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Abstract. We consider a formalisation of a notion of observer (or in-
truder) theories, commonly used in symbolic analysis of security pro-
tocols. An observer theory describes the knowledge and capabilities of
an observer, and can be given a formal account using deductive sys-
tems, such as those used in various “environment-sensitive” bisimulation
for process calculi, e.g., the spi-calculus. Two notions are critical to the
correctness of such formalisations and the effectiveness of symbolic tech-
niques based on them: decidability of message deduction by the observer
and consistency of a given observer theory. We consider a formalisation,
in Isabelle/HOL, of both notions based on an encoding of observer theo-
ries as pairs of symbolic traces. This encoding has recently been used in
a theory of open bisimulation for the spi-calculus. We machine-checked
some important properties, including decidability of observer deduction
and consistency, and some key steps which are crucial to the automation
of open bisimulation checking for the spi-calculus, and highlight some
novelty in our Isabelle/HOL formalisations of decidability proofs.

1 Introduction

In most symbolic techniques for reasoning about security protocols, certain as-
sumptions are often made concerning the capability of an intruder that tries
to compromise the protocols. A well-known model of intruder is the so-called
Dolev-Yao model [10], which assumes perfect crytography. We consider here a
formal account of Dolev-Yao intruder model, formalised as some sort of de-
duction system. This deductive formulation is used in formalisations of various
“environment-sensitive” bisimulations (see e.g., [6]) for process calculi designed
for modeling security protocols, such as the spi-calculus [3]. An environment-
sensitive bisimulation is a bisimulation relation which is indexed by a structure
representing the intruder’s knowledge, which we call an observer theory.

An important line of work related to the spi-calculus, or process calculi in
general, is that of automating bisimulation checking. The transition semantics of
these calculi often involve processes with infinite branching (e.g., transitions for
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input-prefixed processes in the π-calculus [12]), and therefore a symbolic method
is needed to deal with potential infinite branches lazily. The resulting bisimu-
lation, called symbolic bisimulation, has been developed for the spi-calculus [7].
The work reported in [7] is, however, only aimed at finding an effective approxi-
mation of environment-sensitive bisimulation, and there has been no metatheory
developed for this symbolic bisimulation so far. A recent work by the second au-
thor [14] attempts just that: to establish a symbolic bisimulation that has good
metatheory, in particular, a symbolic bisimulation which is also a congruence.
The latter is also called open bisimulation [13]. One important part of the for-
mulation of open bisimulation for the spi-calculus is a symbolic representation
of observer theories, which needs to satisfy certain consistency properties, in ad-
dition to closure under a certain notion of “respectful substitutions”, as typical
in formulations of open bisimulation.

A large part of the work on open bisimulation in [14] deals with establishing
properties of observer theories and their symbolic counterparts. This paper is
essentially about formally verifying the results of [14] concerning properties of
(symbolic) observer theories in Isabelle/HOL. In particular, it is concerned with
proving decidability of the deduction system for observer theory, correctness
of a finite characterisation of consistency of observer theories (hence decidabil-
ity of consistency of observer theories), and preservation of consistency under
respectful substitutions. Additionally, we also verify some key steps towards a
decision procedure for checking consistency of symbolic observer theories, which
is needed in automation of open bisimulation. A substantial formalisation work
described here concerns decidability proofs. Such proofs are difficult to formalise
in Isabelle/HOL, as noted in [17], due to the fact that Isabelle/HOL is based
on classical logic. We essentially follow [17] in that decidability in this case can
be inferred straightforwardly by inspection on the way we define total functions
corresponding to the decidability problems in question. That is, we show, by
meta-level inspection, that the definitions of the functions do not introduce any
infinite aspect and are therefore are finitely computable.

There is a recent work [11] in formalising the spi-calculus and a notion of
environment-sensitive bisimulation (called the hedged bisimulation [8]) in
Isabelle/HOL. However, this notion of bisimulation is a “concrete” bisimulation
(as opposed to symbolic), which means that the structure of observer theories
is less involved and much easier to deal with compared to its symbolic counter-
part. Our work on observer theories is mostly orthogonal to their work, and it
can eventually be integrated into their formalisation to provide a completely for-
malised open bisimulation for the spi-calculus. Such an integration may not be
too difficult, given that much of their work, e.g., formalisation of the operational
semantics of the spi-calculus, can be reused without modifications.

We assume that the reader is familar with Isabelle proof assistant, its object
logic HOL and logical frameworks in general. In the remainder of this section we
brieflydescribe relevant Isabelle notations used throughout the paper. In Section 2,
we give an overviewof observer theories and an intuition behind them. We also give
a brief description of two problems that will be the focus of subsequent sections,
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namely, those that concern decidability of consistency checking for (symbolic) ob-
server theories. In Section 3 we consider formalisation of a notion of theory reduc-
tion and decidability of consistency checking for observer theories. In Section 4
we discuss a symbolic representation of observer theories using pairs of symbolic
traces [5], called bi-traces, their consistency requirements and a notion of respectful
substitutions. We prove a key lemma which relates a symbolic technique for trace
refinement [5] to bi-traces, and discuss how this may lead to a decision procedure
for testing bi-trace consistency. Section 5 concludes.

Isabelle notation. The Isabelle codes for the results of this paper can be found
at http://users.rsise.anu.edu.au/~jeremy/isabelle/2005/spi/. In the
statement of lemma or theorem, a name given in typewriter font indicates
the name of the relevant theorem in our Isabelle development. We show selected
theorems and definitions in the text, and more in the Appendix. A version of
the paper, including the Appendix, is in http://users.rsise.anu.edu.au/

~jeremy/pubs/spi/fotesb/. So now we indicate some key points of the Isabelle
notation.

