
Machine-checked Interpolation Theorems for
Substructural Logics using Display Calculi

Jeremy E. Dawson1⋆, James Brotherston2⋆⋆, and Rajeev Goré1

1 Research School of Computer Science, Australian National University
2 Queen Mary College, University of London, UK

Abstract. We give mechanised proofs of Craig interpolation for a class
of propositional substructural logics using display calculi.
We discuss the difficulties caused by various rules, such as the binary
logical introduction rules in their additive and multiplicative forms, and
the weakening and unit weakening rules.
We also describe the differences between our proofs and those of Broth-
erston and Goré, differences motivated by the ease of formalising the
definitions used in intermediate lemmas, and we detail how we proved
the more difficult cases, such as the weakening rules and the multiplica-
tive binary logical introduction rules.
Finally, we discuss the value for this work of using a prover with a pro-
grammable user interface (in our case, Isabelle with its Standard ML
interface).

Keywords: Craig interpolation, display logic, interactive theorem prov-
ing, proof theory

1 Introduction

In calculi for logical entailment, Craig interpolation is the property that for any
entailment A ⊢ B between formulae, there exists an interpolant formula I such
that A ⊢ I and I ⊢ B are both entailments of the calculus, while I mentions
only those variables or nonlogical constants that are common to both A and B.
It has long been known that there are close connections between interpolation
and other central logical concerns (see e.g. [7]); indeed, one of Craig’s origi-
nal applications of interpolation was to give a new proof of Beth’s Definability
Theorem [4]. More recently, though, it has transpired that interpolation has sig-
nificant applications in program verification as well. For example, in inferring
the invariants of program loops [9], and in model checking [3].

Recently, Brotherston and Goré [2] gave a modular proof of interpolation for
a class of propositional substructural logics, based on Belnap’s display logic [1].
Roughly speaking, display calculi are two-sided sequent calculi equipped with
a richer-than-usual notion of sequent structure and a principle by which se-
quents can be rearranged so as to “display” any chosen substructure as the

⋆ Supported by Australian Research Council Discovery Grant DP120101244
⋆⋆ Supported by an EPSRC Career Acceleration Fellowship

entire left or right hand side (much like rearranging a mathematical equation
for a chosen variable). The main attraction of display calculi is Belnap’s general
cut-elimination result, which says that cut-elimination holds for any display cal-
culus whose rules satisfy 8 easily verifiable syntactic conditions. Cut-elimination
is generally essential to the standard proof-theoretic approach to interpolation,
which is to proceed by induction on cut-free derivations. Despite the availability
of a general cut-elimination result, however, there seem to have been no proofs
on interpolation based on display calculi prior to [2], probably due to the inher-
ent complexity of their sequent structure and display principles. Indeed, in line
with this general expectation, Brotherston and Goré’s proof is very technical,
involving many case distinctions, and many intricate properties of substitutions.
Moreover, due to space restrictions, most of the proofs are only sketched, leav-
ing the potential for errors. Thus it makes sense to verify these intricate details
using an interactive theorem prover, to give us greater confidence in their very
general interpolation theorems.

In this paper, we report on the Isabelle formalisation of their results. We
discuss the difficulties in formalising their proofs and describe the consequent
differences between their proofs and ours. We also highlight the usefulness of a
programmable user interface.

Isabelle is an automated proof assistant. Its meta-logic is an intuitionistic
typed higher-order logic, sufficient to support the built-in inference steps of
higher-order unification and term rewriting. Isabelle accepts inference rules of
the form α1, α2, . . . , αn,=⇒ β where the αi and β are expressions of the Isabelle
meta-logic, or are expressions using a new syntax, defined by the user, for some
“object logic”. Most users build on one of the comprehensive “object logics”
already supplied, like Isabelle/HOL which is an Isabelle theory based on the
higher-order logic of Church HOL offers inductively defined sets, and recursive
datatypes, which we use extensively.

In the paper we show some Isabelle code, edited to use mathematical symbols.
In it, a ‘?’ precedes a variable name. The Appendix gives the actual Isabelle text
of many definitions and theorems. Our Isabelle code can be found at http:

//users.cecs.anu.edu.au/~jeremy/isabelle/2005/interp/. HOW MANY
LINES FOR THIS WORK?

In Section 3, we briefly describe Display Logic, and the system defined in [2].
We outline our approach to proving interpolation for the Display Logic system
of [2].

2 Display calculi for (some) substructural logics

We now recall the class of display calculi for which Craig interpolation is estab-
lished in [2].

We assume a fixed infinite set of propositional variables. Formulae F and
structures X are then given by the following grammars, where P ranges over

2

propositional variables:

F ::= P | ⊤ | ⊥ | ¬F | F & F | F ∨ F | F → F | ⊤a | ⊥a | F &a F | F ∨a F

X ::= F | ∅ | ♯X | X ; X

Formula connectives with an “a” subscript stand for an additive version of that
connective, while connectives without a subscript are construed as multiplicative.
However, in the Isabelle formulation we do not duplicate the connectives in this
way — rather, we identify which logical rules for which our various results apply.
We write F,G etc. to range over formulae and W,X, Y, Z etc. to range over
structures. If X and Y are structures then X ⊢ Y is a consecution.

The complete set of proof rules for our display calculi is given in Figure 13. As
usual, we begin by giving a set of display postulates, and taking the least equiva-
lence closed under the postulates to be our notion of display-equivalence. We then
have the usual display theorem, which says that for any structure occurrence Z
in a consecution X ⊢ Y , one has either X ⊢ Y ≡D Z ⊢ W or X ⊢ Y ≡D W ⊢ Z
for some W , depending on whether Z occurs positively or negatively in X ⊢ Y .
Rearranging X ⊢ Y into Z ⊢ W or W ⊢ Z in this way is called displaying Z. We
remark that the display postulates “build in” commutativity of the structural
semi-colon, so that we consider only calculi for commutative logics.

