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Overview and Motivation

Term Rewriting: Structured first-order terms — rewrite may be at any subterm

Termination Proof: Earlier paper (CSL’04) gave conditions and termination
proof (based on our result on termination of a cut-elimination procedure)

Abstract reduction systems: Goubault-Larrecq’s (first) termination theorem
resembles ours, but in a more general setting (but doesn’t subsume ours)

We generalised our result to abstract reduction systems:
We found that this also generalised Goubault-Larrecq’s result.

An example using the generality: Our new result (following
Goubault-Larrecq) uses a relation C in place of subterm relation.
We prove termination of typed combinators, using a different relation as C
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Term Rewriting

Have a language for defining first-order “terms”, such as f(a, g(b, c))

Have a collection of rewrite rules: {l1 → r1, · · · , ln → rn} in which can
substitute for variables. NB: as pairs, (r1, l1), etc

We consider the rewrite relation after substitution – call it ρ

closure under contexts of relation ρ (eg, if l
ρ

−→ r then C[l] −→ C[r])

Question: Does this rewriting process terminate for all terms?

An ordering <cut must be defined, depending on the problem.
Typically, it looks at or near the head of the term (root of the tree).
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Defining Reductions and Strongly Normalising Terms

Definition 1 Assuming a relation ρ, term t0 reduces to term t1 if either

(a) (t1, t0) ∈ ρ, or

(b) t0 and t1 are identical except that exactly one proper subterm of t0 reduces
to the corresponding proper subterm of t1.

(this is the closure of ρ under context)

Definition 2 The set SN is the smallest set of terms such that:

(a) if t0 cannot be reduced then t0 ∈ SN

(b) if every term t1 to which t0 reduces is in SN then t0 ∈ SN

A term is strongly normalising iff it is a member of SN .

Usual definition is: a term t is in SN iff there is no infinite sequence of
reductions starting with t. These two definitions are equal in classical logic.
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Various Binary Orderings – <sn1, etc

(a) t1 <sn1 t0 if t0 and t1 are the same except that one of the immediate
subterms of t0 is strongly normalising and reduces to the corresponding
immediate subterm of t1.

(b) t1 <sn2 t0 – as above, except put proper for immediate

(c) t1 <dt t0 iff t1 <cut t0 or t1 <sn1 t0.

Despite notation, these relations need not be transitive.

Intuitively, t1 <dt t0 means that t1 is closer to a normal form (being cut-free) (in
some sense) than is t0.

Necessarily, <sn1⊆<sn2, both are well-founded.

We need to be able to prove that <dt = <cut ∪ <sn1 is well-founded.

Use lemma on the union of well-founded orderings.
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Union of Well-Founded Relations

Lemma 1 Let τ and σ be well-founded relations. Then each of the following
implies that τ ∪ σ is well-founded:

(a) τ ◦ σ ⊆ σ∗ ◦ τ ,

(b) τ ◦ σ ⊆ σ ◦ τ∗,

(c) τ ◦ σ ⊆ τ ∪ σ,

(d) τ ◦ σ ⊆ (σ ◦ (τ ∪ σ)∗) ∪ τ .

(d) is from Doornbos & von Karger; other conditions imply (d)
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Conditions on the rewrite relation ρ

Condition 1 For all (r, l) ∈ ρ, if all proper subterms of l are in SN then,
for all subterms r′ of r, either

(a) r′ ∈ SN or (b) r′ <
+
dt l

Condition 2 is simpler and implies Condition 1

Condition 2 For all (r, l) ∈ ρ, for all subterms r′ of r, either

(a) r′ is a proper subterm of l (or is a reduction of a proper subterm of l)

(b) r′ <cut l

(c) r′ is obtained from l by reduction of l at a proper subterm.

For assuming that all proper subterms of l are in SN then Condition 2(a)
implies that r′ ∈ SN , and 2(c) implies that r′ <sn1 l, so r′ <

+
dt l.

Note that sometimes we enlarge the relation ρ to satisfy Conditions 1 and 2.
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Inductive Strong Normalisation

Recall t ∈ SN iff t is strongly normalising.

We define ISN :
t ∈ ISN if t is in SN provided that its immediate subterms are.

Definition 3 t ∈ ISN iff: if all the immediate subterms of t are strongly
normalising then t is strongly normalising.

Lemma 2 A term t is in SN iff every subterm of t is in ISN .

