
Introduction The word-n theories

Isabelle Theories for Machine Words

Jeremy Dawson

Logic and Computation Program, NICTA 1

Automated Reasoning Group,

Australian National University, Canberra, ACT 0200, Australia

http://users.rsise.anu.edu.au/∼jeremy/

August 29, 2007

1National ICT Australia is funded by the Australian Government’s Dept of

Communications, Information Technology and the Arts and the Australian

Research Council through Backing Australia’s Ability and the ICT Centre of

Excellence program.

http://users.rsise.anu.edu.au/~jeremy/

Introduction The word-n theories

Outline

1 Introduction
The Isabelle theorem prover
Comparing Related Work

2 The word-n theories
Numerical n-bit quantities: the bin and obin types

Using datatype-like properties of bins

The type of fixed-length words of given length
Sets isomorphic to the set of words
Simplifications for arithmetic expressions
Miscellaneous techniques

Introduction The word-n theories

Outline

1 Introduction
The Isabelle theorem prover
Comparing Related Work

2 The word-n theories
Numerical n-bit quantities: the bin and obin types

Using datatype-like properties of bins

The type of fixed-length words of given length
Sets isomorphic to the set of words
Simplifications for arithmetic expressions
Miscellaneous techniques

Introduction The word-n theories

Introduction

NICTA’s L4.verified project: to provide a mathematical,
machine-checked proof of the correctness of the L4 microkernel

In formally verifying machine hardware, we need to be able to
systematically deal with the properties of machine words. These
differ from ordinary numbers in that, for example,

addition and multiplication can overflow, with overflow bits
being lost,

and there are bit-wise operations which are simply defined in a
natural way.

Introduction The word-n theories

The Isabelle theorem prover

Logical framework: logic (“meta-logic”) is intuitionistic
polymorphically-typed higher-order logic

Choice of “object logic”: we use HOL, “Higher-Order Logic”:

uses type system of meta-logic
classical
Axiom of Choice

This HOL object logic inspired by HOL theorem prover

Both Isabelle and HOL are LCF-based, written in Standard ML

User interaction via Standard ML or Isar

Introduction The word-n theories

Related Work in the HOL prover

Wai Wong

words are lists of bits.

The type is all words of any length;

Some theorems conditional on word length

Bit-wise operations, but no arithmetic operations.

Introduction The word-n theories

Related Work in the HOL prover

Wai Wong

words are lists of bits.

The type is all words of any length;

Some theorems conditional on word length

Bit-wise operations, but no arithmetic operations.

Fox

machine word type is isomorphic to the naturals,

W32 n is the word with unsigned value n mod 232.

equality of machine words is not equality of their
representations.

Introduction The word-n theories

Related Work in the HOL prover

Wai Wong

words are lists of bits.

The type is all words of any length;

Some theorems conditional on word length

Bit-wise operations, but no arithmetic operations.

Fox

machine word type is isomorphic to the naturals,

W32 n is the word with unsigned value n mod 232.

equality of machine words is not equality of their
representations.

Harrison

encodes vectors of dimension n of (reals, bits, etc)

a type cannot be parameterised over the value n.

uses type N → A, where N is a type with exactly n values.

Introduction The word-n theories

Other Related Work

PVS

in PVS, a type can be parameterised over a value n

a bit-vector is a function from {0, . . . ,N − 1} to the booleans

PVS bit-vector library provides interpretations of a bit-vector
as unsigned or signed integers

may be better when concatenating or splitting words
(involving words of length n, m, n + m)

Introduction The word-n theories

Our Formalisation

each type of words in our formalization is of a given length.

word types related to integers mod 2n and to lists of booleans

many results re arithmetic and logical (bit-wise) operations.

recent collaboration with Galois Connections
(theirs more general: integers modulo m, for ours m = 2n).

Lots of operations on words which are not discussed here

Isabelle code files are available

Introduction The word-n theories

Outline

1 Introduction
The Isabelle theorem prover
Comparing Related Work

2 The word-n theories
Numerical n-bit quantities: the bin and obin types

Using datatype-like properties of bins

The type of fixed-length words of given length
Sets isomorphic to the set of words
Simplifications for arithmetic expressions
Miscellaneous techniques

Introduction The word-n theories

the bin type

Isabelle’s bin type explicitly represents bit strings, important as

used for encoding numbers literally, an integer entered is
converted to a bin, thus read "3" gives
number of (Pls BIT B1 BIT B1 :: bin)

much built-in numeric simplification for numbers expressed as
bins, for example for negation, addition and multiplication,
using usual rules for twos-complement integers.

Introduction The word-n theories

the old and new bin types

Isabelle had changed: formerly bin was a datatype: constructors

Pls (a sequence of 0, extending infinitely leftwards)

Min (a sequence of 1, extending infinitely leftwards) (for the
integer −1)

BIT (where (w::bin) BIT (b::bool) is w with b appended
on the right)

Now call these oPls, oMin, OBIT, for the datatype obin.