Brotherston and Goré [2] consider the additive rules, collectively, and each
structural rule, individually, to be optional inclusions in their calculi. At present,
our mechanisation assumes the presence of the unit rules (∅WL), (∅WR), (∅CL),
(∅CR) and the associativity rule (α). Thus the smallest display calculus we con-
sider gives multiplicative linear logic MLL. By adding the additive logical rules
we obtain multiplicative-additive linear logic MALL, and by adding the full
weakening rule (W) or the full contraction rule (C) we obtain affine or strict vari-
ants of these logics, respectively. Note that rules for weakening and contraction
on the right can be derived using the display postulates from the corresponding
left rules. Of course, if we add both weakening and contraction then we obtain
standard classical propositional logic.

No matter which variant of these display calculi we consider, we have the
standard cut-elimination result due to Belnap. Since we omit the cut rule from
our presentation of the display calculi in Figure 1, we state it here in the weaker
form of cut admissibility :

Theorem 1 (cf. [2]). If X ⊢ F and F ⊢ Y are both provable then so is X ⊢ Y .
Moreover, this property is not affected by the presence or otherwise of the additive
logical rules (collectively), or of any of the structural rules.

3 Interpolation for Display Calculi

In traditional sequent calculi, it is fairly straightforward to decorate each rule
with interpolants by building up the interpolant for the conclusion sequent from

3 how to stop this going to the end of the document?

3

the interpolants for the premise sequents. this approach is harder in display cal-
culi since the sequent X ⊢ Y goes through many transformations while display-
ing some substructure Z. Brotherston & Goré therefore consider the following
(LADI) property [2, Definition 3.4]:

(LADI): a rule with premises Ci and conclusion C satisfies the local AD dis-
play interpolation property (LADI), if given that, for all premises Ci, all sequents
C′
i such that C′

i ≡AD Ci satisfy the interpolation property, all sequents C′ such
that C′ ≡AD C satisfy the interpolation property.

Although Brotherston and Goré [2] give the separate variants of the logical
connectives ⊤,⊥,∧ and ∨ for the additive and multiplicative forms of the log-
ical introduction rules, we just use one connective for each of ⊤,⊥,∧ and ∨.
Although the additive and multiplicative forms are equivalent in the presence
of contraction and weakening, [2] contains results which are relevant to the sit-
uation where not all structural rules are included. Thus they prove results for
the both rules shown below, even though the second rule is much easier to deal
with.

X ⊢ A Y ⊢ B

X,Y ⊢ A ∧B

X ⊢ A X ⊢ B

X ⊢ A ∧B

In the work described here, we first considered the second (additive) rule shown;
we subsequently developed a proof dealing with the first (multiplicative) rule
directly.

4 The Isabelle mechanisation

Our mechanisation builds on the work of Dawson & Goré [5] in formalising
Display Logic. Some of our notation and choices of properties, lemmas, etc, are
attributable to this. In particular, we use Comma, Star and I for ‘;’, ‘#’ and ‘∅’.

The work in [5] is a deep embedding of rules and of the variables in them,
and we have followed that approach here (see [6] for our understanding of what
this means, and for more details). That is, we define a language of formulae and
structures, which contains explicit structure and formula variables, for which we
define explicit substitution functions. We also define the rules as specific data
structures (of which there is a small finite number, such as those in Figure 1),
and infinitely many substitution instances of these rules.

4.1 Formalising Display Logic in Isabelle

An actual derivation in a Display Calculus involves structures containing formu-
lae which are composed of primitive propositions (which we typically represent
by p, q, r). It uses rules which are expressed using structure and formula variables,
typically X,Y, Z and A,B,C respectively, to represent structures and formulae
made up from primitive propositions. We are using a “deep embedding” of vari-
ables, so our Isabelle formulation explicitly represents variables such as X,Y, Z
and A,B,C, and defines substitution for them of given structures and formulae,
which may themselves contain variables. In our Isabelle formulation we use SV

4

name and FV name to represent formula and structure variables. The constructor
PP represents a primitive proposition variable p.

Formulae are therefore represented by the datatype below:

datatype formula = Btimes formula formula ("_ && _" [68,68] 67)

| Bplus formula formula ("_ v _" [64,64] 63)

| Bneg formula ("--_" [70] 70)

| Btrue ("T") | Bfalse("F")

| FV string | PP string

Structures are represented by the datatype below:

datatype structr = Comma structr structr

| Star structr | I | Structform formula | SV string

The operator Structform “casts” a formula into a structure, since a formula is
a special case of a structure.

The notation in parentheses in the definition of datatype formula describe
an alternative infix syntax, closer to normal logical syntax. Some complex ma-
nipulation of the syntax, available through Isabelle’s “parse translations” and
“print translations”, allows structure variables and constants to be prefixed by
the symbol $, and the notations FV, SV and Structform to be omitted.

Sequents and rules are represented by the Isabelle/HOL datatypes:

datatype sequent = Sequent structr structr

datatype rule = Rule (sequent list) sequent

Rule prems concl means a rule with list of premises prems and conclusion
concl. A sequent (Sequent X Y) can also be represented as $X |- $Y. Thus
the term Sequent (SV ’’X’’) (Structform (FV ’’A’’)) is printed, and may
be entered, as ($’’X’’ |- ’’A’’).

Since a “deep” embedding requires handling substitution explicitly, we de-
fined functions to substitute for structure and formula variables, in structures,
sequents and rules. In particular, we have a operator

rulefs :: "rule set => rule set"

where rulefs rules is the set of substitution instances of rules in the set rules.
Also, when we refer to derivability using a set of rules, this allows inferences using
substitution instances of these rules, and derivableR rules sequents means the
set of sequents which can be derived from sequents using rules, instantiated.

derivableR :: "rule set => sequent set => sequent set

We also use some general functions to describe derivability, for which we had
many useful lemmas. A more detailed expository account of these is given in [8].

types ’a psc = "’a list * ’a" (* single step inference *)

consts

derl :: "’a psc set => ’a psc set"

derrec :: "’a psc set => ’a set => ’a set"

5

An inference rule of type ’a psc is a list of premises ps and a conclusion c.
Then derl rls is the set of rules derivable from the rule set rls while derrec

rls prems is the set of sequents derivable using rules rls from the set prems of
premises. We defined these using Isabelle’s package for inductively defined sets.

