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Abstract

We describe a collection of Isabelle theories which facilitate reasoning about machine words. For each
possible word length, the words of that length form a type, and most of our work consists of generic
theorems which can be applied to any such type. We develop the relationships between these words and
integers (signed and unsigned), lists of booleans and functions from index to value, noting how these
relationships are similar to those between an abstract type and its representing set. We discuss how we
used Isabelle’s bin type, before and after it was changed from a datatype to an abstract type, and the
techniques we used to retain, as nearly as possible, the convenience of primitive recursive definitions. We
describe other useful techniques, such as encoding the word length in the type.
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1 Introduction

In formally verifying machine hardware, we need to be able to deal with the prop-

erties of machine words. These differ from ordinary numbers in that, for example,

addition and multiplication can overflow, with overflow bits being lost, and there

are bit-wise operations which are simply defined in a natural way.

Wai Wong [8] developed HOL theories in which words are represented as lists of

bits. The type is the set of all words of any length; words of a given length form a

subset. Some theorems have the word length as an explicit condition. The theories

include some bit-wise operations but not the arithmetic operations.

In [4] Fox descibes HOL theories modelling the architecture of the ARM instruc-

tion set. There, the HOL datatype w32 = W32 of num is used, that is, the machine

word type is isomorphic to the naturals, and the expression W32 n is to mean the
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word with unsigned value n mod 232. In this approach, equality of machine words

does not correspond to equality of their representations.

In [1] Akbarpour, Tahar & Dekdouk describe the formalisation in HOL of fixed

point quantities, where a single type is used, and the quantities contain fields show-

ing how many bits appear before and after the point. Their focus is on the approx-

imate representation of floating point quantities.

In [5] Harrison describes the problem of encoding vectors of any dimension n

of elements of type A (e.g. reals, or bits) in the type system of HOL, the problem

being that a type cannot be parameterised over the value n. His solution is to use

the function space type N → A, where N is a type which has exactly n values. He

discusses the problem that an arbitrary type N may in fact have infinitely many

values, when infinite dimensional vectors are not wanted.

In the bitvector library [2] for PVS, which has a more powerful type system, a

bit-vector is defined as a function from {0, . . . ,N − 1} to the booleans. It provides

interpretations of a bit-vector as unsigned or signed integers, with relevant theorems.

In this paper we describe theories for Isabelle/HOL [6], for reasoning about

machine words. We developed these for NICTA’s L4.verified project [7], which aims

to provide a mathematical, machine-checked proof of the conformance of the L4

microkernel to a high level, formal description of its expected behaviour. As in [5],

each type of words in our formalization is of a particular length. In this work we

relate our word types both to the integers modulo 2n and to lists of booleans; thus

we have access to large bodies of results about both arithmetic and logical (bit-

wise) operations. We have defined all the operations referred to in [4], and describe

several other techniques and classes of theorems.

Our theories have been modified recently due to our collaboration with the

company Galois Connections, who have developed similar, though less extensive,

theories. The Galois theories, though mostly intended to be used for n-bit machine

words, are based on an abstract type of integers modulo m (where, for machine

words, m = 2n). Thus, in combining the theories (since doing the work described

here), we used the more general Galois definition of the abstract type α word; our

theorems apply when α belongs to an axiomatic type class for which m = 2n.

In this paper we focus on the techniques used to define the machine word type.

We defined numerous operations on words which are not discussed here, such as

concatenating, splitting, rotating and shifting words. Some of these are mentioned

in the Appendix. The Isabelle code files are available at [3].

2 Description of the word-n theories

2.1 The bin and obin types

Isabelle’s bin type explicitly represents bit strings, and is important because

• it is used for encoding literal numbers, and an integer entered in an Isabelle

expression is converted to a bin, thus read "3" gives

number_of (Pls BIT bit.B1 BIT bit.B1 :: bin)

(where x :: T means that x is of type T ) ;

• there is much built-in numeric simplification for numbers expressed as bins, for



example for negation, addition and multiplication, using rules which reflect the

usual definitions of these operations for twos-complement integers.

Isabelle changed during development of our theories. Formerly the bin type was

a datatype, with constructors

• Pls (a sequence of 0, extending infinitely leftwards)

• Min (a sequence of 1, extending infinitely leftwards) (for the integer −1)

• BIT (where (w::bin) BIT (b::bool) is w with b appended on the right)

Subsequently, in Isabelle 2005, Isabelle’s bin type changed. The new bin type

in Isabelle 2005 is an abstract type, isomorphic to the set of all integers, with

abstraction and representation functions Abs_Bin and Rep_Bin.

