Termination of Abstract Reduction Systems

Jeremy E. Dawson and Rajeev Goré

Logic & Computation Programme National ICT Australia Automated Reasoning Group Computer Sciences Laboratory Res. Sch. of Inf. Sci. and Eng. Australian National University

http://rsise.anu.edu.au/~jeremyhttp://rsise.anu.edu.au/~rpg

*

*National ICT Australia is funded by the Australian Government's Dept of Communications, Information Technology and the Arts and the Australian Research Council through *Backing Australia's Ability* and the ICT Research Centre of Excellence programs.

Overview and Motivation

Term Rewriting: Structured first-order terms — rewrite may be at any subterm

Termination Proof: Earlier paper (CSL'04) gave conditions and termination proof (based on our result on termination of a cut-elimination procedure)

Abstract reduction systems: Goubault-Larrecq's (first) termination theorem resembles ours, but in a more general setting (but doesn't subsume ours)

We generalised our result to abstract reduction systems: We found that this also generalised Goubault-Larrecq's result.

An example using the generality: Our new result (following Goubault-Larrecq) uses a relation ⊲ in place of subterm relation. We prove termination of typed combinators, using a *different* relation as ⊲

Term Rewriting

Have a language for defining first-order "terms", such as f(a, g(b, c))

Have a collection of rewrite rules: $\{l_1 \rightarrow r_1, \cdots, l_n \rightarrow r_n\}$ in which can substitute for variables. NB: as pairs, (r_1, l_1) , etc

We consider the rewrite relation *after* substitution – call it ρ

closure under *contexts* of relation ρ (eg, if $l \xrightarrow{\rho} r$ then $C[l] \longrightarrow C[r]$)

Question: Does this rewriting process terminate for all terms?

An ordering $<_{cut}$ must be defined, depending on the problem. Typically, it looks at or near the head of the term (root of the tree).

Defining Reductions and Strongly Normalising Terms

Definition 1 Assuming a relation ρ , term t_0 reduces to term t_1 if either

(a) $(t_1,t_0)\in
ho$, or

(b) t_0 and t_1 are identical except that exactly one proper subterm of t_0 reduces to the corresponding proper subterm of t_1 .

(this is the closure of ρ under context)

Definition 2 The set *SN* is the smallest set of terms such that:

(a) if t_0 cannot be reduced then $t_0 \in SN$

(b) if every term t_1 to which t_0 reduces is in SN then $t_0 \in SN$

A term is strongly normalising iff it is a member of *SN*.

Usual definition is: a term t is in SN iff there is no infinite sequence of reductions starting with t. These two definitions are equal in classical logic.

Various Binary Orderings – $<_{sn1}$, etc

- (a) $t_1 <_{sn1} t_0$ if t_0 and t_1 are the same except that one of the *immediate* subterms of t_0 is strongly normalising and reduces to the corresponding *immediate* subterm of t_1 .
- (b) $t_1 <_{sn2} t_0$ as above, except put *proper* for *immediate*
- (c) $t_1 <_{dt} t_0$ iff $t_1 <_{cut} t_0$ or $t_1 <_{sn1} t_0$.

Despite notation, these relations need not be transitive.

Intuitively, $t_1 <_{dt} t_0$ means that t_1 is closer to a normal form (being cut-free) (in some sense) than is t_0 .

Necessarily, $<_{sn1} \subseteq <_{sn2}$, both are well-founded.

We need to be able to prove that $<_{dt} = <_{cut} \cup <_{sn1}$ is well-founded.

Use lemma on the union of well-founded orderings.

Union of Well-Founded Relations

Lemma 1 Let τ and σ be well-founded relations. Then each of the following implies that $\tau \cup \sigma$ is well-founded:

(a) $\tau \circ \sigma \subseteq \sigma^* \circ \tau$,

(b) $\tau \circ \sigma \subseteq \sigma \circ \tau^*$,

(c) $\tau \circ \sigma \subseteq \tau \cup \sigma$,

(d) $\tau \circ \sigma \subseteq (\sigma \circ (\tau \cup \sigma)^*) \cup \tau$.