– A name preceded by ? indicates a variable: other names are entities which
have been defined as part of the theory

– Conclusion β depending on assumptions αi is [| α1;α2; . . .;αn |] ==> β
– ∀, ∃ are written as ALL, EX
– ⊆, ⊇, ∈ are written as <=, >=, :

2 Observer Theory

An observer theory describes the knowledge accumulated by an observer in its
interaction with a process (in the form of messages sent over networks), and
its capability in analyzing and synthesizing messages. Since messages can be en-
crypted, and the encryption key may be unknown to the observer, it is not always
the case that the observer can decompose all messages sent over the networks.
In the presence of an active intruder, the traditional notion of bisimulation is
not fine grained enough to prove interesting equivalence of protocols. A notion
of bisimulation in which the knowledge and capability of the intruder is taken
into account is often called an environment-sensitive bisimulation.

Messages are expressions formed from names, pairing constructor, e.g.,
〈M, N〉, and symmetric encryption, e.g., {M}K , where K is the encryption key
and M is the message being encrypted. Note that we restrict to pairing and
encryption to simplify discussion; there is no difficulty in extending the set of
messages to include other constructors, including asymmetric encryption, natu-
ral numbers, etc. For technical reasons, we shall distinguish two kinds of names:
flexible names and rigid names. We shall refer to flexible names as simply names.
Names will be denoted with lower-case letters, e.g., a, x, y, etc., and rigid names
will be denoted with bold letters, e.g., a, b, etc. We let N denote the set of
names and N= denote the set of pairs (x, x) of the same name. A name is really
just a variable, i.e., a site for substitutions, and rigid names are just constants.
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This slightly different terminology is to conform with a “tradition” in name-
passing process calculi where names are sometimes confused with variables (see
e.g., [13]). In the context of open bisimulation for the spi-calculus [14], names
stand for undetermined messages which can be synthesized by the observer.

There are two aspects of an observer theory which are relevant to bisimulation
methods for protocols verification (for a more detailed discussion, see, e.g., [2]):

– Message analysis and synthesis: This is often formalised as a deduction sys-
tem with judgments of the form Σ 	 M , where Σ is a set of messages and
M is a message. The intuitive meaning is that the observer can derive M
given Σ. The deduction system is given in Figure 1 using sequent calculus.
The usual formulation is based on natural deduction, but there is an easy
correspondence between the two presentations (see [16] for details). One can
derive, for example, that Σ 	 M holds if Σ 	 {M}K and Σ 	 K hold, i.e.,
if the observer can derive {M}K and the key K, then it can derive M .

– Indistinguishability of messages: This notion arises when an observer tries to
differentiate two processes based on the messages output by the processes. In
the presence of encryption, indistinguishability does not simply mean syntac-
tic equality. The judgment of interest in this case takes the form Γ 	 M ↔ N
where Γ is a finite set of pairs of messages. It means, intuitively, that the
observer cannot distinguish between M and N , given the indistinguishabil-
ity assumption Γ. We shall not go into detailed discussion on this notion of
indistinguishability; it has been discussed extensively in the literature [2, 6,
8, 14]. Instead we give a proof system for message indistinguishability (or
message equivalence) in Figure 2.

Note that there are some minor differences between the inference rules in Figure 1
and Figure 2 and those given in [14]. That is, the “principal” message pairs for
the rules (pl) and (el) in [14], (〈Ma, Mb〉,〈Na, Nb〉) and ({Mp}Mk

,{Np}Nk
), are

also in the premises. We proved that the alternative system is equivalent and
that, in both systems, weakening on the left of 	 is admissible: see Appendix A.1.

We note that, by a cut-admissibility-like result, it is possible to further remove
(Mk, Nk) from the second premise of (el): see Appendix A.2.

Subsequent results in this paper are concerned mainly with the above notion of
indistinguishability. We therefore identify an observer theory with its underlying
indistinguishability assumptions (i.e., Γ in the second item above). Hence, from
now on, an observer theory (or theory) is a just finite set of pairs of messages,
and will be denoted with Γ . Given a theory Γ , we write π1(Γ ) to denote the set
obtained by projecting on the first components of the pairs in Γ . The set π2(Γ )
is defined analogously.

Observer theory consistency: An important notion in the theory of environ-
ment sensitive bisimulation is that of consistency of an observer theory. This
amounts to the requirement that any observation (i.e., any “destructive” oper-
ations related to constructors of the messages, e.g., projection, decryption) that
is applicable to the first projection of the theory is also applicable to the second
projection. For example, the theory {({a}b, {c}d), (b, c)} is not consistent, since
on the first projection (i.e., the set {{a}b,b}), one can decrypt the first message
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x ∈ N
Σ � x

(var)
Σ, M � M

(id)
Σ � M Σ � N

Σ � 〈M, N〉 (pr)

Σ � M Σ � N
Σ � {M}N

(er)
Σ, M, N � R

Σ, 〈M, N〉 � R
(pl)

Σ � N Σ, M, N � R

Σ, {M}N � R
(el)

Fig. 1. A proof system for message synthesis

x ∈ N
Γ � x ↔ x

(var)
(M, N) ∈ Γ

Γ � M ↔ N
(id)

Γ � Ma ↔ Na Γ � Mb ↔ Nb

Γ � 〈Ma, Mb〉 ↔ 〈Na, Nb〉 (pr)
Γ � Mp ↔ Np Γ � Mk ↔ Nk

Γ � {Mp}Mk ↔ {Np}Nk

(er)