Proof: The immediate subterm relation is well-founded.
The result is proved using well-founded induction.
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Strong-Normalisation Proof – outline

Lemma 3 Assume that the rewrite relation satisfies Condition 1 or 2. For a
given term t0, if all terms t′ <

+
dt t0 are in ISN , then so is t0.

Proof: Given t0, assume that ρ satisfies Condition 1 and that

(a): all terms t′ <
+
dt t0 are in ISN .

We need to show t0 ∈ ISN , so we assume that

(b): all immediate subterms of t0 are in SN ,

and we show that t0 ∈ SN . To show this, let t0 reduce to t1, show t1 ∈ SN . . . .

Theorem 1 If ρ satisfies Condition 1 and <dt = <cut ∪ <sn1 is well-founded,
then every term is strongly normalising.

Proof: By well-founded induction, it follows from Lemma 3 that every term is in
ISN ; the result follows from Lemma 2.
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Generalisation to Abstract Terms

The Termination Conditions

Condition 3 (a) If ∀s′ C s. s′ ∈ SN , then
s ∈ bars ρ (gbars C {u | u � s} SN)

(b) For all (t, s) ∈ ρ, if ∀s′ C s. s′ ∈ SN , then t ∈ gbars C {u | u � s} SN

(c) . . .

(d) C is well-founded and, for all (t, s) ∈ ρ, if ∀s′ C s. s′ ∈ SN , then,
for all t′ C

∗ t, either t′ ∈ SN or t′ � s

(e) . . .

Think of s′ C s as like s′ is an immediate subterm of s.

Note: Each of (b) to (e) implies (a)
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Definitions: gbars

Definition 4 (gbars) (Generalises bars) For sets Q and S, and relation σ,
gbars σ Q S is the (unique) smallest set such that:

(a) S ⊆ gbars σ Q S

(b) if t ∈ Q and ∀u. (u, t) ∈ σ ⇒ u ∈ gbars σ Q S, then t ∈ gbars σ Q S.

Lemma 4 (gbars-alternative) t ∈ gbars σ Q S iff:
for every downward σ-chain t = t0 >σ t1 >σ t2 >σ . . ., either

➤ the chain is finite and all ti ∈ Q, or

➤ for some member tn of the chain, both tn ∈ S and
{t0, t1, t2, . . . , tn−1} ⊆ Q.
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Definitions: bars, wfp, gindy

Definition 5 (wfp, bars) Let U be the universal set of objects. Then

(a) s ∈ bars σ S iff s ∈ gbars σ U S (“S bars s in σ”)

(b) s ∈ wfp σ iff s ∈ bars σ ∅ (“s is accessible in σ ”).

Definition 6 (gindy) (Generalises ISN ) For a relation σ and set S, an object
t ∈ gindy σ S iff: if ∀u. (u, t) ∈ σ ⇒ u ∈ S, then t ∈ S.

Lemma 5 S = gbars σ (gindy σ S) S

Lemma 6 (a) if all objects are in gindy σ S, then bars σ S = S, whence, if
σ is well-founded, then every object is in S, and

(b) bars σ (wfp σ) = wfp σ
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The Termination Theorem

Lemma 7 If object s satisfies Condition 3(a), then
s ∈ gindy � (gindy C SN).

Proof. Given s, assume that ρ, C and � satisfy Condition 3(a) and that

(a) ∀u � s. u ∈ gindy C SN .

We then need to show s ∈ gindy C SN , so we assume that

(b) ∀s′ C s. s′ ∈ SN

and we show that s ∈ SN .

By Lemma 6(b), it suffices to show s ∈ bars ρ SN .
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The Termination Theorem — proof (ctd)

The antecedent of Condition 3(a) holds by assumption (b), and so
s ∈ bars ρ (gbars C {u | u � s} SN).

As bars is monotonic in its second argument, to show s ∈ bars ρ SN ,
it is enough to show gbars C {u | u � s} SN ⊆ SN .

As {u | u � s} ⊆ gindy C SN by assumption (a), and as gbars is monotonic
in its second argument, we have, by Lemma 5,

gbars C {u | u � s} SN ⊆ gbars C (gindy C SN) SN = SN

So we have s ∈ SN . Thus, discharging assumptions (b) and then (a), we have
s ∈ gindy C SN , and then s ∈ gindy � (gindy C SN).
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The Termination Theorem — wrapping up the proof

Theorem 2 Relation ρ is well-founded if Condition 3(a) holds for all s and

(a) every object is in bars � (gindy C SN), and

(b) every object is in bars C SN .