Note that these functions do not envisage instantiation of rules. In fact,
we have the following relationship between derivableR and derrec, using a
function PC, defined as shown, to translate between types.

"PC (Rule ?prems ?concl) = (?prems, ?concl)"

"derivableR ?rules == derrec (PC ‘ rulefs ?rules)"

The “deep embedding” approach to rules enables us to express properties
of rules, such as that no structure variable appears in both antecedent and
succedent positions; some of our lemmas apply to all display postulates satisfying
conditions of this sort. We used this in [5] in showing that cut-admissibility
applies whenever the structural rules were all of a particular form (as in Belnap’s
cut elimination theorem). In regards to interpolation, possible future work may
include showing that interpolation results hold whenever rules are of a particular
form, but our present work (except for some lemmas) do not do this.

The work in [5] is also a deep embedding of proofs (where we took proof
objects and explicitly manipulated them) but we have not done that here.

4.2 Definitions relating to interpolation

We define the following sets of rules:

dps: is the set of six display postulates in [2, Definition 2.5] (Display-equivalence)
aidps: is dps, their inverses, and the associativity rule (ie, 13 rules)
ilrules: is the unit-contraction and unit-weakening rules
rlscf: is the set of all rules of the logic as shown in [2, Figures 1 and 3], plus

aidps (but, to shorten the verification task, we omitted the rules for impli-
cation →)

rlscf nw: is as rlscf, but excluding the weakening rule

We define several predicates to do with interpolation:

interp :: "rule set => sequent => formula => bool"

edi :: "rule set => rule set => sequent => bool"

ldi :: "rule set => rule set => sequent list * sequent => bool"

cldi :: "rule set => rule set => sequent list * sequent => bool"

interp rules (X ⊢ Y) intp says that intp is an interpolant for X ⊢ Y , ie,
that X ⊢ intp and intp ⊢ Y are derivable (using rules) and that the (formula)
variables in intp are among the formula variables of the structures X and Y .

edi lrules drules (X ⊢ Y) (Extended Display Interpolation) says that for all
sequents X ′ ⊢ Y ′ from which X ⊢ Y is derivable using lrules, X ′ ⊢ Y ′ has an
interpolant (defined in terms of derivability using drules) (lrules would typically
be a set of display postulates)

6

ldi lrules drules (ps, c) (Local Display Interpolation) says that the rule (ps, c)
preserves the property edi: that is, if, for all p ∈ ps, edi lrules drules p holds,
then edi lrules drules c holds. That is, if lrules is the set AD of rules (our
aidps), and drules is the set of rules of the logic, then the localAD-interpolation
(LADI) property as defined in [2, Definition 3.4], for rule (ps, c), is that ldi lrules
aidps (ps, c) holds.

Note that none of these definitions involves a condition that X ⊢ Y be deriv-
able. Of course, cut-admissibility would imply that if X ⊢ Y has an interpolant
then X ⊢ Y is derivable, but we avoid proving or using cut-admissibility. Even
so, in most cases we do not need such a condition. However we do need X ⊢ Y
in the case of a sequent I ⊢ Y,#X produced by weakening and displaying I.
Thus we need a predicate with that condition:

cldi lrules drules (ps, c) (Conditional Local Display Interpolation) says that
if c is is derivable using drules, then ldi lrules drules (ps, c) holds.

However we also need variants of these predicates, called interpn, edin,
ldin and cldin, where the derivation of interpolated sequents is from a given
set of rules, rather than from given rules and their substitution instances. We use
these in some subsequent lemmas which involve rule sets which are not closed
under substitution.

We mention here that many of our lemmas about these properties assume,
although we do not specifically say so, that AD (rule set aidps) is used as
lrules in the above definitions, and that the derivation rules, drules in the above
definitions, contain the AD rules.

Lemma 3.5 of [2] says that if all rules satisfy the local AD-interpolation
property, then the calculus has the interpolation property. In fact the stronger
result, Lemma 1(a) is true, that LADI is preserved under derivation. But for
the conditional local display interpolation property, a result analogous to the
first-mentioned, only, of these results holds: see Lemma 1(b)¿

Lemma 1 (ldi derl, cldi ex interp).

(a) if a set of rules each satisfies the local display interpolation property, then so
does a rule derived from them

(b) if all the derivation rules satisfy the conditional local AD-interpolation prop-
erty, then the calculus has the interpolation property

4.3 Substitution of congruent occurrences

In [2, Lemmas 3.6, 3.7] the concept of congruent occurrences of some structure
Z is used, with substitution for such congruent occurrences. Where two sequents
C and C′ are related by a display postulate, or sequence of them, a particular
occurrence of Z in C will correspond to a particular occurrence of Z in C′,
according to the sequence of display postulates used to obtain C′ from C.

This concept looked rather difficult to define and express precisely and for-
mally (we note that the in the notation in [2], C[Z/A] ≡AD C′[Z/A], the meanings
of C[Z/A] and C′[Z/A] depend on each other).

7

So we adopted the alternative approach, used successfully in [5]: rather than
trying to define C′[Z/A] we would prove that there exists a sequent (call it C′

Z/A)

satisfying C[Z/A] ≡AD C′
Z/A and safisfying the property that some occurrences

of A in C′ are replaced by Z in C′
Z/A. This approach turned out to be sufficient

for all the proofs discussed in this paper.

In the proofs of cut-elimination in [5] we defined and used a relation seqrep,
defined as follows.

seqrep : "bool => structr => structr => (sequent * sequent) set"

Definition 1 (seqrep). (U, V) ∈ seqrep b X Y means that some (or all or
none) of the occurrences of X in U are replaced by Y in V ; otherwise X and
Y are the same; the occurrences of X which are replaced by Y must all be in
succedent or antecedent position according to whether b is true or false

For this we write U X
❀

Y V , where the appropriate value of b is understood.