After the change (in Isabelle 2005) bin is an abstract type,
isomorphic to the set of all integers
w BIT b = 2w + b Pls = 0 Min = -1

Introduction The word-n theories

Natural definitions using the obin datatype

Using obin datatype allows natural definition of functions by their
action on bits

primrec

obin not Pls : "obin not oPls = oMin"

obin not Min : "obin not oMin = oPls"

obin not OBIT :

"obin not (w OBIT x) = (obin not w OBIT Not x)"

Defining arithmetic operations: close to twos-complement
arithmetic as in the hardware

Easy to be sure that it is accurate: this is important for formal
verification!!

Introduction The word-n theories

Normalising obins

We normalise an obin by changing oPls OBIT False to oPls, as
they represent the same sequence of bits
and likewise oMin OBIT True to oMin.

Set of normalised obins isomorphic to the set of integers,
via the usual twos-complement representation (PROVE IT!)

This issue added to the complexity of using obins

Introduction The word-n theories

More problems of using the obin type

need to deal with words entered literally: 6 :: ’a word is read
as number of (Pls BIT B1 BIT B1 BIT B0)

need simplifications for bit-wise (eg) conjunction of such bins

As bin is not a datatype, we first defined bin and from obin and

bin and def : "bin and v w ==

onum of (obin and (int to obin v, int to obin w))"

Lots of simplification theorems about obins had to be transferred
to bins — complex programming required

Introduction The word-n theories

Using datatype-like properties of bins

Want to define functions in terms of the bit-representation of a bin

What properties of bin type resemble properties of a datatype?

The properties of a datatype are:
1

Different constructors give distinct values
2

Each constructor is injective (in each of its arguments)
3

All values of the type are obtained using the constructors

consider bin type with “pseudo-constructors” Pls, Min and BIT

In terms of these “pseudo-constructors” 2 and 3 above hold: in
fact 3 holds using BIT alone

Introduction The word-n theories

Defining functions on bins

Those properties give these theorems; bin exhaust enables us to
express any bin appearing in a proof as w BIT b

BIT eq = "u BIT b = v BIT c ==> u = v & b = c"

bin exhaust = "(!!x b. bin = x BIT b ==> Q) ==> Q"

bin rl def : "bin rl w == SOME (r, l). w = r BIT l"

Since there is a unique choice of r and l to satisfy w = r BIT l,
this means that bin rl (r BIT l) = (r, l)

Induction principle for bins:
bin induct = "[| P Pls; P Min;

!!bin bit. P bin ==> P (bin BIT bit) |] ==> P bin"

Introduction The word-n theories

Imitating primitive recursion for bins

To define a function f by primitive recursion,
if bin were a datatype with its three constructors, require

values vp and vn for f Pls and f Min,

a function fr, where f (w BIT b) is given by fr w b (f w)

So, using Isabelle’s recdef (for recursive functions), we defined

bin rec : α → α → (int → bit → α → α) → int → α

which, given vp vn and fr, returns a function f satisfying
f Pls = vp

f Min = vn

and, except where w BIT b equals Pls or Min,
f (w BIT b) = fr w b (f w)

Usually we can prove that this last equation holds for all w and b

Introduction The word-n theories

Examples of definitions on bins

bin not def : "bin not == bin rec Min Pls

(%w b s. s BIT bit not b)"

After making these definitions, the simplification rules in the
desired form (such as those shown below) need to be proved.

bin not simps = [... ,

"bin not (w BIT b) = bin not w BIT bit not b"]

Proving these was fairly straightforward

Introduction The word-n theories

Examples of definitions on bins

bin not def : "bin not == bin rec Min Pls

(%w b s. s BIT bit not b)"

After making these definitions, the simplification rules in the
desired form (such as those shown below) need to be proved.

bin not simps = [... ,

"bin not (w BIT b) = bin not w BIT bit not b"]

Proving these was fairly straightforward

bin and def : "bin and == bin rec (%x. Pls) (%y. y)

(%w b s y. s (bin rest y) BIT bit and b (bin last y))"

bin and Bits = "bin and (x BIT b) (y BIT c) =

bin and x y BIT bit and b c"

Introduction The word-n theories

A type for n-bit quantities

Need to set up a type in which the length of words is implicit.

dependent types not allowed: lists of length n cannot be a type

Our solution: the type of words of length n is α word

where the word length can be deduced from the type α.

We use len of TYPE(α) for the word length. TYPE(α) is a
polymorphic value (a “canonical” value for each type)

len of :: "’a :: len0 itself => nat"

word size : "size (w :: ’a word) = len of TYPE(’a)"

user must define the value of len of TYPE(α) for each specific α.