We found that each of these ways of formulating the bin type has certain ad-

vantages. We proceed to discuss these, and how we overcame the disadvantages of

the new way of defining bins. We first describe using the datatype-based definition.

Since at one stage in the course of adapting to this change we were using

both the old and new definition of bins and associated theorems, we used new

names for the old definition, with ‘o’ or ‘O’ prepended: thus we had the contruc-

tors oPls, oMin, OBIT, for the datatype obin. (We also kept the old function

number_of, renaming it onum_of). So in describing our use of bins as formerly

defined, we use these names. 3

2.2 Definitions using the obin datatype

As these definitions have since been removed, this section is not relevant for using

these theories currently. But we give this description to indicate the advantages

and disadvantages of the obin type, i.e., the former, datatype-based definition of

the bin type. In fact for some time we continued to use the obin type because it is

defined as a datatype: only a datatype permits the primitive and general recursive

definitions described below.

Using the obin datatype allows us to define functions in the most natural way

in terms of their action on bits. For example, to define bit-wise complementation,

we just used the following primitive recursive definitions:

primrec

obin_not_Pls : "obin_not oPls = oMin"

obin_not_Min : "obin_not oMin = oPls"

obin_not_OBIT : "obin_not (w OBIT x) = (obin_not w OBIT Not x)"

We mention that, apart from the obvious benefit of using a simple definition, it is

easier to be sure that it accurately represents the action of hardware that we intend

to describe: this is important in theories to be used in formal verification.

Defining bit-wise conjunction using primitive recursion on either of two argu-

ments is conceptually similar, though the expression is not so simple. 4

3 More recently, the bin type changed again, in development versions of Isabelle during 2006, to be identical
to the integers rather than an isomorphic type. So we will omit the functions Abs Bin and Rep Bin, and
now our references to the type bin indicate an integer expressed using Pls, Min and BIT.
4 In Isabelle a set of primitive recursive definitions must be based on the cases of exactly one curried
argument. It can be easier to use Isabelle’s recdef package.



We also made considerable use of functions obin_last and obin_rest, which

give the last bit and the remainder, respectively. Again, we defined these functions

by primitive recursion using the fact that obin is a datatype (the rules correspond

to the simplifications proved for bin_last and bin_rest, see §2.3).

In working with the obin type, we needed to define the concept of a normalized

obin, where the combination oPls OBIT False does not appear, since it denotes

the same sequence of bits, and so the same integer, as oPls. So we normalise

an obin by changing oPls OBIT False to oPls, and likewise oMin OBIT True to

oMin. Thus the set of normalised obins is isomorphic to the set of integers, via

the usual twos-complement representation (see theorems td_int_obin in §2.5, and

td_ext_int_obin in §2.6). The following functions relate to normalising obins.

mk_norm_obin :: "obin => obin"

is_norm_obin :: "obin => bool"

While use of the obin type has the advantage over the bin type of being a datatype,

the need to prove a large number of lemmas concerning normalisation of obins was

a significant disadvantage.

2.3 Definitions involving the bin type

Our initial development developed words of length n from the set of obins. So, for

example, we defined the bit-wise complement of a word using obin_not, described

above, and the addition of two words using addition of obins, based on functions

to do numerical arithmetic from the Isabelle source files.

However we found the need to deal with words entered literally: 6 :: ’a word

is read as number_of (Pls BIT bit.B1 BIT bit.B1 BIT bit.B0). To simplify

6 && 5 :: ’a word (where && is our notation for bit-wise conjunction), we found

it convenient to use simplifications based on the bin type: that is, we wanted

to use a function bin_and, for bit-wise conjunction of bins, rather than obin_and.

Similarly, dealing with words of length 3, say, we wanted to simplify 11 :: ’a word

to 3 using a function which truncates bins, not obins.

Since bin is not a datatype, we could not define functions on bins in the same

direct way as on obins. So, originally, we defined such functions on bins by reference

to the corresponding functions on obins. To do this we used the functions onum_of

and int_to_obin, which relate the int (isomorphic to bin) and obin types.

bin_and_def : "bin_and v w ==

onum_of (obin_and (int_to_obin v, int_to_obin w))"

We had obtained a large number of simplification theorems involving obins.

Using this approach, we then had to do some rather complex programming to

transfer all these simplification theorems, en masse, from obins to bins, so as to

avoid proving them all again individually. In this way the parallel use of obins and

bins produced significant extra complexity.

In short, we found that, although the fact of obin being a datatype permits

simple recursive definitions, the machinery needed to take these definitions and

resulting theorems on obins and produce definitions and theorems for corresponding

functions involving bins was unpleasantly cumbersome.