Analogous to Lemma 3.9 we proved the following result about derivation
using a set of inference rules satisfying:

– their conclusions do not contain formulae

– their structure variables are distinct

– (Belnap’s C4 condition) when the conclusion and a premise of a rule both
contain a structure variable, then both occurrences are in antecedent or both
are in succedent positions

(in Lemma 3.9 this sset of rules is the AD rules).

Lemma 2 (SF some sub). Where, for a formula F and structure Z,

– “derivable” means using a set of rules satisfying the conditions above

– if concl is derivable from prems

– if concl F
❀

Z sconcl

then there exists a list sprems such that

– sconcl is derivable from sprems

– if premn and spremn are corresponding members of prems and sprems, then
premn

F
❀

Z spremn

Note that although we will use this where ?rules is a set of display postu-
lates, this theorem does not require that the rules have only a single premise.

The proof of this result used some results proved previously for the cut-
elimination work [5], notably extSubs, which gives, essentially, a constructive
expression for sprems..

8

4.4 Local Display Interpolation for Unary Rules

Proposition 3.10 of [2] covers the display postulates, the associativity rule, and
the nullary or unary logical introduction rules.

The first case ((≡D), that is, any sequence of display postulates) of [2, Propo-
sition 3.10] is covered by the following result (which holds independent of the
choice of set of derivation rules).

Lemma 3 (bi lrule ldi lem). Let rule ρ be a substitution instance of a rule
in AD. Then ρ has the LADI property.

The cases (Id), (⊤R) and (⊥L) of Proposition 3.10 would be trivial if it were
true that nothing else is display-equivalent to their conclusions; this is not so,
but we can use this lemma:

Lemma 4 (non bin lem gen). Assume the derivation rules include the rules
for ¬. Consider a substitution instance ρ of a rule in AD, whose premise does
not contain any comma. Then, if the premise of ρ has an interpolant then so
does the conclusion of ρ.

Since the conclusions of the three nullary rules (Id), (⊤R) and (⊥L) clearly
themselves have interpolants, Lemma 4 shows they satisfy the extended display
interpolation property, and so the rules have the LADI property.

Proposition 1. The rules (Id), (⊤R) and (⊥L) satisfy the LADI property.

The remaining cases of Proposition 3.10 are the logical introduction rules
with a single premise.

For these we use the four lemmas (of which one is shown)

Lemma 5 (sdA1). if
Y ′ ⊢ U

Y ⊢ U
is a logical introduction rule, and W Y

❀
Y ′

W ′,

then
W ′ ⊢ Z

W ⊢ Z
is derivable (ie, using AD and the logical introduction rules)

Then from these lemmas we get

Lemma 6 (seqrep interpA). if
Y ′ ⊢ U

Y ⊢ U
is a logical introduction rule, formula

variables in Y ′ also appear in Y , W ⊢ Z Y
❀

Y ′

W ′ ⊢ Z ′ (in antecedent positions),
and I is an interpolant for W ′ ⊢ Z ′, then I is also an interpolant for W ⊢ Z

Finally we get the following result which gives Proposition 3.10 for single
premise logical introduction rules.

Proposition 2 (logA ldi). if
Y ⊢ U

F ⊢ U
(F a formula) is a logical introduction

rule where the formula variables in Y are also in F , then that rule satisfies the
LADI property

This last result requires the use of SF some sub (above). We have analogous
results for a logical introduction rule for a formula on the right.

9

4.5 Binary Additive Logical Introduction Rules

We now discuss extending the results for unary logical introduction rules to
the binary rules in the additive form; that is, where the rule contains a single
structure variable which appears uniformly in the premises and conclusion.

This involved, first, defining an analogue of seqrep, which we called lseqrep.
As with seqrep, we use the notation U Y

❀
Y s Us

lseqrep : "bool => structr => structr list => (sequent * sequent list) set"

Definition 2 (lseqrep). (U,Us) ∈ lseqrep b Y Y s means that there is some
occurrence of Y in U such that the nth member of Us is obtained from U by
changing the occurrence of Y to the nth member of Y s

Note that, in contrast to seqrep, this definition involves exactly one occur-
rence of Y in U .

Thus we have a result mextSubs which is analogous to extSubs, a complicated
result which gives, constructively, the spremss of the following theorem.

From there we proved SF some1sub, analogous to SF some sub. In this case
the rules must satisfy a slightly stricter set of requirements:

– their conclusions do not contain formulae
– each premise contains the same structure variables, in antecedent positions

and in succedent positions, as the conclusion
– the structure variables of the conclusion and of each premise are distinct

Lemma 7 (SF some1sub). Where, for a formula F and list Z of structures,

– “derivable” means using a set of rules satisfying the conditions above
– if concl is derivable from prems

– if concl F
❀

Zs sconcls

then there exists spremss (this is a list of lists of sequents) where

– for each premn in prems, let spremsn be the corresponding member of spremss,
then premn

F
❀

Zs spremsn
– each member of sconcls is derivable from the corresponding member of each

list in spremss

Then, corresponding to Lemma 5 (sdA1) in §4.4, we have a lemma msdA1 (and
its three more counterparts). This is like Lemma 5 except that, in its statement,
Y ′ and W ′ can be lists.

Then, corresponding to Lemma 6 (seqrep interpA), we have the following
lemma: again, the difference is that in the statement of Lemma 6, we replace Y ′

by a list of structures and W ′ ⊢ Z ′ by a list of sequents.

