only introduces sub-messages of messages in conclusion

but we want a more focussed procedure than exhaustive search

theory reduction: we “reduce” a theory to its “simplest” form
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Theory reduction

As originally defined (Tiu, 2007)

Γ, (〈Ma,Mb〉, 〈Na,Nb〉) −→ Γ, (Ma,Na), (Mb,Nb)

Γ, ({Mp}Mk
, {Np}Nk

) −→ Γ, (Mp,Np), (Mk ,Nk)

if Γ, ({Mp}Mk
, {Np}Nk

) ` Mk ↔ Nk

(assume (〈Ma,Mb〉, 〈Na,Nb〉) 6∈ Γ ; ({Mp}Mk
, {Np}Nk

) 6∈ Γ)
This involves deciding whether Γ, ({Mp}Mk

, {Np}Nk
) ` Mk ↔ Nk

Alternative definition:

Γ, (〈Ma,Mb〉, 〈Na,Nb〉) −→′ Γ, (Ma,Na), (Mb,Nb)

Γ, ({Mp}Mk
, {Np}Nk

) −→′ Γ, (Mp,Np), (Mk ,Nk) if Γ ` Mk ↔ Nk

This involves deciding Γ ` Mk ↔ Nk (a smaller theory Γ).
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Results about theory reduction

Lemma

1 If Γ −→ Γ′ then Γ ` M ↔ N if and only if Γ′ ` M ↔ N

2 −→ is well-founded (total size reduces)

3 As −→′ ⊆ −→, the above hold for −→′ also.

4 −→ is confluent

Proof of (4): By (1), side condition Γ ` Mk ↔ Nk iff
Γ′ ` Mk ↔ Nk (Isabelle proof difficult, number of cases explodes).

Theorem

Γ has a −→-normal form Γ⇓
Γ ` M ↔ N if and only if Γ⇓ ` M ↔ N

Theorem

Γ⇓ ` M ↔ N if and only if Γ⇓ `R M ↔ N
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Use of theory reduction

We define a right derivation `R

x ∈ N
Γ `R x ↔ x

(var)
(M,N) ∈ Γ

Γ `R M ↔ N
(id)

Γ `R Ma ↔ Na Γ `R Mb ↔ Nb

Γ `R 〈Ma,Mb〉 ↔ 〈Na,Nb〉
(pr)

Γ `R Mp ↔ Np Γ `R Mk ↔ Nk

Γ `R {Mp}Mk
↔ {Np}Nk

(er)

Now Γ `R M ↔ N is obviously decidable (just keep decomposing
the right-hand side, and testing for (id) rule).

Theorem

Γ⇓ ` M ↔ N if and only if Γ⇓ `R M ↔ N
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The alternative theory reduction −→′

Theorem

If Γ is −→-reducible, then it is −→′-reducible, (though the
same reduction may not be available) (long proof in paper)

Thus (as −→′ ⊆ −→) Γ⇓ is also the −→′-normal form of Γ

Theorem

Γ ` M ↔ N is decidable

Procedure: calculate Γ⇓ and determine whether Γ⇓ `R M ↔ N.

Calculating Γ⇓ (using −→′) requires deciding questions of the form
Γ′ ` Mk ↔ Nk , where Γ′ is smaller than Γ (because a pair
({Mp}Mk

,{Np}Nk
) is omitted).

Thus this procedure terminates.
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Theory reduction and consistency (Tiu, 2007)

Lemma

If Γ −→ Γ′ then Γ is consistent if and only if Γ′ is consistent

Γ is consistent if and only if Γ⇓ is consistent

Lemma

There is a simpler, finitely checkable, characterisation of
consistency for a reduced theory Γ:

using “for every (M,N) ∈ Γ . . . ”

not “for every M and N, if Γ ` M ↔ N then . . . ”

Thus theory consistency is decidable
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Proving decidability or computability

To prove computability formally requires modelling the
computation process, but we can prove it “semi-formally”:

We have a definition of Γ `R M ↔ N in Isabelle as an inductively
defined set (rules above); we gave another corresponding definition
as a recursive function (here, `f ), eg

Γ `f 〈Ma,Mb〉 ↔ 〈Na,Nb〉 ⇐⇒
(〈Ma,Mb〉, 〈Na,Nb〉) ∈ Γ ∨ (Γ `f Ma ↔ Na ∧ Γ `f Mb ↔ Nb)

Isabelle makes us prove that the recursive definition of `f

terminates.