Therefore we examined alternative ways of defining functions in terms of the

bit-representation of a bin. First we considered what properties of the bin type

resemble the properties of a datatype. The properties of a datatype are:

(a) Different constructors give distinct values

(b) Each constructor is injective (in each of its arguments)

(c) All values of the type are obtained using the constructors

Now we can consider the bin type with “pseudo-constructors” Pls, Min and Bit

(where Bit w b is printed and may be entered as w BIT b).

In terms of these “pseudo-constructors” the properties (b) and (c) above hold:

in fact property (c) holds using the “pseudo-constructor” Bit alone.

Thus we have these theorems; bin_exhaust enables us to express any bin ap-

pearing in a proof as w BIT b. Here !! is Isabelle notation for the universal quan-

tification provided in the meta-logic.

BIT_eq = "u BIT b = v BIT c ==> u = v & b = c"

bin_exhaust = "(!!x b. bin = x BIT b ==> Q) ==> Q"

Then we can define functions bin_rl, and thence bin_last and bin_rest:

bin_rl_def : "bin_rl w == SOME (r, l). w = r BIT l"

bin_rest_def : "bin_rest w == fst (bin_rl w)"

bin_last_def : "bin_last w == snd (bin_rl w)"

The SOME function is (partially) defined in Isabelle, by the axiomatic specification

"P w ==> P (SOME x. P x)", so its effect here is that if there is a unique choice

of r and l to satisfy w = r BIT l, then bin rl (r BIT l) = (r, l). In fact

property (b) gives this uniqueness, and so from that the expected simplification

rules bin_last_simps and bin rest simps’ follow. We then used the numerical

characterisation of the BIT operator (effectively, w BIT b = 2w + b) to obtain the

numerical characterisations of these functions as bin_last_mod and bin_rest_div.

bin_last_simps = "bin_last Pls = bit.B0 &

bin_last Min = bit.B1 & bin_last (w BIT b) = b"

bin_rest_simps’ = "bin_rest Pls = Pls &

bin_rest Min = Min & bin_rest (w BIT b) = w"

bin_last_mod = "bin_last w == if w mod 2 = 0 then bit.B0 else bit.B1"

bin_rest_div = "bin_rest w == w div 2"

We also derived a theorem for proofs by induction involving bins.

bin_induct = "[| P Pls; P Min;

!!bin bit. P bin ==> P (bin BIT bit) |] ==> P bin"

Both bin_exhaust and bin_induct were frequently used in proofs, and they

usually made proofs for bins just as easy as the corresponding proofs for obins.

Often the theorems and proofs were simpler for bins, e.g.

bin_add_not = "x + bin_not x = Min"

obin_add_not = "mk_norm_obin (obin_add x (obin_not x)) = oMin"



However obtaining a near-equivalent, for bins, of primitive recursive definitions

in obins, was a little more intricate. We have already described the definition of

bin_last and bin_rest, and the derivation of simplification rules corresponding to

the definitions of obin_last and obin_rest.

Typically a function f defined by primitive recursion would, if bin were a

datatype with its three constructors, be defined by giving values vp and vn for f Pls

and f Min, and a function fr, where f (w BIT b) is given by fr w b (f w). (The

form of the recursion function returned by define_type in the HOL theorem prover

makes this explicit). So, using Isabelle’s generic mechanism for defining recursive

functions, we defined a function bin_rec which, given vp, vn and fr returns a func-

tion f satisfying the three equalities shown, but the last only where w BIT b does

not equal Pls or Min.

bin_rec :: "’a => ’a => (int => bit => ’a => ’a) => int => ’a"

f Pls = vp

f Min = vn

f (w BIT b) = fr w b (f w)

In the usual case, we can then prove that this last equation in fact holds for

all w and b, as we want for a convenient simplification rule. See examples in [3,

BinGeneral.thy]. Here are bin_not and bin_and defined in this way:

defs

bin_not_def : "bin_not == bin_rec Min Pls

(%w b s. s BIT bit_not b)"

bin_and_def : "bin_and == bin_rec (%x. Pls) (%y. y)

(%w b s y. s (bin_rest y) BIT (bit_and b (bin_last y)))"

After making these definitions, the simplification rules in the desired form (such as

those shown below) need to be proved.

bin_not_simps = [... ,

"bin_not (w BIT b) = bin_not w BIT bit_not b" ]

bin_and_Bits = "bin_and (x BIT b) (y BIT c) =

bin_and x y BIT bit_and b c"

Proving these was virtually automatic for bin_not (with one argument), and

fairly straightforward for bin_and (with two arguments): see examples in [3,

BinGeneral.thy]. This was much easier than maintaining collections of corre-

sponding theorems for the separate types bin and obin.