Lemma 8 (lseqrep interpA). if a logical introduction rule has conclusion Y ⊢ U
and premises Yi ⊢ U for Yi ∈ Y s, formula variables in each Yi also appear in
Y , W ⊢ Z Y

❀
Y s Ss (in antecedent positions), and for each Si = Wi ⊢ Zi ∈ Ss

there exists an interpolant, then there exists an interpolant for W ⊢ Z

10

There are two major cases in the proof: all the sequents Wi are the same,
or all the sequents Zi are the same. This is because the relation S Z

❀
Zs Ss

means that there is exactly one location in S where the Ss differ from S. In
those cases the proof uses the conjunction or disjunction, respectively, of a list
of interpolants. Of course this idea is taken from the proof of [2, Theorem 3.10].

From there we get the result mlogA ldi, analogous to logA ldi, which basi-
cally says that additive logical rules satisfy the local display interpolation prop-
erty. Analogous results for a logical introduction rule for a formula on the right
are lseqrep interpS and mlogS ldi.

Proposition 3 (mlogA ldi). if a logical introduction rule has conclusion F ⊢ U
(F a formula), and premises Yi ⊢ U for Yi ∈ Y s, and formula variables in each
Yi also appear in Y , then that rule satisfies the LADI property

5 Structural Rules

At this point we have a general modus operandi for proving local display in-
terpolation for a given rule ρ, with premises psρ and conclusion cρ: identify a
relation rel such that

(a) (psρ, cρ) ∈ rel
(b) whenever c ≡AD cρ, we can find a list ps (often got from sequents in psρ

using the same sequence of display postulates which get c from cρ) such that
p ≡AD pρ for each p ∈ ps and corresponding pρ ∈ psρ

(c) whenever (ps, c) ∈ rel, c is derivable from ps (not used except to prove (d))
(d) whenever (ps, c) ∈ rel, and each p ∈ ps has an interpolant, then c has an

interpolant (proof of this will normally use (c))

5.1 Local Display Interpolation for Unit-Contraction, Contraction

This is relatively easy for the unit-contraction rule: the relation rel is given by:
(p, c) ∈ rel if p is obtained from c by deleting, somewhere in c, some #n∅, and
we get (b) using roughly the same sequence of display postulates.

Lemma 9 (ex box uc). if sequent Cd is obtained from C by deleting one oc-
currence of some #n∅, and if Cd′ →∗

AD Cd, then there exists C ′, such that
C ′ →∗

AD C, and Cd′ is obtained from C ′ by deleting one occurrence of #n∅.

The proof of this required a good deal of programming repetitive use of
complex tactics similar to (but less complex than) those described in §5.2.

The following lemma gives (c) of the general proof method above.

Lemma 10 (delI der). If (p, c) ∈ rel (defined above), and if the derivation
rules include AD and the unit contraction rules, then c is derivable from p

Proposition 4 (ldi ila, ldi ils). The unit contraction rules satisfy LADI.

11

For the case of contraction, we defined a relation mseqctr: (C,C ′) ∈ mseqctr

means that C ′ is obtained from C, by contraction of substructures (X,X) to X.
Contractions may occur (of different substructures) in several places or none.

Lemma 11 (ex box ctr). if sequent Cd is obtained from C by contraction(s) of
substructure(s), and if Cd′ →∗

AD Cd, then there exists C ′, such that C ′ →∗
AD C,

and Cd′ is obtained from C ′ by substructure contraction(s).

The proof of ex box ctr is a little more complex that that for unit-contraction,
because (for example) when X;Y ⊢ Z ≡AD X ⊢ Z; #Y , and X;Y ⊢ Z is ob-
tained by contracting (X;Y); (X;Y) ⊢ Z, we need to show (X;Y); (X;Y) ⊢
Z ≡AD X;X ⊢ Z; #(Y ;Y).

Lemma 12 (ctr der). If (p, c) ∈ mseqctr (defined above), and if the derivation
rules include AD and the left contraction rule, then c is derivable from p

Proposition 5 (ldi cA). The left contraction rule satisfies the LADI property.

5.2 Lemma 4.2 (Deletion Lemma)

For weakening or unit-weakening, it is more difficult: a sequence of display pos-
tulates applied to the conclusion X; ∅ ⊢ Y may give ∅ ⊢ Y ; #X, so the same or
similar sequence cannot be applied to the premise X ⊢ Y .

For this situation we need Lemma 4.2 (Deletion Lemma): this result says that
for F a formula sub-structure occurrence in C, or F = ∅, and C →∗

AD C ′, then
(in the usual case) C \F →∗

AD C ′ \F , where C \F and C ′ \F mean deleting only
particular occurrence(s) of F in C, and deleting the congruent (corresponding)
occurrence(s) of F in C ′, where congruence is determined by the course of the
derivation of C ′ from C.

We did not define congruent occurrences in this sense: see the general dis-
cussion of this issue in §4.3. We thought it would be easier to define and use a
relation seqdel, where (C,C ′) ∈ seqdel Fs means that C ′ is obtained from C
by deleting one occurrence in C of a structure in the set Fs.

Then we proved the following result about deletion of a formula:

Lemma 13 (deletion). Let F be a formula or F = ∅. If sequent Cd is obtained
from C by deleting an occurrence of some #iF , and if C →∗

AD C ′, then either

(a) there exists Cd′, such that Cd →∗
AD Cd′, and Cd′ is obtained from C ′ by

deleting an occurrence of some #jF , or
(b) C ′ is of the form #nF ⊢ #m(Z1;Z2) or #

m(Z1;Z2) ⊢ #nF , where Cd →∗
AD

(Z1 ⊢ #Z2), or Cd →∗
AD (#Z1 ⊢ Z2)

Thus the premise is that Cd is got from C by deleting instance(s) of the
substructure formula F , possibly with some # symbols. The main clause of the
result says that there exists Cd′ (this corresponds to C ′ \ F in [2]) which is
got from Cd by deleting instance(s) of #nF (for some n), but there is also an
exceptional case where #nF is alone on one side of the sequent.

12

The proof of this result required considerable ML programming of proof
tactics. The file Del.ML is devoted to these tactics and the intermediate results
proved for the proof of Lemma 4.2.

