Isabelle Theories for Machine Words

Jeremy Dawson

Logic and Computation Program, NICTA

Automated Reasoning Group,
Australian National University, Canberra, ACT 0200, Australia
http://users.rsise.anu.edu.au/~jeremy/

August 29, 2007

1National ICT Australia is funded by the Australian Government’s Dept of Communications, Information Technology and the Arts and the Australian Research Council through Backing Australia’s Ability and the ICT Centre of Excellence program.
Outline

1. Introduction

2. The word-n theories
 - Numerical n-bit quantities: the bin and obin types
 - The type of fixed-length words of given length
 - Sets isomorphic to the set of words
 - Simplifications for arithmetic expressions
 - Miscellaneous techniques
NICTA’s L4.verified project: to provide a mathematical, machine-checked proof of the correctness of the L4 microkernel.

In formally verifying machine hardware, we need to be able to systematically deal with the properties of machine words. These differ from ordinary numbers in that, for example,

- addition and multiplication can overflow, with overflow bits being lost,
- and there are bit-wise operations which are simply defined in a natural way.
Our Formalisation

- each type of words in our formalization is of a given length.
- word types related to integers mod 2^n and to lists of booleans
- many results re arithmetic and logical (bit-wise) operations.
- recent collaboration with Galois Connections
 (theirs more general: integers modulo m, for ours $m = 2^n$).
- Lots of operations on words which are not discussed here
- Isabelle code files are available
Isabelle’s bin type explicitly represents bit strings, important as

- used for encoding numbers literally, an integer entered is converted to a bin, thus read "3" gives number_of (Pls BIT B1 BIT B1 :: bin)
- much built-in numeric simplification for numbers expressed as bins, for example for negation, addition and multiplication, using usual rules for twos-complement integers.
the old and new bin types

Isabelle had changed: formerly bin was a datatype: constructors

- **Pls** (a sequence of 0, extending infinitely leftwards)
- **Min** (a sequence of 1, extending infinitely leftwards) (for the integer −1)
- **BIT** (where \(w \text{::bin} \) BIT \(b \text{::bool} \) is \(w \) with \(b \) appended on the right)

After the change (in Isabelle 2005) bin is an abstract type, isomorphic to the set of all integers

\[w \text{ BIT } b = 2w + b \quad \text{Pls} = 0 \quad \text{Min} = -1 \]
Issues about the definitions of bins

Advantages of the datatype (constructor-based) definition:

- primitive recursive definitions
- structural induction
- structure-based case analysis

Disadvantages of the datatype definition:
P1s OBIT False and P1s represent the same sequence of bits (also Min BIT True to Min)
So we *normalised* bins by changing oP1s OBIT False to oP1s
Similarly oMin OBIT True to oMin. (This added complexity)

The paper tells how, using the new definition, we (in part) recovered the advantages of a datatype based on constructors
A type for \(n \)-bit quantities

Need to set up a type in which the length of words is implicit. Dependent types not allowed: lists of length \(n \) cannot be a type. Our solution: the type of words of length \(n \) is \(\alpha \) word where the word length can be deduced from the type \(\alpha \). We use \texttt{len_of \ TYPE(\alpha)} for the word length. \texttt{TYPE(\alpha)} is a polymorphic value (a “canonical” value for each type)

\[
\text{\texttt{len_of :: 'a :: len0 itself => nat}}
\]

\[
\text{\texttt{word_size : 'size (w :: 'a word) = len_of \ TYPE('a)}}
\]

User must define the value of \texttt{len_of \ TYPE(\alpha)} for each specific \(\alpha \).
Constructing n-bit quantities; the type definition:

“truncation” functions `bintrunc` (unsigned), and `sbintrunc` (signed) to create n-bit quantities.

- cut down a longer argument by deleting high-order bits.
- extend a shorter argument it to the left with zeroes (unsigned) or its most significant bit (signed)

Isabelle `typedef` defines a new type isomorphic to a given set.

```plaintext
typedef 'a word = "uword_len (len_of TYPE('a))"
"uword_len len == range (bintrunc len)"
```
Isomorphisms of set of words

type of words of length \(n \) defined isomorphic to range (bintrunc \(n \)), but also isomorphic to the set of

- integers in the range \(0 \ldots 2^n - 1 \)
- integers in the range \(-2^{n-1} \ldots 2^{n-1} - 1 \)
- naturals up to \(2^n - 1 \)
- lists of booleans of length \(n \)
- functions \(f : \text{nat} \to \text{bool} \) such that for \(i \geq n \), \(f \ i = \text{False} \)
Pseudo type definition theorems

defining new type α from $S : \rho$ set gives

$\text{Abs} : \rho \rightarrow \alpha$ and $\text{Rep} : \alpha \rightarrow \rho$:

mutually inverse bijections between S and the values of type α

nothing known about values of Abs outside S

Theorem (axiom) type_definition_\alpha created for the new type α
type_definition Rep Abs S

We can use the predicate type_definition to express the other isomorphisms of the set of n-bit words mentioned above