2.4 The type of fixed-length words of given length

As a preliminary step, we define functions which create n-bit quantities. We called

these “truncation” functions, although they also lengthen shorter quantities. Both

functions will cut down a longer quantity to the desired length, by deleting high-

order bits. For an argument shorter than desired, unsigned truncation extends it to

the left with zeroes, whereas signed truncation extends it with its most significant

bit. Thus bintrunc n w gives Pls followed by n bits, whereas sbintrunc (n-1) w



(used for fixed-length words of length n) gives Pls or Min followed by n − 1 bits

(so here the Pls or Min, is treated as a sign bit, as one of the n bits). We defined

bintrunc by primitive recursion on the first argument (the number of bits required)

and auxiliary functions bin_last and bin_rest, and sbintrunc similarly.

bintrunc, sbintrunc :: "nat => bin => bin"

primrec

Z : "bintrunc 0 bin = Pls"

Suc : "bintrunc (Suc n) bin =

bintrunc n (bin_rest bin) BIT (bin_last bin)"

Now we need to set up a type in which the length of words is implicit. The type

system of Isabelle is similar to that of HOL in that dependent types are not allowed,

so we cannot directly set up a type which consists of (for example) lists of length n.

Our solution was that the type of words of length n is α word parametrised over the

type α where the word length can be deduced from the type α. As noted, Harrison

did this by letting the word length be the number of values of the type α.

We use len of TYPE(α) for the word length. TYPE(α) is a polymorphic value, of

type α itself, whose purpose is essentially to encapsulate a type as a term. 5 In

the output of TYPE(α) the type α is printed, which was useful. The function len of

is declared, with polymorphic type (α, printed as ’a, being a type variable) in the

library files as shown below. The library files provide the axiom word_size which

gives the general formula for the length of a word, but the user must define the

value of len of TYPE(α) for each specific choice of α.

len_of :: "’a :: len0 itself => nat"

word_size : "size (w :: ’a :: len0 word) == len_of TYPE (’a)"

A type of fixed-length words is ’a :: len0 word, where len0 is a type class whose

only relevance is that it admits a function len of, and the word length of any

w :: ’a :: len0 word is given by the axiom word_size. For each desired word

length, the user declares a type (say a), in the class len0, and defines the value

len_of TYPE (a) to be the chosen word length. This provides a type of words of

that given length.

(Isabelle notation may be confusing here: in w :: ’a :: len0 word, w is a

term, ’a is a type variable, len0 is the type class to which ’a belongs, and word is

a type constructor. Thus the implicit bracketing is w :: ((’a :: len0) word).)

An Isabelle type definition defines a new type whose set of values is isomorphic

to a given set. To define each word type we used the definition:

typedef ’a word = "uword_len (len_of TYPE (’a))"

"uword_len len == range (bintrunc len)"

where uword_len (len_of TYPE (’a)) is the set of integers, truncated to length

n using the function bintrunc described earlier.

The type class len is a subclass of len0, defined by the additional requirement

that the word length n is non-zero.

5 It is used, for example, to express the assertion that a type belongs to a particular type class.



len_gt_0 = "0 < len_of TYPE(’a::len)"

Results involving a signed interpretation of words are limited to this case (nat-

urally, as the word needs to contain a sign bit). 6 Thus the fixed-length word type

is abstract, representing a sequence of bits, but such words can be interpreted as

unsigned or signed integers. Although the abstract type is defined to be isormorphic

to range (bintrunc n), it can be viewed as isomorphic to several different sets. So

the set of words of length n is isomorphic to each of the following, with the relevant

“type definition theorems” (explained later) given in brackets:

• the set of integers in the range 0 . . . 2n − 1 (td_uint)

• the set of integers in the range −2n−1 . . . 2n−1 − 1 (td_sint)

• the set of naturals up to 2n − 1 (td_unat)

• the set of lists of booleans of length n (td_bl)

• the set of functions f of type nat -> bool satisfying the requirement that for

i ≥ n, f i = False (td_nth)

That the type of a word implies its length had some curious consequences.

For functions such as ucast, which casts a word from one length to another, or

word_rsplit, which splits a word into a list of words of some given (usually shorter)

length, the length of the resulting words is implicit in the result type of the function,

not given as an argument. Therefore we get theorems such as "ucast w = w" and

"word_rsplit w = [w]", where the repeated use of the variable w implies that the

result word(s) are of the same length as the argument.

2.5 Pseudo type definition theorems

In Isabelle, defining a new type α from a set S : ρ set causes the creation of an

abstraction function Abs : ρ → α and a representation function Rep : α → ρ, such

that Abs and Rep are mutually inverse bijections between S and the set of all values

of type α. Note that the domain of Abs is the type ρ, but that nothing is said

about the values it takes outside S. The predicate type_definition expresses

these properties, and a theorem, type_definition_α, stating type_definition

Rep Abs S, is created for the new type α.