Γ, (Ma, Na), (Mb, Nb) � M ↔ N

Γ, (〈Ma, Mb〉, 〈Na, Nb〉) � M ↔ N
(pl)

Γ � Mk ↔ Nk Γ, (Mp, Np), (Mk, Nk) � M ↔ N

Γ, ({Mp}Mk , {Np}Nk ) � M ↔ N
(el)

Fig. 2. A proof system for deducing message equivalence

{a}b using the second message b, but the same operation cannot be done on
the second projection. The formal definition of consistency involves checking all
message pairs (M, N) such that Γ 	 M ↔ N is derivable for certain similarity
of observations. The first part of this paper is about verifying that this infinite
quantification is not necessary. This involves showing that for every theory Γ ,
there is a corresponding reduced theory that is equivalent, but for which consis-
tency checking requires only checking finitely many message pairs.

Symbolic observer theory: The definition of open bisimulation for name-
passing calculi, such as the π-calculus, typically includes closure under a certain
notion of respectful substitutions [13]. In the π-calculus, this notion of respectful-
ness is defined w.r.t. to a notion of distinction among names, i.e., an irreflexive
relation on names which forbids identification of certain names. In the case of
the spi-calculus, things get more complicated because the bisimulation relation
is indexed by an observer theory, not just a simple distinction on names. We
need to define a symbolic representation of observer theories, and an appropri-
ate notion of consistency for the symbolic theories. These are addressed in [14]
via a structure called bi-traces. A bi-trace is essentially a list of pairs of messages.
It can be seen as a pair of symbolic traces, in the sense of [5]. The order of the
message pairs in the list indicates the order of their creation (i.e., by the intruder
or by the processes themselves). Names in a bi-trace indicate undetermined mes-
sages, which are open to instantiations. Therefore the notion of consistency of
bi-traces needs to take into account these possible instantiations. Consider the
following sequence of message pairs: (a,d), ({a}b, {d}k), ({c}{x}b , {k}l). Con-
sidered as a theory, it is consistent, since none of the encryption keys are known
to the observer. However, if we allow x to be instantiated to a, then the result-
ing theory {(a,d), ({a}b, {d}k), ({c}{a}b , {k}l)} is inconsistent, since on the first
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projection, {a}b can be used as a key to decrypt {c}{a}b , while in the second
projection, no decryption is possible. Therefore to check consistency of a bi-
trace, one needs to consider potentially infinitely many instances of the bi-trace.
Section 4 shows some key steps to simplify consistency checking for bi-traces.

3 Observer Theory Reduction and Consistency

We now discuss our formalisation of observer theory and its consistency proper-
ties in Isabelle/HOL.

The datatype for messages is represented in Isabelle/HOL as follows.

datatype msg = Name nat | Rigid nat | Mpair msg msg | Enc msg msg

A observer theory, as already noted, is a finite set of pairs of messages. In Isabelle,
we just use a set of pairs, so the finiteness condition appears in the Isabelle
statements of many theorems. The judgment Γ 	 M ↔ N is represented by
(Γ, (M, N)), or, equivalently in Isabelle, (Γ, M, N).

In Isabelle we define, inductively, a set of sequents indist which is the set of
sequents derivable in the proof system for message equivalence (Figure 2). Sub-
sequently we found it helpful to define the corresponding set of rules explicitly,
calling them indpsc. The rules for message synthesis, given in Figure 1, are just
a projection to one component of the rule set indpsc; we call this projection
smpsc. It is straightforward to extend the notion of a projection on rule sets,
so we can define the rules for message synthesis as simply smpsc = π1(indpsc).
The formal expression in Isabelle is more complex: see Appendix A.3. Likewise,
we write pair(X) to turn each message M into the pair (M, M) in a theory,
sequent, rule or bi-trace X .

The following lemma relates message synthesis and message equivalence.
Lemma 1(d) depends on theory consistency, to be introduced later.

Lemma 1. (a) (smpsc alt) Rule R ∈ smpsc iff pair(R) ∈ indpsc

(b) (slice derrec smpsc empty) if Γ 	 M ↔ N then π1(Γ ) 	 M
(c) (derrec smpsc eq) Σ 	 M if and only if pair(Σ) 	 M ↔ M
(d) (smpsc ex indpsc der) if π1(Γ ) 	 M and Γ is consistent, then there exists

N such that Γ 	 M ↔ N

3.1 Decidability of � and Computability of Theory Reduction

The first step towards deciding theory consistency is to define a notion of theory
reduction. Its purpose is to extract a “kernel” of the theory with no redundancy,
that is, no pairs in the kernel are derivable from the others. We need to establish
the decidability of 	, and then termination of the theory reduction. In [14],
Tiu observes that Γ 	 M ↔ N is decidable, because the right rules (working
upwards) make the right-hand side messages smaller, and the left rules saturate
the antecedent theory with more pairs of smaller messages. Hence for a given
end sequent, there are only finitely many possible sequents which can appear in
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any proof of the sequent. Some results relevant to this argument for decidability
are presented in Appendix A.4. Here we present an alternative proof for the
decidability of 	 and termination of theory reduction.

Tiu [14, Definition 4] defines a reduction relation of observer theories:

Γ, (〈Ma, Mb〉, 〈Na, Nb〉) −→ Γ, (Ma, Na), (Mb, Nb)
Γ, ({Mp}Mk

, {Np}Nk
) −→ Γ, (Mp, Np), (Mk, Nk)

if Γ, ({Mp}Mk
, {Np}Nk

) 	 Mk ↔ Nk

We assume that Γ does not contain (〈Ma, Mb〉,〈Na, Nb〉) and ({Mp}Mk
,{Np}Nk

)
respectively (otherwise reduction would not terminate). This reduction relation
is terminating and confluent, and so every theory Γ reduces to a unique normal
form Γ⇓. It also preserves the entailment 	.