(d) is from Doornbos & von Karger; other conditions imply (d)

Conditions on the rewrite relation ρ

Condition 1 For all $(r, l) \in \rho$, if all proper subterms of l are in SN then, for all subterms r' of r, either

(a) $r' \in SN$ or (b) $r' <_{dt}^+ l$

Condition 2 is simpler and implies Condition 1

Condition 2 For all $(r, l) \in \rho$, for all subterms r' of r, either

(a) r' is a proper subterm of l (or is a reduction of a proper subterm of l)

(b) $r' <_{cut} l$

(c) r' is obtained from l by reduction of l at a proper subterm.

For assuming that all proper subterms of l are in SN then Condition 2(a) implies that $r' \in SN$, and 2(c) implies that $r' <_{sn1} l$, so $r' <_{dt}^+ l$.

Note that sometimes we *enlarge* the relation ρ to satisfy Conditions 1 and 2.

Inductive Strong Normalisation

Recall $t \in SN$ iff t is strongly normalising.

We define *ISN*: $t \in ISN$ if t is in *SN* provided that its immediate subterms are.

Definition 3 $t \in ISN$ iff: if all the immediate subterms of t are strongly normalising then t is strongly normalising.

Lemma 2 A term t is in SN iff every subterm of t is in ISN.

Proof: The immediate subterm relation is well-founded. The result is proved using well-founded induction.

Strong-Normalisation Proof – outline

Lemma 3 Assume that the rewrite relation satisfies Condition 1 or 2. For a given term t_0 , if all terms $t' <_{dt}^+ t_0$ are in *ISN*, then so is t_0 .

Proof: Given t_0 , assume that ρ satisfies Condition 1 and that

(a): all terms $t' <_{dt}^+ t_0$ are in *ISN*.

We need to show $t_0 \in ISN$, so we assume that

(b): all immediate subterms of t_0 are in SN,

and we show that $t_0 \in SN$. To show this, let t_0 reduce to t_1 , show $t_1 \in SN$

Theorem 1 If ρ satisfies Condition 1 and $<_{dt} = <_{cut} \cup <_{sn1}$ is well-founded, then every term is strongly normalising.

Proof: By well-founded induction, it follows from Lemma 3 that every term is in *ISN*; the result follows from Lemma 2.

Generalisation to Abstract Terms

The Termination Conditions

Condition 3 (a) If $\forall s' \triangleleft s. s' \in SN$, then $s \in bars \rho$ (gbars $\triangleleft \{u \mid u \ll s\} SN$)

(b) For all $(t,s) \in \rho$, if $\forall s' \triangleleft s$. $s' \in SN$, then $t \in g$ bars $\triangleleft \{u \mid u \ll s\}$ SN(c) ...

(d) \lhd is well-founded and, for all $(t, s) \in \rho$, if $\forall s' \lhd s$. $s' \in SN$, then, for all $t' \lhd^* t$, either $t' \in SN$ or $t' \ll s$

(e) ...

Think of $s' \triangleleft s$ as like s' is an immediate subterm of s.

Note: Each of (b) to (e) implies (a)

Definitions: gbars

Definition 4 (gbars) (Generalises bars) For sets Q and S, and relation σ , gbars $\sigma Q S$ is the (unique) smallest set such that:

(a) $S \subseteq \text{gbars } \sigma \ Q \ S$

(b) if $t \in Q$ and $\forall u. (u, t) \in \sigma \Rightarrow u \in gbars \sigma Q S$, then $t \in gbars \sigma Q S$.

Lemma 4 (gbars-alternative) $t \in gbars \sigma Q S$ iff: for every downward σ -chain $t = t_0 >_{\sigma} t_1 >_{\sigma} t_2 >_{\sigma} \dots$, either

- \blacktriangleright the chain is finite and all $t_i \in Q$, or
- ▶ for some member t_n of the chain, both $t_n \in S$ and $\{t_0, t_1, t_2, \dots, t_{n-1}\} \subseteq Q$.