We can use the predicate type_definition to express the isormophisms between

the set of n-bit words and the other sets mentioned above; we have proved the

following “type definition theorems”.

td_int_obin = "type_definition int_to_obin onum_of (range mk_norm_obin)"

td_uint = "type_definition uint word_of_int (uints (len_of TYPE(’a)))"

td_sint = "type_definition sint word_of_int (sints (len_of TYPE(’a)))"

td_unat = "type_definition unat of_nat (unats (len_of TYPE(’a)))"

td_bl = "type_definition to_bl of_bl

{bl::bool list. length bl = len_of TYPE(’a)}"

td_nth = "type_definition word_nth of_nth

{f::nat => bool. ALL i::nat. f i --> i < len_of TYPE(’a)}"

6 Note that some other results are limited to n > 0 because their proof uses theorems from the Isabelle
library which apply only in a type class where 0 and 1 are distinct.



These use the following functions between the various types (of_nat and onum_of

have more general types, but are used with these types in these theorems):

int_to_obin :: "int => obin"

onum_of :: "obin => int"

word_of_int :: "int => ’a :: len0 word"

uint :: "’a :: len0 word => int"

sint :: "’a :: len word => int"

of_nat :: "nat => ’a :: len0 word"

unat :: "’a :: len0 word => nat"

of_bl :: "bool list => ’a word"

to_bl :: "’a word => bool list"

of_nth :: "(nat => bool) => ’a word"

word_nth :: "’a word => nat => bool"

The following define the representing sets referred to above, or were subsequently

proved about them:

"uints n == range (bintrunc n)"

"sints n == range (sbintrunc (n - 1))"

"unats n == {i. i < 2 ^ n}"

"uints n == {i. 0 <= i & i < 2 ^ n}"

"sints n == {i. - (2 ^ (n - 1)) <= i & i < 2 ^ (n - 1)}"

2.6 Extended type definition theorems

As noted, however, these type definition theorems do not say anything about the

action of Abs outside the set S. But in fact we have defined the abstraction functions

to behave “sensibly” outside S, and it is useful to do so. For example, word_of_int,

which turns an integer in the range 0 . . . 2n − 1 into a word, is defined so that it

also behaves “sensibly” on other integers — it takes i and i′ to the same word iff

i ≡ i′ (mod 2n). This allows us to use the same abstraction function word_of_int

in both theorems td_uint and td_sint.

"word_of_int (b mod 2 ^ len_of TYPE(’a)) = word_of_int b"

The “sensible” definition of word_of_int has useful consequences. For example,

when we define addition of words by word_add_wi, where u and v are words of the

same length (and this definition does not involve the addition of bins which are not

representatives of words), we also can prove the result wi_hom_add where a and b

can be any integers, whether or not they are values which represent words.

word_add_wi : "u + v == word_of_int (uint u + uint v)"

wi_hom_add = "word_of_int a + word_of_int b = word_of_int (a + b)"

The following theorems, of the form Rep (Abs x) = f x, describe the behaviour

of Abs outside the representing set S. (It follows that range f = S).

obin_int_obin = "int_to_obin (onum_of n) = mk_norm_obin n"

int_word_uint = "uint (word_of_int a) = a mod 2 ^ len_of TYPE(’a)"

unat_of_nat = "unat (of_nat (n::nat)) = n mod 2 ^ len_of TYPE(’a)"



We therefore defined an extended type definition predicate, as follows:

"td_ext Rep Abs A norm ==

type_definition Rep Abs A & (ALL y. Rep (Abs y) = norm y)"

and we have extended type definition theorems including the following:

td_ext_int_obin = "td_ext int_to_obin onum_of

(Collect is_norm_obin) mk_norm_obin"

td_ext_ubin = "td_ext uint word_of_int (uints (len_of TYPE(’a)))

(bintrunc (len_of TYPE(’a)))"

td_ext_sbin = "td_ext sint word_of_int (sints (len_of TYPE(’a)))

(sbintrunc (len_of TYPE(’a) - 1))"

td_ext_uint = "td_ext uint word_of_int (uints (len_of TYPE(’a)))

(%i. i mod 2 ^ len_of TYPE(’a))"

td_ext_unat = "td_ext unat of_nat (unats (len_of TYPE(’a)))

(%i. i mod 2 ^ len_of TYPE(’a))"

Since Abs (Rep x) = x it follows that norm ◦ norm = norm, so we call it a

normalisation function; we say x is normal if x = norm y for some y, equivalently if

x = norm x. We also have norm ◦ Rep = Rep, and Abs ◦ norm = Abs.