Lemma 2. (a) [15, Lemma 15] (red nc) If Γ −→ Γ ′ then Γ 	 M ↔ N if and
only if Γ ′ 	 M ↔ N

(b) (nf nc) Assuming that Γ⇓ exists, Γ 	 M ↔ N if and only if Γ⇓ 	 M ↔ N

It is easy to show that −→ is well-founded, since the sum of the sizes of [the
first member of each of] the message pairs reduces each time. Confluence is
reasonably easy to see since the side condition for the second rule is of the
form Γ ′ 	 Mk ↔ Nk where Γ ′ is exactly the theory being reduced, and, from
Lemma 2, this condition (for a particular Mk, Nk) will continue to hold, or not,
when other reductions have changed Γ ′. Actually, proving confluence in Isabelle
was not so easy, and we describe the difficulty and our proof in Appendix A.6.
Then it is a standard result, and easy in Isabelle, that confluence and termination
give normal forms.

Theorem 3 (nf oth red). Any theory Γ has a −→-normal form Γ⇓ .

A different reduction relation. As a result of Lemma 2, to decide whether
Γ 	 M ↔ N one might calculate Γ ⇓ and determine whether Γ ⇓ 	 M ↔ N ,
which is easier (see Lemma 5). However to calculate Γ ⇓ requires determining
whether Γ 	 Mk ↔ Nk, so the decidability of this procedure is not obvious.

We defined an alternative version, −→′, of the reduction relation, by changing
the condition in the second rule, so our new relation is:

Γ, (〈Ma, Mb〉, 〈Na, Nb〉) −→′ Γ, (Ma, Na), (Mb, Nb)
Γ, ({Mp}Mk

, {Np}Nk
) −→′ Γ, (Mp, Np), (Mk, Nk) if Γ 	 Mk ↔ Nk

This definition does not give the same relation, but we are able to show that
the two relations have the same normal forms. Using this reduction relation,
the procedure to decide whether Γ 	 M ↔ N is: calculate Γ⇓ and determine
whether Γ⇓ 	 M ↔ N . Calculating Γ⇓ requires deciding questions of the form
Γ ′ 	 Mk ↔ Nk, where Γ ′ is smaller than Γ (because a pair ({Mp}Mk

,{Np}Nk
)

is omitted). Thus this procedure terminates.
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Note that Lemma 2 also holds for −→′ since −→′ ⊆ −→.
To show the two relations have the same normal forms, we first show (in

Theorem 4(b)) that if Γ is −→-reducible, then it is −→′-reducible, even though
the same reduction may not be available.

Theorem 4. (a) (red alt lem) If Γ 	 Mk ↔ Nk then either
Γ \ {({Mp}Mk

, {Np}Nk
)} 	 Mk ↔ Nk or there exists Γ ′ such that Γ −→′ Γ ′

(b) (oth red alt lem) If Γ −→ Δ then there exists Δ′ such that Γ −→′ Δ′

(c) (rsmin or alt) If Γ is −→′-minimal (i.e., cannot be reduced further) then
Γ is −→-minimal

(d) (nf acc alt) Γ −→′ Γ⇓ (where Γ⇓ is the −→-normal form of Γ )
(e) (nf alt, nf same) Γ⇓ is also the −→′-normal form of Γ

Proof. We show a proof of (a) here. We prove a stronger result namely: If Γ 	
M ↔ N and size M ≤ size Qk then either Γ ′ = Γ \{({Qp}Qk

, {Rp}Rk
)} 	 M ↔

N or there exists Δ such that Γ −→′ Δ.
We prove it by induction on the derivation of Γ 	 M ↔ N . If the derivation

is by the (var) rule, ie, (M, N) = (x, x), then clearly Γ ′ 	 M ↔ N by the (var)
rule. If the derivation is by the (id) rule, ie, (M, N) ∈ Γ , then the size condition
shows that (M, N) ∈ Γ ′, and so Γ ′ 	 M ↔ N by the (id) rule.

If the derivation is by either of the right rules (pr) or (er), then we have
Γ 	 M ′ ↔ N ′ and Γ 	 M ′′ ↔ N ′′, according to the rule used, with M ′ and M ′′

smaller than M . Then, unless Γ −→′ Δ for some Δ, we have by induction Γ ′ 	
M ′ ↔ N ′ and Γ ′ 	 M ′′ ↔ N ′′, whence, by the same right rule, Γ ′ 	 M ↔ N .

If the derivation is by the left rule (pl), then Γ −→′ Δ for some Δ.
If the derivation is by the left rule (el), then we apply the inductive hypothesis

to the first premise of the rule. Let the “principal” message pair for the rule be
({Mp}Mk

, {Np}Nk
), so the first premise is Γ 	 Mk ↔ Nk. Note that we apply

the inductive hypothesis to a possibly different pair of encrypts in Γ , namely
({Mp}Mk

, {Np}Nk
) instead of ({Qp}Qk

, {Rp}Rk
).