Definitions: bars, *wfp*, gindy

Definition 5 (wfp, bars) Let \mathcal{U} be the universal set of objects. Then

(a) $s \in bars \sigma S \text{ iff } s \in gbars \sigma \mathcal{U} S$ ("S bars s in σ ")

(b) $s \in wfp \sigma \text{ iff } s \in bars \sigma \emptyset$ ("s is accessible in σ ").

Definition 6 (gindy) (Generalises ISN) For a relation σ and set S, an object $t \in gindy \sigma S$ iff: if $\forall u. (u, t) \in \sigma \Rightarrow u \in S$, then $t \in S$.

Lemma 5 $S = gbars \sigma (gindy \sigma S) S$

Lemma 6 (a) if all objects are in gindy σ S, then bars σ S = S, whence, if σ is well-founded, then every object is in S, and

(b) bars σ (wfp σ) = wfp σ

The Termination Theorem

Lemma 7 If object s satisfies Condition 3(a), then $s \in gindy \ll (gindy \triangleleft SN)$.

Proof. Given *s*, assume that ρ , \triangleleft and \ll satisfy Condition 3(a) and that

(a) $\forall u \ll s. \ u \in gindy \lhd SN$.

We then need to show $s \in gindy \lhd SN$, so we assume that

(b) $\forall s' \lhd s. \ s' \in SN$

and we show that $s \in SN$.

By Lemma 6(b), it suffices to show $s \in \text{bars } \rho SN$.

The Termination Theorem — proof (ctd)

The antecedent of Condition 3(a) holds by assumption (b), and so $s \in \text{bars } \rho \text{ (gbars } \triangleleft \{u \mid u \ll s\} SN \text{).}$

As bars is monotonic in its second argument, to show $s \in \text{bars } \rho SN$, it is enough to show gbars $\triangleleft \{u \mid u \ll s\} SN \subseteq SN$.

As $\{u \mid u \ll s\} \subseteq gindy \lhd SN$ by assumption (a), and as gbars is monotonic in its second argument, we have, by Lemma 5,

gbars $\triangleleft \{u \mid u \ll s\} SN \subseteq gbars \triangleleft (gindy \triangleleft SN) SN = SN$

So we have $s \in SN$. Thus, discharging assumptions (b) and then (a), we have $s \in gindy \triangleleft SN$, and then $s \in gindy \ll (gindy \triangleleft SN)$.

The Termination Theorem — wrapping up the proof

Theorem 2 Relation ρ is well-founded if Condition 3(a) holds for all s and

(a) every object is in $\texttt{bars} \ll (\texttt{gindy} \lhd SN),$ and

(b) every object is in $bars \triangleleft SN$.

Note: enough that \lhd and \ll are well-founded.

Proof. If ρ and \ll satisfy Condition 3(a), then every $s \in \text{gindy} \ll (\text{gindy} \triangleleft SN)$ by Lemma 7.

Then, for any u, if $u \in bars \ll (gindy \triangleleft SN)$ then Lemma 6(a) gives $u \in gindy \triangleleft SN$. Thus every $u \in gindy \triangleleft SN$.

Then, for any v, if $v \in bars \triangleleft SN$ then Lemma 6(a) gives $v \in SN$. Thus every $v \in SN$: that is, ρ is well-founded.

Goubault-Larrecq's Theorem 1

```
Suppose that, whenever s >_{\rho} t, either
```

(i) for some object $u, s \succ u$ and $u \ge_{\rho} t$, or

(ii) $s \gg t$ and, for every $u \triangleleft t$, $s >_{\rho} u$.

Assume also that

(iii) \lhd is well-founded (whence (b) of Theorem 2)

```
(iv) every object is in bars \ll (gindy \triangleleft SN) (ie, (a) of Theorem 2)
```

Then ρ is well-founded.

Proved that this follows from Theorem 2: key step is to use (i) and (ii), and well-founded induction on \triangleleft (by (iii)), to get Condition 3(b).