When we get cases as to the last rule used in the derivation C →∗
AD C ′, this

gives 13 possibilities (“main cases”).
For each rule there are two main cases for the shape of the sequent after the

preceding rule applications: in the first, #nF appears in #nF,Z or Z,#nF and
so could be deleted (F is “delible”), and in the second, the relevant occurrence
of #nF is the whole of one side of the sequent.

Then where, in the case of the associativity rule for example, the sequent
which is (X;Y);Z ⊢ W (instantiated) has F delible, #nF may be equal to X,Y
or Z, or may be delible from X,Y, Z or W . (Certain further cases, such as that
#nF is (X;Y), get eliminated automatically using results such as stars Sf not Comma,
below). The tactics dvitacs have been written to provide one set of tactics
which handle all these cases. The key component is the recursive tactic sdvitac
which searches for a way of showing that F is delible from a given sequent (say
X; (Y ;Z) ⊢ W , in the above example). Without the possibility of programming
a tactic of this sort in Standard ML, each of these seven cases, and a similar
(less numerous) set of cases for each of the other 12 main cases, would require
its own separate proof.

For the second case, where #nF is equal to one side of the sequent (W in
the above example), a variety of tactics is required: for those display rules which
move the comma from one side to the other the tactics mdiatacs works for all,
but the other cases have to be done individually.

The proof threw up a number of (logically) trivial cases which nonetheless
needed particular results to be included as lemmas to be used automatically in
simplification, such as that we cannot have X;Y = #nF , for F a formula.

We then proved this result for F = ∅ instead of a formula, to give a theorem
deletion I; the changes required in the proof were trivial.

5.3 Local Display Interpolation for Unit-Weakening and Weakening

To handle weakening in a similar way, we considered two separate rules, one
to weaken with instances of #n∅ and one to change any instance of ∅ to any
formula. Thus, where Y∅ means a structure like Y but with every formula or
structure variable in it changed to ∅, a weakening is produced as shown:

X ⊢ Z =⇒ X,Y∅ ⊢ Z =⇒ X,Y ⊢ Z

We first consider the second of these, replacing any instance of ∅ with a
structural atom, that is, a formula or a structure variable which are atomic so
far as the structure language is concerned.

We use the relation seqrepI str atoms: (c, p) ∈ seqrepI str atoms means
that some occurrences of ∅ in p are changed to structural atoms in c.

Lemma 14 (ex box repI atoms). If sequent C is obtained from Cd by replac-
ing ∅ by structural atoms, and if C ′ →∗

AD C, then there exists Cd′, such that
Cd′ →∗

AD Cd, and C ′ is obtained from Cd′ by replacing ∅ by structural atoms.

13

For this relation, property (b) was quite easy to prove, since exactly the same
sequence of AD-rules can be used.

We proved that there are derived rules permitting replacing instances of ∅ by
anything, and this gave us that such rules, where the replacement structure is a
formula or structure variable, have the the local display interpolation property.

Lemma 15 (seqrepI der). If the derivation rules include weakening and unit-
contraction, and (c, p) ∈ seqrepI Fs, ie some occurrences of ∅ in p are replaced
by anything in c, then c is derivable from p.

The next lemma gives the LADI property, not for a rule of the system, but
for inferences ([p], c) where (c, p) ∈ seqrepI str atoms.

Proposition 6 (ldi repI atoms). Where (c, p) ∈ seqrepI str atoms, ie some
occurrences of ∅ in p are replaced by structural atoms in c, ([p], c) has the LADI
property.

Next we consider the structural rules allowing insertion of #n∅.
We use the variant of the theorem deletion (see §5.2) which applies to

deletion of ∅ rather than of a formula.
Then we show that inserting occurrences of anything preserves derivability.

Lemma 16 (seqwk der). If the derivation rules include weakening, and (c, p) ∈
seqdelFs, c is obtained from p by a weakening of a substructure, then c is
derivable from p.

Then we need the result that such rules satisfy the local display interpolation
property. In this case, though, where a sequent containing ∅ is rearranged by the
display postulates such that the ∅ is alone on one side (such as where X ⊢
Y ; ∅ is rearranged to X; #Y ⊢ ∅), then the LADI property requires using the
derivability of X ⊢ Y rather than the fact that X ⊢ Y satisfies LADI. Thus we
can prove only the conditional local display interpolation property.

Proposition 7 (ldi wkI). Provided the conclusion is derivable, and assuming
that the derivation rules include weakening, unit contraction, (∅ ⊢ ⊤) and (⊥ ⊢
∅), a rule allowing #n∅-weakening of a substructure satisfies the conditional
LADI property.

From here we define a set of rules called ldi rules, which does not contain
the weakening rules or the multiplicative binary logical rules, but does contain
the relations of Propositions 7 and 6. We have that all of its rules satisfy the
conditional LADI property, so the system has interpolants. We show this gives
a deductive system equivalent to the given set of rules rlscf, which system
therefore also has interpolants. Details are similar to the derivation of Theorem 3.

Theorem 2 (rlscf interp). The system of substitutable rules rlscf satisfies
display interpolation

14

6 Binary Multiplicative Logical Introduction rules

As discussed above, these were handled, indirectly, using the corresponding bi-
nary additive logical introduction rules, and weakening. However the possibility
arises of a system which doesn’t have the weakening rules and uses the multi-
plicative rules. So in this section we deal with these rules directly.

We dealt with these rules in two stages — firstly, weakening in occurrences
of #n∅, then changing any occurrence of ∅ to any structural atom, as shown
below.

X ⊢ A
wk∗

∅
X,Y∅ ⊢ A

Y ⊢ B
wk∗

∅
X∅, Y ⊢ B

(ands rep)
X,Y ⊢ A ∧B

Here X∅ and Y∅ mean the structures X and Y , with each structural atom
(formula or uninterpreted structure variable) replaced by ∅. The first stage,
the inferences labelled wk∗

∅
above, are obtained by repeatedly weakening by

occurrences of #n∅ in some substructure. The second stage (for which we define
the relation ands rep), consists of changing the X∅ of one premise, and the Y∅

of the other premise, to X and Y respectively. For the second of these stages,
then, when any sequence of display postulates is applied to X,Y ⊢ A ∧ B, the
same sequence can be applied to the two premises, X,Y∅ ⊢ A and X∅, Y ⊢ B.
This simplifies the proof of local display interpolation for these rules.