By induction, either Γ −→′ Δ for some Δ or (since size Mk ≤ size Mk), we
have Γ \{({Mp}Mk

, {Np}Nk
)} 	 Mk ↔ Nk. Then we have Γ −→′ Δ, as required,

where Δ = Γ \ {({Mp}Mk
, {Np}Nk

)}, (Mp, Np), (Mk, Nk). ��
Since the process of reducing a theory essentially replaces pairs of compound
messages with more pairs of simpler messages, this suggests that to show that
Γ 	 M ↔ N for a reduced Γ , one need only use the rules which build up pairs
of compound messages on the right. That is, one would use the right rules (pr)
and (er), but not the left rules (pl) and (el). Let us define Γ 	r M ↔ N to
mean that Γ 	 M ↔ N can be derived using the rules (var), (id), (pr) and (er)
of Figure 2. We call the set of these rules indpsc virt.

We define a function is der virt which shows how to test Γ 	r M ↔ N , and,
in Lemma 5(b), prove that it does this. It terminates because at each recursive
call, the size of M gets smaller. When we define a function in this way, Isabelle
requires termination to be proved (usually it can do this automatically). Then
inspection of the function definition shows that, assuming the theory oth is finite,
the function is finitely computable. We discuss this idea further later. We also
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define a simpler function is der virt red, as an alternative to is der virt,
which gives the same result when Γ is reduced, see Appendix A.13.

recdef "is_der_virt" "measure (%(oth, M, N). size M)"

"is_der_virt (oth, Name i, Name j) = ((Name i, Name j) : oth | i = j)"

"is_der_virt (oth, Mpair Ma Mb, Mpair Na Nb) =

((Mpair Ma Mb, Mpair Na Nb) : oth |

is_der_virt (oth, Ma, Na) & is_der_virt (oth, Mb, Nb))"

"is_der_virt (oth, Enc Mp Mk, Enc Np Nk) =

((Enc Mp Mk, Enc Np Nk) : oth |

is_der_virt (oth, Mp, Np) & is_der_virt (oth, Mk, Nk))"

"is_der_virt (oth, M, N) = ((M, N) : oth)"

Lemma 5. (a) (nf no left) If Γ is reduced and Γ 	 M ↔N then Γ 	r M ↔N

(b) (virt dec) Γ 	r M ↔ N if and only if is der virt (Γ, (M, N))

We can now define a function reduce which computes a −→′-normal form.

recdef (permissive) "reduce" "measure (setsum (size o fst))"

"reduce S = (if infinite S then S else

let P = (%x. x : Mpairs <*> Mpairs & x : S) ;

Q = (%x. (if x : Encs <*> Encs & x : S then

is_der_virt (reduce (S - {x}), keys x) else False))

in if Ex P then reduce (red_pair (Eps P) (S - {Eps P}))

else if Ex Q then reduce (red_enc (Eps Q) (S - {Eps Q}))

else S)"

To explain this: P (M, N) means (M, N) ∈ S and M, N are both pairs;
Q (M, N) means (M, N) ∈ S and M, N are both encrypts, say {Mp}Mk

, {Np}Nk
,

where S \ {(M, N)} 	r (Mk, Nk); red pair and red enc do a single step reduc-
tion based on the message pairs or encrypts given as their argument, Ex P means
∃x. P x, and Eps P means some x satisfying P , if such exists. Thus the func-
tion selects arbitrarily a pair of message pairs or encrypts suitable for a single
reduction step, performs that step, and then reduces the result.

The expression measure (setsum (size o fst)) is the termination mea-
sure, the sum of the sizes of the first member of each message pair in a theory.
The function reduce is recursive, and necessarily terminates since at each iter-
ation this measure function, applied to the argument, is smaller. However this
function definition is sufficiently complicated that Isabelle cannot automatically
prove that it terminates — thus the notation (permissive) in the definition.

Isabelle produces a complex definition dependent on conditions that if we
change a theory by applying red pair or red enc, or by deleting a pair, then
we get a theory which is smaller according to the measure function. Since in the
HOL logic of Isabelle all functions are total, we have a function reduce in any
event; we need to prove the conditions to prove that reduce conforms to the
definition given above. We then get Theorem 6(a) and (b), which show how to
test Γ 	 M ↔ N as a manifestly finitely computable function. We also prove a
useful characterisation of Γ⇓.
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Theorem 6. (a) (reduce nf, reduce nf alt) reduce Γ = Γ⇓
(b) (virt reduce, idvr reduce) Γ 	 M ↔ N if and only if is der virt

(Γ⇓, (M, N)), equivalently, if and only if is der virt red (Γ⇓, (M, N))
(c) (reduce alt) For (M, N) �∈ N=, (M, N) ∈ Γ⇓ \N= iff

(i) Γ 	 M ↔ N ,
(ii) M and N are not both pairs, and
(iii) if M = {Mp}Mk

, N = {Np}Nk
, then Γ �	 Mk ↔ Nk

As Urban et al point out in [17] formalising decidability — or computability
— is difficult. It would require formalising the computation process, as distinct
from simply defining the quantity to be computed. However, as is done in [17,
§3.4], it is possible to define a quantity in a certain way which makes it reason-
able to assert that it is computable. This is what we have aimed to do in defining
the function reduce. It specifies the computation to be performed (with a caveat
mentioned later). Isabelle requires us to show that this computation is termi-
nating, and we have shown that it produces the −→′-normal form. To ensure
termination, we needed to base the definition of reduce on −→′, not on −→,
but by Theorem 4(e), −→′ and −→ have the same normal forms.