Introduction The word-n theories

Constructing n-bit quantities; the type definition:

“truncation” functions bintrunc (unsigned),
and sbintrunc (signed) to create n-bit quantities.

cut down a longer argument by deleting high-order bits.

extend a shorter argument it to the left with zeroes
(unsigned) or its most significant bit (signed)

Isabelle typedef defines a new type isomorphic to a given set.

typedef ’a word = "uword len (len of TYPE(’a))"

"uword len len == range (bintrunc len)"

Introduction The word-n theories

Isomorphisms of set of words

type of words of length n defined isormorphic to
range (bintrunc n), but also isomorphic to the set of

integers in the range 0 . . . 2n − 1

integers in the range −2n−1 . . . 2n−1 − 1

naturals up to 2n − 1

lists of booleans of length n

functions f : nat → bool such that for i ≥ n, f i = False

Introduction The word-n theories

Pseudo type definition theorems

defining new type α from S : ρ set gives

Abs : ρ → α and Rep : α → ρ:

mutually inverse bijections between S and the values of type α

nothing known about values of Abs outside S

Theorem (axiom) type definition α created for the new type α

type definition Rep Abs S

We can use the predicate type definition to express the other
isomophisms of the set of n-bit words mentioned above

We used SML functors to prove a collection of useful consequences
of each such isomophism (can also use locales)

Introduction The word-n theories

Extended type definition theorems

type definition theorems do not say anything about the action of
Abs outside the set S

But our Abs functions behave “sensibly” outside S

Thus word of int (ie, Abs) which turns an integer in 0 . . . 2n − 1
into a word, takes i and i ′ to the same word iff i ≡ i ′ (mod 2n)

Call Rep ◦ Abs normalise, norm. (eg, norm i = i (mod 2n))

Say x is normal if x = norm y for some y , iff x = norm x

In many cases, have extended “extended type definition theorems”,
of the form td ext Rep Abs A norm

Generated numerous results from each of these eg
norm ◦ Rep = Rep, and Abs ◦ norm = Abs

Introduction The word-n theories

Simplifications for arithmetic expressions

Certain arithmetic equalities hold for words, eg
associativity and commutativity of addition and multiplication
and distributivity of multiplication over addition

Single function int2lenw in Standard ML to generate these from
corresponding results for integers

showed word type in many of Isabelle’s arithmetical type classes

Therefore many automatic simplifications for these type classes are
available for the word type

Thus a + b + c = (b + d :: ’a :: len0 word) is simplified
to a + c = d (uses Isabelle’s simplification procedures)

Introduction The word-n theories

Simplifications of literals

Literal numbers syntax-translated, eg
5 becomes number of (Pls BIT B1 BIT B0 BIT B1)

For words, define function number of by
"number of (w::bin) :: ’a::len0 word == word of int w"

Isabelle simplifies arithmetic expressions involving literal words by
binary arithmetic (requires word type in class number ring)

Thus (6 + 5 :: ’a :: len word) gets simplified to 11

automatically, regardless of the word length

Further simplification from (11 :: word2) to 3 and from iszero

(4 :: word2) to True depend on the specific word length

Simplifications for bit-wise (logical) operations depend on
simplifications for bin and, bin not, etc (discussed earlier)

One ML function translates many logical identities on bins to words

Introduction The word-n theories

Special-purpose simplification tactics

result (for words) "(x < x - z) = (x < z)":
each inequality holds iff calculating x − z causes underflow

tactic uint pm tac useful for such goals:

unfolds definitions, gets goal using uint x, uint z (integers)
and case analysis (if z ≤ x then . . . else . . .)

for every uint w in the goal, inserts w ≥ 0 and w < 2n

solves using arith tac, an Isabelle tactic for linear arithmetic

Similar tactic for sint: solved test for signed overflow: to prove
that, in signed n-bit arithmetic, the addition x + y overflows, that
is, sint x + sint y 6= sint (x+y), iff the C language term
(((x+y)∧x) & ((x+y)∧y)) >> (n - 1) is non-zero.

Introduction The word-n theories

Types containing information about word length

For example, len of TYPE(tb t1 t0 t1 t1 t1) = 23 because
t1 t0 t1 t1 t1 translates to the binary number 10111, ie, 23

"len of TYPE(tb) = 0"

"len of TYPE(’a :: len t0) = 2 * len of TYPE(’a)"

"len of TYPE(’a :: len0 t1) = 2 * len of TYPE(’a) + 1"

We use the type class mechanism to prevent use of the type tb t0

(corresponding to a binary number with a redundant leading zero)

Can also specify the word length and generate the type
automatically. For goal "len of TYPE(?’a :: len0) = 23",
this instantiates the variable type ?’a to tb t1 t0 t1 t1 t1

Brian Huffman of Galois Connections has developed types in a
similar way, and syntax translation so that the length can be
entered or printed out as part of the type.

Introduction The word-n theories

Length-dependent exhaust theorems

goal ((x :: word4) >> 2) || (y >> 2) = (x || y) >> 2

We could prove this by expanding
x = Pls BIT xa BIT xb BIT xc BIT xd

(similarly y) and calculating both sides by simplification

To enable this we generate a theorem for each word length, eg
"[| !!b ba bb bc bd.

w = number of (Pls BIT b BIT ba BIT bb BIT bc) ==> P;

size w = 4 |] ==> P"

also theorems to express a word as a list of bits; eg, for x of length
4, expressing to bl x as [xd, xc, xb, xa]

	Introduction
	The Isabelle theorem prover
	Comparing Related Work

	The word-n theories
	Numerical n-bit quantities: the bin and obin types
	The type of fixed-length words of given length
	Sets isomorphic to the set of words
	Simplifications for arithmetic expressions
	Miscellaneous techniques