We used SML functors to prove a collection of useful consequences of each such isomorphism (can also use locales)
Extended type definition theorems

type definition theorems do not say anything about the action of Abs outside the set S

But our Abs functions behave “sensibly” outside S

Thus word_of_int (ie, Abs) which turns an integer in $0 \ldots 2^n - 1$ into a word, takes i and i' to the same word iff $i \equiv i' \pmod{2^n}$

Call $\text{Rep} \circ \text{Abs}$ normalise, norm. (eg, $\text{norm } i = i \pmod{2^n}$)

Say x is normal if $x = \text{norm } y$ for some y, iff $x = \text{norm } x$

In many cases, have extended “extended type definition theorems”, of the form $\text{td_ext } \text{Rep Abs A norm}$

Generated numerous results from each of these eg $\text{norm } \circ \text{Rep} = \text{Rep}$, and $\text{Abs } \circ \text{norm} = \text{Abs}$
Simplifications for arithmetic expressions

Certain arithmetic equalities hold for words, e.g.
associativity and commutativity of addition and multiplication
and distributivity of multiplication over addition

Single function `int2lenw` in Standard ML to generate these from
the corresponding results for integers

showed word type in many of Isabelle’s arithmetical type classes

Therefore many automatic simplifications for these type classes are
available for the word type

Thus \(a + b + c = (b + d :: 'a :: len0\, \text{word}) \) is simplified
to \(a + c = d \) (uses Isabelle’s simplification procedures)
Simplifications of literals

Literal numbers syntax-translated, eg
5 becomes \texttt{number_of} \left(\texttt{Pls BIT B1 BIT B0 BIT B1}\right)

For words, define function \texttt{number_of} by

"\texttt{number_of} \left(\texttt{w::bin}\right) :: \ 'a::len0 word == \texttt{word_of_int} \ w"

Isabelle simplifies arithmetic expressions involving literal words by binary arithmetic (requires word type in class \texttt{number_ring})

Thus \(\left(6 + 5 :: \ 'a :: \texttt{len word}\right)\) gets simplified to 11 automatically, regardless of the word length

Further simplification from \(\left(11 :: \texttt{word2}\right)\) to 3 and from \texttt{iszero} \(\left(4 :: \texttt{word2}\right)\) to True depend on the specific word length

Simplifications for bit-wise (logical) operations depend on simplifications for \texttt{bin_and}, \texttt{bin_not}, etc (discussed earlier)

One ML function translates many logical identities on \texttt{bins} to words
Special-purpose simplification tactics

result (for words)

\[(x < x - z) = (x < z)\]

each inequality holds iff calculating \(x - z\) causes underflow

tactic \texttt{uint_pm_tac} useful for such goals:

- unfolds definitions, gets goal using \texttt{uint x, uint z} (integers) and case analysis (if \(z \leq x\) then \ldots else \ldots)
- for every \texttt{uint w} in the goal, inserts \(w \geq 0\) and \(w < 2^n\)
- solves using \texttt{arith_tac}, an Isabelle tactic for linear arithmetic

Similar tactic for \texttt{sint}: solved test for signed overflow: to prove that, in signed \(n\)-bit arithmetic, the addition \(x + y\) overflows, that is, \texttt{sint x} + \texttt{sint y} \(\neq\) \texttt{sint (x+y)}, iff the C language term

\[(((x+y)\& x) \& ((x+y)\& y)) >> (n - 1)\]

is non-zero.
Types containing information about word length

For example, `len_of TYPE(tb t1 t0 t1 t1 t1) = 23` because `t1 t0 t1 t1 t1` translates to the binary number 10111, i.e., 23

"`len_of TYPE(tb) = 0"`
"`len_of TYPE('a :: len t0) = 2 * len_of TYPE('a)"`
"`len_of TYPE('a :: len0 t1) = 2 * len_of TYPE('a) + 1""

We use the type class mechanism to prevent use of the type `tb t0` (corresponding to a binary number with a redundant leading zero)

Can also specify the word length and generate the type automatically. For goal "`len_of TYPE(?'a :: len0) = 23"", this instantiates the variable type `?'a` to `tb t1 t0 t1 t1 t1`

Brian Huffman of Galois Connections has developed types in a similar way, and syntax translation so that the length can be entered or printed out as part of the type.
Length-dependent exhaust theorems

\[
\text{goal } ((x :: \text{word}4) \gg 2) \| (y \gg 2) = (x \| y) \gg 2
\]

We could prove this by expanding
\[
x = \text{Pls BIT xa BIT xb BIT xc BIT xd}
\]
(similarly \(y\)) and calculating both sides by simplification.

To enable this we generate a theorem for each word length, eg
"[\| !!b ba bb bc bd.
\(w = \text{number_of (Pls BIT b BIT ba BIT bb BIT bc)} \Rightarrow P;\)
\(\text{size } w = 4 \|] \Rightarrow P"

also theorems to express a word as a list of bits; eg, for \(x\) of length 4, expressing \(\text{to_bl } x\) as \([xd, xc, xb, xa]\)