Certain terminating functions are not obviously computable, for example
f x = (∃y. P y) (even where P is computable). So our definition of reduce
requires inspection to ensure that it contains nothing which makes it not com-
putable. It does contain existential quantifiers, but they are in essence quan-
tification over a finite set. The only problem is the subterms Eps P and Eps Q,
that is εx. P x and εx. Q x. These mean “some x satisfying P” (similarly Q).
In Isabelle’s logic, this means some x, but we have no knowledge of which one
(and so we cannot perform precisely this computation). But our proofs went
through without any knowledge of which x is denoted by εx. P x. Therefore it
would be safe to implement a computation which makes any choice of εx. P x,
and we can safely assert that our proofs would still hold for that computation.1

That is, in general we assert that if a function involving εx. P x can be proven
to have some property, then a function which replaces εx. P x by some other
choice of x (satisfying P if possible) would also have that property. Based on
this assertion we say that our definition of reduce shows that the −→-normal
form is computable, and so that Γ 	 M ↔ N is decidable.

We found that although the definition of reduce gives the function in a com-
putable form, many proofs are much easier using the characterisation as the
normal form. For example Lemma 2(b) is much easier using Lemma 2(a) than
using the definition of reduce. We found this with some other results, such as:
if Γ is finite, then so is Γ⇓, and if Γ consists of identical pairs then so does Γ⇓.

Since also Γ and Γ ⇓ entail the same message pairs, it is reasonable to ask
which theories, other than those with the same normal form as Γ , entail the
same message pairs as Γ . Now it is clear, due to the (var) rule, that deleting
(x, x) from a theory does not change the set of entailed message pairs or the

1 In general a repeated choice must be made consistently; the HOL logic does imply
εx. P x = εx. P x. This point clearly won’t arise for the reduce function.
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reductions available. However we find that the condition is that theories entail
the same pairs iff their normal forms are equal, modulo N=.

We could further change −→′ by deleting the (Mk, Nk) from the second rule.
Lemma 2(a) holds for this new relation. For further discussion see Appendix A.7.

Theorem 7. (a) (rsmin names) Γ is reduced if and only if Γ \ N= is reduced
(b) [15, Lemma 8] (name equivd) Γ 	 M ↔ N if and only if Γ \ N= 	 M ↔ N
(c) (nf equiv der) Theories Γ1 and Γ2 entail the same message pairs if and

only if Γ1⇓ \N= = Γ2⇓ \N=

3.2 Theory Consistency

Definition 8. [15, Definition 11] A theory Γ is consistent if for every M and
N , if Γ 	 M ↔ N then the following hold:

(a) M and N are of the same type of expressions, i.e., M is a pair (an encrypted
message, a (rigid) name) if and only if N is.

(b) If M = {Mp}Mk
and N = {Np}Nk

then π1(Γ ) 	 Mk implies Γ 	 Mk ↔ Nk

and π2(Γ ) 	 Nk implies Γ 	 Mk ↔ Nk.
(c) For any R, Γ 	 M ↔ R implies R = N and Γ 	 R ↔ N implies R = M.

This definition of consistency involves infinite quantification. We want to elim-
inate this quantification by finding a finite characterisation on reduced theories.
But first, let us define another equivalent notion of consistency, which is simpler
for verification, as it does not use the deduction system for message synthesis.

Definition 9. A theory Γ satisfies the predicate thy cons if for every M and
N , if Γ 	 M ↔ N then the following hold:

(a) M and N are of the same type of expressions, i.e., as in Definition 8(a)
(b) for every M, N ′, Mp, Np if Γ 	 M ′ ↔ N ′ or Γ 	 {Mp}M ′ ↔ {Np}N ′ , then

M ′ = M iff N ′ = N

Lemma 10. (a) (thy cons equiv) Γ is consistent iff it satisfies Definition 9
(b) (thy cons equivd) Γ is consistent if and only if Γ \ N= is consistent
(c) [15, Lemma 19] (nf cons) Γ is consistent if and only if Γ⇓ is consistent
(d) (cons der same) If Γ1 and Γ2 entail the same message pairs then Γ1 is

consistent if and only if Γ2 is consistent

Tiu [15, Proposition 20] gives a characterisation of consistency (reproduced be-
low in Proposition 11) which is finitely checkable. In Definition 12 we define
a predicate thy cons red which is somewhat similar. In Theorem 13 we show
that, for a reduced theory, that our thy cons red is equivalent to consistency
and to the conditions in Proposition 11. Decidability of consistency then follows
from decidability of 	, and termination of normal form computation.

Proposition 11. [15, Proposition 20] A theory Γ is consistent if and only if
Γ⇓ satisfies the following conditions: if (M, N) ∈ Γ⇓ then
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(a) M and N are of the same type of expressions, in particular, if M = x, for
some name x, then N = x and vice versa,

(b) if M = {Mp}Mk
and N = {Np}Nk

then π1(Γ⇓) �	 Mk and π2(Γ⇓) �	 Nk.
(c) for any (U, V ) ∈ Γ⇓, U = M if and only if V = N .

Definition 12. A theory Γ satisfies the predicate thy cons red if

(a) for all (M, N) ∈ Γ , M and N satisfy Proposition 11(a)
(b) for all (M, N) and (M ′, N ′) ∈ Γ , M ′ = M iff N ′ = N
(c) for all ({Mp}Mk

, {Np}Nk
) ∈ Γ , for all M, N such that Γ 	 M ↔ N ,

M �= Mk and N �= Nk

Theorem 13. (a) (tc red iff) Γ is consistent iff Γ⇓ satisfies thy cons red
(b) (thy cons red equiv) Γ⇓ satisifes Proposition 11(a) to (c) iff it satisfies

thy cons red, ie, Definition 12(a) to (c)

4 Respectful Substitutions and Bi-trace Consistency

We now consider a symbolic representation of observer theories from [14], given
below. We denote with fn(M) the set of names in M . This notation is extended
straightforwardly to pairs of messages, lists of (pairs of) messages, etc.