Note: enough that C and � are well-founded.

Proof. If ρ and � satisfy Condition 3(a), then every
s ∈ gindy � (gindy C SN) by Lemma 7.

Then, for any u, if u ∈ bars � (gindy C SN) then Lemma 6(a) gives
u ∈ gindy C SN . Thus every u ∈ gindy C SN .

Then, for any v, if v ∈ bars C SN then Lemma 6(a) gives v ∈ SN . Thus every
v ∈ SN : that is, ρ is well-founded.
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Goubault-Larrecq’s Theorem 1

Suppose that, whenever s >ρ t, either

(i) for some object u, s B u and u ≥ρ t, or

(ii) s � t and, for every u C t, s >ρ u.

Assume also that

(iii) C is well-founded (whence (b) of Theorem 2)

(iv) every object is in bars � (gindy C SN) (ie, (a) of Theorem 2)

Then ρ is well-founded.

Proved that this follows from Theorem 2: key step is to
use (i) and (ii), and well-founded induction on C (by (iii)), to get Condition 3(b).
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Typed Combinators

Sfgx = fx(gx) Wfx = fxx

Untyped, these do not terminate:

(SII)(SII) −→+ (SII)(SII)

(WI)(WI) −→+ (WI)(WI)

WWW −→ WWW
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Typed Combinators — first proof

Define reduction relations σ, τ , and let ρ = ctxt σ ∪ τ . Note that “SN ” is wrt ρ.

Sfgx >σ fx(gx) (1)
Sfg >τ fx(gx) if x ∈ SN (2)
Sf >τ fx(gx) if g, x ∈ SN (3)
S >τ fx(gx) if f, g, x ∈ SN (4)

where S : (α→β→γ)→(α→β)→α→γ, f : α→β→γ, g : α→β, x : α.

Now τ and ρ (but not σ) are defined, indirectly, in terms of themselves. But
recursive definitions are in terms of “smaller” types (checked in Isabelle!)

t <sn1 s if (t, s) ∈ ctxt σ by reducing an immediate subterm in wfp (ctxt σ)
t <ty s if t has smaller type than s.

Lemma 8 Let � = <ty ∪ <sn1, and let C be the immediate subterm relation.
Then Condition 3(b) holds.

Finally show C and � well-founded to complete the proof.
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Typed Combinators — second proof

Uses a different relation as C (not the immediate subterm relation!)

Ni C MN1 . . . Ni . . . Nn for 1 ≤ i ≤ n (5)
M >ρ MN if N ∈ SN (6)

Sfgxy1 . . . yn >σ fx(gx)y1 . . . yn and σ ⊆ ρ (7)
(x′i, xi) ∈ ctxt σ ⇒ fx1 . . . xi . . . xn >ρ fx1 . . . x′i . . . xn (8)

From (7) and (8), ctxt σ ⊆ ρ.

Again, definitions sound, as a reduction preserves or reduces type, and
reduction from s is defined involving SN terms of <-smaller type.

Note that, by rule (6), if M, N ∈ SN then MN ∈ SN .

For this proof we define fx1 . . . xi . . . xn >sn1 fx1 . . . x′i . . . xn where
(x′i, xi) ∈ ctxt σ and xi ∈ wfp (ctxt σ).

That is, as before, t <sn1 s if (t, s) ∈ ctxt σ by means of reduction in a
“C-subterm” which is itself in wfp (ctxt σ).
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Typed Combinators — second proof, ctd

Let � = <ty ∪ <sn1. We show Condition 3(b) holds.

Rule (6), M >ρ MN if N ∈ SN : M >ty MN . For K C MN , K = N ∈ SN ,
or K C M and so K ∈ SN .

Rule (7): as we can assume f, g, x, yi ∈ SN , so fx(gx)y1 . . . yn ∈ SN

Rule (8): lhs >sn1 rhs, and each C-subterm of rhs is a C-subterm of lhs,
or a reduction thereof, and so is in SN .

So Condition 3(b) holds, and vtl and � are well-founded,
so ρ is well-founded, by Theorem 2.
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Incremental Proofs of Termination

Terminating system of rewrite rules R0, head symbols in F0.

Additional rules, head symbols in F1.

If additional rules satisfy conditions similar to main theorem,
then whole system is terminating: subject to some restrictions.

Most significant restriction is that rules R0 be right linear.

Incremental Path Ordering

Like recursive path ordering, but built on top of rewrite system based on R0.

Same restriction on R0.

Proofs in Isabelle only!
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