As we frequently had to transfer results about a function on one type to a

corresponding function on another type we formalised some general relevant results.

Consider a function f : ρ → ρ, where ρ is the representing type in a type definition

theorem with normalisation function norm. We say x and y are norm-equiv[alent]

to mean norm x = norm y. Then some or all of the following identities may hold:

norm ◦ f ◦ norm = norm ◦ f f takes norm-equiv arguments to norm-equiv results

norm ◦ f ◦ norm = f ◦ norm f takes normal arguments to normal results

norm ◦ f = f ◦ norm both of the above

f ◦ norm = f f takes norm-equiv arguments to the same result

norm ◦ f = f f takes every argument to a normal result

Consider functions f : ρ → ρ and function h : α → α, where ρ and α are the

representing and abstract types in a type definition theorem. These can be related

in any of the following ways.

h = Abs ◦ f ◦ Rep (1)

Rep ◦ h = f ◦ Rep (2)

h ◦ Abs= Abs ◦ f (3)

Rep ◦ h ◦ Abs= f (4)

Of these, (1) would be the typical way to define h in terms of f , and (4) provides

the most useful properties, as it implies all the rest; they all imply (1). As for the

inverse implications, we obtained a number of general results showing when they

are available, depending on which of the properties about norm and f above are

satisfied (see [3, TdThs.thy]). For example, where norm is bintrunc n, truncation

of a bin to n bits, and f is addition (with two arguments), then f takes norm-equiv

arguments to norm-equiv results. This is the key to obtaining the result wi_hom_add



shown earlier, of the form of (3) above, from the definition word_add_wi, of the form

of (1). A similar situation applied in deriving word_no_log_defs (see §2.7).

On the other hand, if f is bin_rest, or division by 2, and h is ushiftr1,

unsigned one-bit shift right, then f takes normal arguments to normal results, and

when ushiftr1 is defined from bin_rest by (1), equality (2) also holds.

Each type definition theorem is used by the Standard ML (SML) functors TdThms

or TdExtThms to generate a number of consequences, which are collected in struc-

tures such as word and int obin.

structure word = TdThms (struct ... type_definition_word ... end) ;

structure int_obin = TdExtThms (struct ... td_ext_int_obin ... end) ;

We note in particular word_nth.Rep_eqD and word_eqI, derived from it;

word_nth selects the nth bit of a word, and is written infix as !!.

word_nth.Rep_eqD = "word_nth x = word_nth y ==> x = y"

word_eqI = "(!!n. n < size u ==> u !! n = v !! n) ==> u = v"

The latter was frequently useful in deriving equalities of words. For example, our

function word_cat concatenates words. We had proved a theorem word_nth_cat

which gives an expression for word_cat a b !! n. Using results like these we could

prove two words equal by starting with word_eqI, and simplifying. This approach

was often useful for proving identities involving concatenating, splitting, rotating

or shifting words.

In the same way, the theorem bin_nth_lem was useful for proving equality of

bins, where bin nth x n is bit n of x, using theorems such as nth_bintr.

bin_nth_lem = "bin_nth x = bin_nth y ==> x = y"

nth_bintr = "bin_nth (bintrunc m w) n = (n < m & bin_nth w n)"

2.7 Simplifications, number of, literal numbers

As noted ealier, the type bin is used in connexion with the function number of ::

bin => ’a::number to express literal numbers. When a number (say 5) is entered,

it is syntax-translated to number_of (Pls BIT B1 BIT B0 BIT B1). The function

number_of is defined variously for various types and classes, e.g.:

int_number_of_alt = "number_of (w::int) :: int == w"

word_number_of_def =

"number_of (w::bin) :: ’a::len0 word == word_of_int w"

2.7.1 Simplifications for arithmetic expressions

Certain arithmetic equalities, such as associativity and commutativity of addi-

tion and multiplication, and distributivity of multiplication over addition, hold

for words. We wrote a function int2lenw in Standard ML to generate a num-

ber of results for words, in word_arith_eqs, from the corresponding results

about integers. See the file [3, WordArith.thy] for details. From these and

other results, we showed that the word type is in many of Isabelle’s arithmeti-

cal type classes (see [3, WordClasses.thy]). Therefore many automatic simplifi-

cations for these type classes are available for the word type. Thus, for example



a + b + c = (b + d :: ’a :: len0 word) is simplified to a + c = d.

Isabelle is set up to simplify arithmetic expressions involving literal numbers as

bins very effectively, using simplification rules which in effect do binary arithmetic,

provided that the type of the numbers is in the class number_ring. This is the

case for words of positive length; unfortunately this does not work for zero-length

words, since Isabelle’s number_ring class requires 0 6= 1. Thus an expression such

as (6 + 5 :: ’a :: len word) gets simplified to 11 automatically, regardless of

the word length, which need not be known. Another standard simplification takes

(6 + 5 :: ’a :: len word) = 7 to iszero (4 :: ’a :: len word).