Typed Combinators

Sfgx = fx(gx) Wfx = fxx

Untyped, these do not terminate:

 $(SII)(SII) \longrightarrow + (SII)(SII)$

 $(WI)(WI) \longrightarrow + (WI)(WI)$

 $WWW \longrightarrow WWW$

Typed Combinators — first proof

Define reduction relations σ, τ , and let $\rho = \operatorname{ctxt} \sigma \cup \tau$. Note that "SN" is wrt ρ .

$$\begin{array}{ll} Sfgx >_{\sigma} fx(gx) & (1) \\ Sfg >_{\tau} fx(gx) & \text{if } x \in SN & (2) \\ Sf >_{\tau} fx(gx) & \text{if } g, x \in SN & (3) \\ S >_{\tau} fx(gx) & \text{if } f, g, x \in SN & (4) \end{array}$$

where $S: (\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma, \quad f: \alpha \rightarrow \beta \rightarrow \gamma, \quad g: \alpha \rightarrow \beta, \quad x: \alpha.$

Now τ and ρ (but *not* σ) are defined, indirectly, in terms of themselves. But recursive definitions are in terms of "smaller" types (checked in Isabelle!)

 $t <_{sn1} s$ if $(t, s) \in ctxt \sigma$ by reducing an immediate subterm in $wfp(ctxt \sigma)$ $t <_{ty} s$ if t has smaller type than s.

Lemma 8 Let $\ll = \langle ty \cup \langle sn1 \rangle$, and let \triangleleft be the immediate subterm relation. Then Condition 3(b) holds.

Finally show \lhd and \ll well-founded to complete the proof.

Typed Combinators — second proof

Uses a *different* relation as <= (not the immediate subterm relation!)

$$N_i \triangleleft MN_1 \dots N_i \dots N_n$$
 for $1 \leq i \leq n$ (5)

$$M >_{\rho} MN$$
 if $N \in SN$ (6)

$$Sfgxy_1 \dots y_n >_{\sigma} fx(gx)y_1 \dots y_n$$
 and $\sigma \subseteq \rho$ (7)

$$(x'_i, x_i) \in \operatorname{ctxt} \sigma \quad \Rightarrow \quad f x_1 \dots x_i \dots x_n >_{\rho} f x_1 \dots x'_i \dots x_n \tag{8}$$

From (7) and (8), $ctxt \sigma \subseteq \rho$.

Again, definitions sound, as a reduction preserves or reduces type, and reduction from s is defined involving SN terms of <-smaller type.

Note that, by rule (6), if $M, N \in SN$ then $MN \in SN$.

For this proof we define $fx_1 \dots x_i \dots x_n >_{sn1} fx_1 \dots x'_i \dots x_n$ where $(x'_i, x_i) \in ctxt \sigma$ and $x_i \in wfp(ctxt \sigma)$.

That is, as before, $t <_{sn1} s$ if $(t, s) \in ctxt \sigma$ by means of reduction in a " \triangleleft -subterm" which is itself in *wfp* (*ctxt* σ).

Typed Combinators — second proof, ctd

Let $\ll = \langle y \cup \rangle \langle sn1 \rangle$. We show Condition 3(b) holds.

Rule (6), $M >_{\rho} MN$ if $N \in SN$: $M >_{ty} MN$. For $K \triangleleft MN$, $K = N \in SN$, or $K \triangleleft M$ and so $K \in SN$.

Rule (7): as we can assume $f, g, x, y_i \in SN$, so $fx(gx)y_1 \dots y_n \in SN$

Rule (8): $lhs >_{sn1} rhs$, and each \triangleleft -subterm of rhs is a \triangleleft -subterm of lhs, or a reduction thereof, and so is in SN.

So Condition 3(b) holds, and vtl and \ll are well-founded, so ρ is well-founded, by Theorem 2.

Incremental Proofs of Termination

Terminating system of rewrite rules \mathcal{R}_0 , head symbols in \mathcal{F}_0 .

Additional rules, head symbols in \mathcal{F}_1 .

If additional rules satisfy conditions similar to main theorem, then whole system is terminating: subject to some restrictions.

Most significant restriction is that rules \mathcal{R}_0 be right linear.

Incremental Path Ordering

Like recursive path ordering, but built on top of rewrite system based on \mathcal{R}_0 .

Same restriction on \mathcal{R}_0 .

Proofs in Isabelle only!