Definition 14. A bi-trace is a list of message pairs marked with i (indicating in-
put) or o (output), i.e., elements in a bi-trace have the form (M, N)i or (M, N)o.
Bi-traces are ranged over by h. We denote with π1(h) the list obtained from h
by taking the first component of the pairs in h. The list π2(h) is defined anal-
ogously. Bi-traces are subject to the following restriction: if h = h1.(M, N)o.h2

then fn(M, N) ⊆ fn(h1). We write {h} to denote the set of message pairs ob-
tained from h by forgetting the marking and the order.

Names in a bi-trace represent symbolic values which are input by a process at
some point. This explains the requirement that the free names of an output pair
in a bi-trace must appear before the output pair. We express this restriction on
name occurrences by defining a predicate validbt on lists of marked message
pairs, and we do not mention it in the statement of each result, although it does
appear in their statements in Isabelle. In our Isabelle representation the list is
reversed, so that the latest message pair is the first in the list. The theory {h}
obtained from a bi-trace h is represented by oth of h. Likewise for a list s of
marked messages (which can be seen as a symbolic trace [5]), we can define the
set {s} of messages by forgetting the annotations and ordering.

A substitution pair 	θ = (θ1, θ2) replaces free names x ∈ N by messages, using
substitutions θ1(θ2) for the first (second) component of each pair. For a bi-trace
h, 	θ respects h, or is h-respectful [15, Definition 34], if for every free name x in
an input pair (M, N)i, {h′}	θ 	 xθ1 ↔ xθ2, where h′ is the part of h preceding
(M, N)i. This is expressed in Isabelle by h ∈ bt resp 	θ.

Definition 15. [15, Definition 35] The set of consistent bi-traces are defined
inductively (on the length of bi-traces) as follows:
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(a) The empty bi-trace is consistent.
(b) If h is a consistent bi-trace then h.(M, N)i is also a consistent bi-trace,

provided that h 	 M ↔ N .
(c) If h is a consistent bi-trace, then h′ = h.(M, N)o is a consistent bi-trace,

provided that for every h-respectful substitution pair 	θ,
if h	θ is a consistent bi-trace then {h′	θ} is a consistent theory.

Given Lemma 16(c) below, it may appear that leaving out the underlined words
of Definition 15 would make no difference. This minor fact can indeed be proved
formally: details are given in Appendix A.16.

The following are significant lemmas from [15] which we proved in Isabelle.
As an illustration of the value of automated theorem proving, we found that the
original proof of (b) in a draft of [15] contained an error (which was easily fixed).

Lemma 16. (a) [15, Lemma 24] (subst indist) Let Γ 	 M ↔ N and let
	θ = (θ1, θ2) be a substitution pair such that for every free name x in Γ , M

or N , Γ	θ 	 θ1(x) ↔ θ2(x). Then Γ	θ 	 Mθ1 ↔ Nθ2.
(b) [15, Lemma 40] (bt resp comp) Let h be a consistent bi-trace, let 	θ =

(θ1, θ2) be an h-respectful substitution pair, and let 	γ = (γ1, γ2) be an h	θ-
respectful substitution pair. Then 	θ ◦ 	γ is also h-respectful.

(c) [15, Lemma 41] (cons subs bt) If h is a consistent bi-trace and 	θ = (θ1, θ2)
respects h, then h	θ is also a consistent bi-trace.

Respectfulness of a substitution relative to a theory. Testing consis-
tency of bi-traces involves testing whether a theory Γ is consistent after apply-
ing any respectful substitution pair 	θ to it. We will present some results that
(under certain conditions) if we reduce {h} first, and then apply an h-respectful
substitution, then the result is a reduced theory, to which the simpler test for
consistency, thy cons red, applies.

The complication here is that reduction applies to a theory whereas the
definition of bi-trace consistency crucially involves the ordering of the pairs of
messages. We overcome this by devising the notion, thy strl resp, of a sub-
stitution being respectful with respect to an (unordered) theory and an ordered
list of sets of variable names. Importantly, this property holds for {h} where 	θ is
h-respectful, and it is preserved by reducing a theory. We use this to prove some
later results involving {h}⇓ and h-respectful substitutions, such as Theorem 17.
Details are in Appendix A.19.

Simplifying testing consistency after substitution. Recall that a theory
Γ is consistent if and only if Γ⇓ is consistent (Lemma 10(c)), and if and only if
Γ \N= is consistent (Lemma 10(b)). Thus, to determine whether Γ is consistent,
one may calculate Γ⇓ or Γ⇓ \N= (which is reduced, by Lemma 7(a)), and use
the function thy cons red (by virtue of Theorem 13(a)). Therefore, the naive
approach to testing bi-trace consistency is to apply θ to Γ and then reduce
the result, and delete pairs (x, x) ∈ N=. We can derive results which permit a
simpler approach.
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Theorem 17. Let h be a bi-trace, and let Γ = {h}. Let 	θ be an h-respectful
substitution pair, and denote its action on Γ by 	θ also.

(a) (nf subst nf Ne) Γ	θ⇓ \N= = (Γ⇓ \N=)	θ⇓ \N=

(b) (subst nf Ne tc) Γ	θ is consistent if and only if (Γ⇓ \N=)	θ is consistent

This, given a bi-trace h and a respectful substitution pair 	θ, if one wants to
test whether Γ	θ = {h	θ} is consistent, it makes no difference to the consistency
of the resulting theory if one reduces the theory and deletes pairs (x, x) before
substituting. This means that we need only consider substitution in a theory
which is reduced and has pairs (x, x) removed.