We can inspect to see the absence of any further “infinite”
features (eg testing for membership of an infinite set,
quantification over an infinite set)

We then proved Γ `R M ↔ N iff Γ `f M ↔ N



Observer theories Decidability of ` Proving decidability or computability Bi-traces and respectful substitutions Consistent bi-traces Unique Completion of a Respectful Substitution Conclusion

Decidability of reduction

For theory reduction using −→′,

reducing Γ (calculating Γ⇓) required deciding Γ′ ` Mk ↔ Nk ,
for some Γ′ smaller than Γ,

deciding Γ′ ` Mk ↔ Nk required calculating Γ′⇓ (and then
testing Γ′⇓ `R Mk ↔ Nk)

Definition of reduction as a function is further complicated by the
fact that the single-step reduction relation is not deterministic.

We defined a function reduce which chooses a possible reduction,
performs it, and then reduces the result.

Isabelle wasn’t able to prove the termination conditions
automatically, so we had to use recdef (permissive).
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The reduction function — using recdef (permissive)

We had to prove that the measure function gets smaller, and
thereby simplify the simplification rules produced by Isabelle

That is, with a definition (measure function m) :
reduce S = . . . if m(F (S)) < m(S) then F (S) else arbitrary . . .
we had to prove that the arbitrary clause never applied

Finally we proved that reduce gives the −→′-normal form.

Then, by inspection of the text of the definition, we asserted that
there was no part of it whose computation would not be finite.
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Bi-traces and respectful substitutions

Definition

A bi-trace is an ordered set (a list) of message pairs, each
marked as i (input) or o (output), where any free name first
appears in an input pair.

A substitution pair is a pair of mappings ~θ = (θ1, θ2) from free
names to messages, where θ1(θ2) applies to the first (second)
message of any pair.

a respectful substitution is (roughly) a substitution where for
each variable x in an input pair, Γ~θ ` xθ1 ↔ xθ2 where Γ is
the set of previous pairs (that is, input messages are only
those which an outsider is capable of creating)
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Consistent bi-traces

Definition (Consistent bi-trace)

A bi-trace is consistent if
. . . for every respectful substitution pair ~θ, Γ~θ is a consistent theory

The quantification makes deciding this difficult (work in progress).
But note, the definition of respectful substitution involves the
order of pairs; deciding whether a theory is consistent involves
reducing it, which requires an unordered theory.
So we defined a variant of respectfulness:

Definition (thy strl resp)

A substitution pair ~θ satisfies thy strl resp for Γ and p if, for
each x in Γ, (Γ|p(x)) ~θ ` xθ1 ↔ xθ2 where Γ|p(x) is got by
removing message pairs containing free names other than those in
p(x) from Γ
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Theory reduction and thy strl resp

Lemma

For given θ and p (see below), if Γ satisfies thy strl resp

if Γ −→ Γ′, then Γ′ satisfies thy strl resp

Γ⇓ satisfies thy strl resp

We use this result where p(x) is the set of free names which
appeared prior to x in the bi-trace from which Γ was obtained.

This definition and result enabled us to combine the ideas of
reduction of an unordered theory with the respectfulness of a
substitution pair with respect to an ordered bi-trace.
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Unique Completion of a Respectful Substitution

In analysing bi-trace consistency (“for all respectful
substitutions”), the following result is useful.

Theorem

Given a consistent bi-trace h whose projections to a single message
trace are s1 and s2, and a substitution θ1 which respects s1, there
exists θ2 such that ~θ = (θ1, θ2) respects h, and θ2 is “unique” in
the sense that any two such θ2 act the same on names in π2(h)

Given θ1 we want to compute θ2.
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Computing the Unique Completion

First we defined a function match rc1 which, given a theory Γ and
a message M, “attempts” to determine a message N such that
Γ ` M ↔ N. (N is unique if Γ is consistent).

Theorem

If Γ is consistent, then
Γ ` M ↔ N iff match rc1 Γ⇓ M = Some N

Then we defined a function second sub, using match rc1, to find
the appropriate value of xθ2 for each new x in the bi-trace

Theorem

If h is a consistent bi-trace, and θ1 satisfies the respectfulness
condition for π1(h), and θ2 = second sub h θ1, then (θ1, θ2)
respects h

Informal arguments show that match rc1 and second sub are
finitely computable.
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Conclusion : value of the formalisation

theories very intricate, with low-level detail

details can be overlooked in paper proofs, we have found bugs

symbolic decision procedures (on-going work) are often very
technical and complicated; no-one has verified any symbolic
techniques for process calculi as far as we know: this is a first
attempt

it has helped us find better proofs about reduction and
respectful substitutions

theorem proving system helps keep track of results proved
(numerous when several different definitions of reduction and
sets of rules for deriving Γ ` M ↔ N)
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