Further simplification of such expressions, i.e., from (11 :: word2) to 3 (where

word2 is a type of words of length 2) and from iszero (4 :: word2) to True

depend on the specific word length. We would want to use a theorem like

num_of_bintr, but we cannot reverse it to use it as a simplification rule because it

would loop. Instead we can simplify using num_abs_bintr (which is derived from

num_of_bintr and word_number_of_def).

num_of_bintr =

"number_of (bintrunc (len_of TYPE(’a)) (b::bin)) = number_of b"

num_abs_bintr = "number_of (b::bin) = word_of_int (len_of TYPE(’a)) b"

We then need to simplify the word length definition, using the theorem giving

len_of TYPE(’a) for the specific type, then simplify using bintrunc_pred_simps,

which simplifies an expression like bintrunc (number of bin) (w BIT b), and

finally apply word_number_of_def in the opposite direction.

Given an expression such as iszero (4 :: word2), we can use the theorem

iszero_word_no as a simplification rule, and it doesn’t loop because the type of

number_of ... (the argument of iszero ( )) is a word on the left-hand side but

is an int on the right-hand side. We would then simplify using the rule giving the

word length and bintrunc_pred_simps.

iszero_word_no = "iszero (number_of (bin::bin)) =

iszero (number_of (bintrunc (len_of TYPE(’a)) bin))"

A further approach to simplifying a literal word is to simplify an expresssion such

as uint (11 :: word2), which means converting (11 :: word2) to the integer in

the range uints 2, i.e. 0 . . . 2n − 1. We would simplify using uint_bintrunc, the

rule giving the word length and bintrunc_pred_simps.

uint_bintrunc = "uint (number_of (bin::bin)) =

number_of (bintrunc (len_of TYPE(’a)) bin)"

Note that in uint_bintrunc the two instances of number_of have result types

word and int respectively. Corresponding theorems are available for the signed

interpretation of a word, and to simplify unat of a literal.

2.7.2 Simplifications for logical expressions

These are more difficult because we do not have a built-in type class. The definition

of the bit-wise operations, and how from the definitions we obtained simplifications

such as bin_not_simps and bin_and_Bits, is described in §2.3.

A literal expression such as 22 && 11 can be simplified first using the (derived)



rules word_no_log_defs (the actual definitions being word_log_defs)

word_log_defs = ["u && v ==

number_of (bin_and (uint u) (uint v))", ...]

word_no_log_defs = ["number_of a && number_of b ==

number_of (bin_and a b)", ...]

and then using the simplifications such as bin_and_Bits (word_no_log_defs and

many rules for bit-wise logical operations on bins are in the default simpset).

We derived counterparts for bins of commonplace logical identities such as as-

sociativity and commutativity of conjunction and disjunction, and others such as

(x∧ y)∨ x = x. We wrote Standard ML code to use these to generate counterparts

of these for words, so that one function, bin2lenw, sufficed to generate all the cor-

responding results, found in word_bw_simps, about logical bit-wise operations on

words. See the file [3, WordBitwise.thy] for details.

2.7.3 Special-purpose simplification tactics

Consider the result (for words) "(x < x - z) = (x < z)": each inequality holds

iff calculating x− z causes underflow. Several results required about words, such as

this one, could be proved by translating into goals involving sums or differences of

integers, together with case analyses as to whether overflow or underflow occurred

or not. So we developed tactics for these: uint_pm_tac does the following

• unfolds definitions of ≤, using word_le_def (similarly for <)

• unfolds occurrences of uint (a + b) using uint_plus_if’

(similarly for uint (a - b))

• for every occurrence of uint w in the goal, inserts uint_range’

• solves using arith_tac, an Isabelle tactic for solving linear arithmetic

word_le_def = "a <= b == uint a <= uint b"

uint_plus_if’ = "uint (a + b) =

(if uint a + uint b < 2 ^ len_of TYPE(’a) then uint a + uint b

else uint a + uint b - 2 ^ len_of TYPE(’a))"

uint_range’ = "0 <= uint w & uint w < 2 ^ len_of TYPE(’a)"

This proved effective for a reasonable number of goals that arose in practice; it relies

on the fact that arith_tac is very effective for goals involving <, <=, + and − for

integers. Details of the code are in [3, WordArith.thy].

We developed similar routines for sint, which were used to solve a prob-

lem posed by a referee: to prove that, in signed n-bit arithmetic, the addition

x + y overflows, that is, sint x + sint y 6= sint (x+y), iff the C language term

(((x+y)^x) & ((x+y)^y)) >> (n - 1) is non-zero.