If we disallow encryption where keys are themselves pairs or encrypts, then
further simplification is possible. Thus we will require that keys are atomic (free
names or rigid names, Name n or Rigid n), both initially and after substitution.

Theorem 18 (subs not red ka). Let Γ be reduced, consistent and have atomic
keys. Then (Γ \ N=)	θ is reduced.

Thus, if keys are atomic, the effect of Theorem 18 is to simplify the consistency
test thus: to test the consistency of the substituted theory Γ	θ, one reduces Γ to
Γ⇓ and deletes pairs (x, x) to get Γ ′ = Γ⇓ \N=. One then considers substitution
pairs 	θ of Γ ′, knowing that any Γ ′	θ is reduced and so the simpler criterion for
theory consistency, thy cons red, applies to it. Thus we get:

Theorem 19. Let h be a bi-trace, and let Γ = {h}, where Γ is consistent with
atomic keys. Let 	θ be an h-respectful substitution pair, and write Γ	θ = {h	θ}.
(a) (nfs comm) Γ	θ⇓ \N= = (Γ⇓ \N=)	θ \ N=

(b) (nfs comm tc) Γ	θ is consistent iff thy cons red holds of (Γ⇓ \N=)	θ \N=

Unique Completion of a Respectful Substitution. A bi-trace can be pro-
jected into the fist or second component of each pair, giving lists of marked
messages. We can equally project the definition of a respectful substitution pair,
so that for a list s of marked messages, substitution θi respects s, s ∈ sm resp
θi, iff for every free name x in an input message M i, {s′}θi 	 xθi, where 	
is here the message synthesis relation, and {s′} is the set of marked messages
prior to M i. Given h, whose projections are s1, s2, if 	θ respects h then clearly
θi respects si (proved as bt sm resp, see Appendix A.20). Conversely, given θi

which respects si (i = 1 or 2), can we complete θi to an h-respectful pair 	θ?

Theorem 20 (subst exists, subst unique). Given a consistent bi-trace h
whose projections to a single message trace are s1 and s2, and a substitution
θ1 which respects s1, there exists θ2 such that 	θ = (θ1, θ2) respects h, and θ2 is
“unique” in the sense that any two such θ2 act the same on names in π2(h).

We defined a function which, given θ1 in this situation, returns θ2. First we
defined a function match rc1 which, given a theory Γ and a message M , “at-
tempts” to determine a message N such that Γ 	 M ↔ N . By Theorem 20 such
a message is unique if Γ is consistent.
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The definition of match rc1 (Appendix A.24) follows that of is der virt red
(Appendix A.13), so Theorem 21(a) holds whether or not Γ is actually reduced.

It will be seen that it involves testing for membership of a finite set, and
corresponding uses of the ε operator, (as in the case of reduce, as discussed
earlier). Therefore we assert that match rc1 is finitely computable.

The return type of match rc1 is message option, which is Some res if the
result res is successfully found, or None to indicate failure.

Theorem 21. (a) (match rc1 iff idvr) If Γ satisfies thy cons red, then
is der virt red (Γ, M, N) iff match rc1 Γ M = Some N

(b) (match rc1 indist) If Γ is consistent, then
Γ 	 M ↔ N iff match rc1 Γ⇓ M = Some N

Then we defined a function second sub which uses match rc1 to find the appro-
priate value of xθ2 for each new x which appears in the bi-trace, and we proved
that second sub does in fact compute the θ2 of Theorem 20. See Appendix A.26
for the definition of second sub and this result. The function second sub tests
membership of a finite set, and uses reduce and match rc1, so we assert that
second sub is also finitely computable.

5 Conclusions and Further Work

We have modelled observer theories and bi-traces in the Isabelle theorem prover,
and have confirmed, by proofs in Isabelle, the results of a considerable part of
[14]. This work constitutes a significant step formalising open bisimulation for
the spi-calculus in Isabelle/HOL, and ultimately towards a logical framework for
proving process equivalence.

We discussed the issue of showing finite computability in Isabelle/HOL, using
a mixed formal/informal argument, and building upon the discussion in Urban
et al [17]. We defined a function reduce in Isabelle, and showed that it computes
Γ⇓. Isabelle required us to show that the function terminates. We asserted, with
relevant discussion, that inspection shows that the definition does not introduce
any infinite aspect into the computation and so asserted that therefore the func-
tion is finitely computable. Similarly, we provided a finitely computable function
is der virt and proved that it tests Γ 	 M ↔ N for a reduced theory Γ .

We then considered bi-traces and bi-trace consistency. The problem here is
that, to test bi-trace consistency, it is necessary to test whether Γθ is consistent
for all θ satisfying certain conditions. We proved a number of lemmas which
simplify this task, and appear to lead to a finitely computable algorithm for this.
In particular, our result on the unique completion of respectful substitutions that
relates symbolic trace and bi-trace opens up the possibility to use symbolic trace
refinement algorithm [5] to compute a notion of bi-trace refinement, which will
be useful for bi-trace consistency checking.

Another approach to representating observer theories is to use equational
theories, instead of deduction rules, e.g., as in the applied-pi calculus [1]. In this
setting, the notion of consistency of a theory is replaced by the notion of static
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equivalence between knowledge of observers [1]. Baudet has shown that static
equivalence between two symbolic theories is decidable [4], for a class of theories
called subterm-convergent theories (which subsumes the Dolev-Yao model of
intruder). It will be interesting to work out the precise correspondence between
static equivalence and our notion of bi-trace consistency, as such correspondence
may transfer proof techniques from one approach to the other.
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