For the first stage we proceed as described for §5.3, except that we have the
result for a system containing the unit-weakening rules rather than a general
weakening rule, thus getting the theorem

Proposition 8 (ldi wkI alt). Provided the conclusion is derivable, and as-
suming that the derivation rules include unit weakening, unit contraction, and
the left and right introduction rules for ⊤ and ⊥, a rule allowing #nI-weakening
of a substructure satisfies the conditional LADI property.

The second stage consists of the rule shown as ands rep in the diagram. Con-
sidering the four points at the start of §5, since any display postulate applied
to the conclusion can be appplied to the premises, we need to define a suit-
able relation between conclusion and premises which is preserved by applying
any display postulate to them. For this we define a relation lseqrepm between
sequents, analgous to lseqrep discussed in §4.5:

lseqrepm :: "(structr * structr list) set =>

bool => [structr, structr list] => (sequent * sequent list) set"

Definition 3 (lseqrepm, repnI atoms).

(a) (U,Us) ∈ lseqrepm orel b Y Y s means that (as for lseqrep) there is one
occurrence of Y in U which is replaced by the nth member of Y s in the
nth member of Us; this occurrence is at an antecedent or succedent position,

15

according to whether b is True or False. However elsewhere in U , each
structural atom A in U is replaced by the nth member of As in the nth
member of Us, where (A,As) ∈ orel;

(b) (A,As) ∈ repnI atoms iff one of the As is A and the rest of the As are ∅.

We use lseqrepm only with orel = repnI atoms. For example, for the (∧R)
rule, we use lseqrepm repnI atoms True (A ∧ B) [A,B] as the relation rel of
the four points at the start of §5. We get the following lemmas.

Lemma 17 (repm some1sub). Whenever Y is a formula, and (U,Us) ∈ lseqrepm orel b Y Y s,
and U is manipulated by a display postulate (or sequence of them) to give V ,
then the Us can be manipulated by the same display postulate(s) to give V s
(respectively), where (V, V s) ∈ rel

The following lemmas refer to derivation in the system containing the ands rep

rule (not the regular (∧R) rule), and also unit-weakening and unit-contraction.

Lemma 18 (ands mix gen). Whenever (V, V s) ∈ rel, then V can be derived
from the V s.

As with Lemma 8, this lemma relies on taking the conjunction or disjunction
of interpolants of premises. So the next two results require a deductive system
containing the ands rep and ora rep rules, and also the (∨R) and (∧L) rules.

Lemma 19 (lseqrepm interp andT). Whenever (V, V s) ∈ rel, then we can
construct an interpolant for V from interpolants for the V s

Proposition 9 (ldin ands rep). The rule ands rep satisfies LADI.

We then defined a set of rules called ldi add which contains the rules of
Definition 2.4 and Figures 1 and 3 of [2], except the weakening rule and the
binary logical rules (∨L) and (∧R), with the rule ands rep (see diagram above)
and a corresponding rule ora rep included. Note that these latter rules are not
closed under substitution; therefore we defined ldi add to consist of the rules,
including their substitution instances where relevant. (Note that, as mentioned
earlier, our formalisation had not included the connective →, or any rules for
it). Meanwhile we also defined the set rlscf nw of substitutable rules, the rules
of Definition 2.4 and Figures 1 and 3 of [2], except weakening.

Lemma 20 (ldi add equiv). Let C be the calculus consisting of the rules of
Definition 2.4 and Figures 1 and 3 of [2] minus the weakening rule. Then the
calculi C \{(∧R), (∨L)} and C∪{ands rep, ora rep} are deductively equivalent.

Theorem 3 (ldi add interp, rlscf nw interp).

(a) the system ldi add satisfies display interpolation
(b) the system of substitutable rules rlscf nw satisfies display interpolation

Proof. We have all rules in ldi add satisfying at least the conditional local
display interpolation property (ldi add cldin). By cldin ex interp, this gives
us that the system ldi add satisfies display interpolation ldi add interp, and
so therefore does the equivalent system of substitutable rules rlscf nw.

16

7 Conclusions

TO BE WRITTEN

References

1. N D Belnap. Display logic. J. of Philosophical Logic, 11:375–417, 1982.
2. James Brotherston & Rajeev Goré. Craig Interpolation in Displayable Logics In

Proceedings of TABLEAUX-20, LNAI, pages 88–103. Springer, 2011.
3. Nicolas Caniart. Merit: an interpolating model-checker. In Proceedings of CAV-

22, volume 6174 of LNCS, pages 162–166. Springer, 2010.
4. William Craig. Three uses of the Herbrand-Gentzen theorem in relating model

theory and proof theory. Journal of Symbolic Logic, 22(3):269–285, 1957.
5. J E Dawson and R Goré. Formalised Cut Admissibility for Display Logic. In Proc.

TPHOLS’02, LNCS 2410, 131–147, Springer, 2002.
6. J E Dawson and R Goré. Generic Methods for Formalising Sequent Calculi Applied

to Provability Logic. In Proc. Logic for Programming, Artificial Intelligence and
Reasoning (LPAR 2010), LNCS 6397, 263-277.

7. Solomon Feferman. Harmonious logic: Craigs interpolation theorem and its de-
scendants. Synthese, 164:341–357, 2008.

8. R Goré. Machine Checking Proof Theory: An Application of Logic to Logic. Invited
talk, Third Indian Conference on Logic and Applications, Chennai, January 2009.

9. Kenneth L. McMillan. Quantified invariant generation using an interpolating satu-
ration prover. In Proceedings of TACAS-14, volume 4963 of LNCS, pages 413–427,
2008.