2.8 Types containing information about word length

We have defined types which contain information about the length of words. For

example, len_of TYPE(tb t1 t0 t1 t1 t1) = 23 because t1 t0 t1 t1 t1 trans-

lates to the binary number 10111, that is, 23. The relevant simplification rules

(which are axioms, and so in the default simpset) are



len_tb : "len_of TYPE (tb) = 0"

len_t0 : "len_of TYPE (’a :: len t0) = 2 * len_of TYPE (’a)"

len_t1 : "len_of TYPE (’a :: len0 t1) = 2 * len_of TYPE (’a) + 1"

and so len_of TYPE(tb t1 t0 t1 t1 t1) is simplified to 23 automatically.

We use the type class mechanism to prevent use of the type tb t0 (corresponding

to a binary number with a redundant leading zero); the class len is used for words

whose length is non-zero and we used the arity declarations shown, although the

instance declarations shown are then deducible.

arities tb :: len0

arities t0 :: (len) len0 instance t0 :: (len) len

arities t1 :: (len0) len0 instance t1 :: (len0) len

By the arities declaration for t0, we can make use of a type α t0 only where α is

in the class len (indicating a non-zero word length), which prevents using tb as α.

The deduced instance results mean that any type α t1 is of class len, and likewise

for α t0, when α is of class len.

It is also possible to specify the word length rather than the type, and

have the type generated automatically. For example, for a goal with a vari-

able type, e.g. "len_of TYPE(?’a :: len0) = 23", repeated use of appropri-

ate introduction rules (len_no_intros) will instantiate the variable type ?’a to

tb t1 t0 t1 t1 t1.

See [3, Autotypes.thy] for details, and for further relevant theorems. Brian

Huffman of Galois Connections has developed types in a similar way, and syntax

translation so that the length can be entered or printed out as part of the type.

2.9 Length-dependent exhaust theorems

Consider the goal "((x :: word6) >> 2) || (y >> 2) = (x || y) >> 2"

where x >> 2 means x, with bits shifted two places to the right, and x || y is

bit-wise disjunction. We could prove such a theorem by expanding x by

x = Pls BIT xa BIT xb BIT xc BIT xd BIT xe BIT xf

(similarly y) and calculating both sides by simplification. To enable this we

generate a theorem for each word length; the one for word length 6 is shown.

"[| !!b ba bb bc bd be. w = number_of

(Pls BIT b BIT ba BIT bb BIT bc BIT bd BIT be) ==> P;

size w = 6 |] ==> P"

We also generated theorems to express a word as a list of bits; for example, for

x of length 6, expressing to_bl x as [xf, xe, xd, xc, xb, xa].

Such a theorem can then be instantiated; for example, for the goal above, one

would use the theorem for word length 6 twice, instantiating it with x and y respec-

tively. An example is in [3, Word32.ML].

We are also developing techniques for translating a goal into a format suitable

for handing over to a SAT solver. This involves expressing a word of length n as a

sequence of n bits, and we have used these theorems for this purpose also.



3 Conclusion

The theories we describe have been used extensively in the NICTA’s L4.verified

project, which requires reasoning about the properties of machine words and their

operations. We have discussed how we defined types of words of various lengths,

with theorems which apply to words of any length. We have shown how to make

definitions about bins by a procedure sufficiently resembling primitive recursion to

be practical and useful. We have taken advantage of the fact that the set of words

is isomorphic to several different sets and used “pseudo” type definition theorems

to use these and derive relevant results in an efficient and uniform way. Finally we

described other useful techniques, such as how to create types which automatically

imply the word length, using type constructors corresponding to binary digits.

In these theories, where a single type of words has a definite length, definitions

and theorems about joining or splitting words were difficult. In this area, using the

bit-vector library of PVS [2], with its more powerful type system, might be easier.

A noteworthy feature of the work was the value of Standard ML as the user

interface language. As described in §2.6 we used its structures and functors, which

were very convenient for generating a large number of theorems of the same pattern

without repeating code. We used its capabilities as a programming language to

write a number of functions for generating theorems en masse, such as the SML

function int2lenw and bin2lenwwhich were used to generate respectively 15 and 31

theorems about words from corresponding theorems about ints and bins. Coding

in SML was also indispensible for the simplification procedures used to provide

automatic simplification of literal expressions, for tactics such as uint_pm_tac, for

generating the theorems of §2.9 for arbitrary n, and for HOL-style conversions,

which we used in the proofs. Of course, more mundane uses of its capabilities, such

as applying a transformation to a list of theorems, was commonplace in our work.
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