17

A Isabelle text of selected definitions and theorems

A.1 Isabelle text of definitions and basic lemmas

ldi_derl :

"[| ALL psc:?pscs. ldi ?lrules ?drules psc; (?ps, ?c) : derl ?pscs |] ==>

ldi ?lrules ?drules (?ps, ?c)"

cldi_ex_interp :

"[| (ALL psc : ?pscs. cldi ?lrules ?drules psc);

?c : derivableR ?drules {} |] ==> edi ?lrules ?drules ?c"

A.2 Isabelle text of lemmas for §4.4, unary logical rules

Belnap’s C4 property is used in the proof of cut-elimination, it being one of the
properties that structural rules must satisfy for Belnap’s cut-elimination theorem
to apply to a Display Calculus.

Here, seqSVs’ b seq is a list of the structural variables in succedent (if b =
True) or antecedent (if b = False) position in a sequent seq

C4_def : "C4 ?rule == ALL prem:set (premsRule ?rule).

ALL b. ALL s:set (seqSVs’ b (conclRule ?rule)).

s ~: set (seqSVs’ (~ b) prem)"

SF_some_sub :

"[| ALL (ps, c):PC ‘ ?rules. ~ seqCtnsFml c & distinct (seqSVs c);

ALL r:?rules. C4 r; (?prems, ?concl) : derl (PC ‘ rulefs ?rules);

(?concl, ?sconcl) : seqrep ?sa (Structform ?fml) ?Z |]

==> EX sprems.

(?prems, sprems) : seqreps ?sa (Structform ?fml) ?Z &

(sprems, ?sconcl) : derl (PC ‘ rulefs ?rules)"

Lemma 3 is actually proved more generally. We define an invertible set of
rules to be a set of unary rules such that the inverse of any of them is derivable
from the substitution instances of them. The set aidps of rules satisfies this
property (theorem inv rules aidps)

inv_rules_def : "inv_rules ?rules == ALL r:?rules. EX p.

premsRule r = [p] & ([conclRule r], p) : derl (PC ‘ rulefs ?rules)"

inv_rules_aidps : "inv_rules aidps"

Then Lemma 3 actually holds for any invertible set of rules.

bi_lrule_ldi_lem : "[| ?r : rulefs ?lrules; inv_rules ?lrules |] ==>

ldi ?lrules ?drules (PC ?r)"

18

non_bin_lem_gen "[| aidps <= ?drules; {nota, nots} <= ?drules;

(?ps, ?concl) : PC ‘ rulefs aidps;

ALL p:set ?ps. ~ seqHasComma p;

ALL p:set ?ps. Ex (interp ?drules p) |] ==>

Ex (interp ?drules ?concl)"

tS_ldi : "ldi aidps rlscf ([], $I |- T)"

fA_ldi : "ldi aidps rlscf ([], F |- $I)"

idf_ldi : "ldi aidps rlscf ([], ?A |- ?A)"

sdA1 : "[| ALL U. ([$?Y’ |- $U], $?Y |- $U) : ?logI; strIsLog ?W;

(True, ?W, ?W’) : strrep ?Y ?Y’ |] ==>

([$?W’ |- $?Z], $?W |- $?Z) : derl (?logI Un PC ‘ rulefs aidps)"

seqrep_interpA : "[| ALL U. ([$?Y’ |- $U], $?Y |- $U) : ?logI;

seqIsLog ($?W |- $?Z); strFVPPs ?Y’ <= strFVPPs ?Y;

($?W |- $?Z, $?W’ |- $?Z’) : seqrep False ?Y ?Y’;

?logI <= PC ‘ rulefs ?rules; aidps <= ?rules;

interp ?rules ($?W’ |- $?Z’) ?intp |] ==>

interp ?rules ($?W |- $?Z) ?intp"

logA_ldi : "[| ALL (ps, c):PC ‘ aidps. ~ seqCtnsFml c & distinct (seqSVs c);

Ball aidps C4; strFVPPs ?Y <= fmlFVPPs ?fml; seqIsLog (?fml |- $?U);

ALL U. ([$?Y |- $U], ?fml |- $U) : ?logI;

?logI <= PC ‘ rulefs ?rules; aidps <= ?rules |] ==>

ldi aidps ?rules ([$?Y |- $?U], ?fml |- $?U)"

We have results analogous top the above for a logical introduction rule for a
formula on the right, are seqrep interpS and logS ldi.

A.3 Isabelle text of lemmas for §4.5, additive binary logical rules

SF_some1sub : "[| ALL (ps, c):PC ‘ ?rules.

~ seqCtnsFml c & distinct (seqSVs c) & seqIsLog c &

Ball (set ps) seqIsLog &

(ALL p:set ps. distinct (seqSVs p) &

(ALL b. set (seqSVs’ b p) = set (seqSVs’ b c)));

Ball ?rules C4; (?prems, ?concl) : derl (PC ‘ rulefs ?rules);

(?concl, ?sconcls) : lseqrep ?sa (Structform ?fml) ?Zs |] ==>

EX spremss. (?prems, spremss) : lseqreps ?sa (Structform ?fml) ?Zs &

(ALL n<length ?Zs. (map (%l. l ! n) spremss, ?sconcls ! n) :

derl (PC ‘ rulefs ?rules))"

lseqrep_interpA : "[| rlscf <= ?rules;

ALL U. (map (%Y’. $Y’ |- $U) ?Ys, $?Y |- $U) : ?logI;

seqIsLog ($?W |- $?Z); ALL Y’:set ?Ys. strFVPPs Y’ <= strFVPPs ?Y;

($?W |- $?Z, ?Ss’) : lseqrep False ?Y ?Ys;

19

?logI <= PC ‘ rulefs ?rules; aidps <= ?rules;

ALL S:set ?Ss’. Ex (interp ?rules S) |] ==>

Ex (interp ?rules ($?W |- $?Z))"

mlogA_ldi : "[| ALL (ps, c):PC ‘ aidps. ~ seqCtnsFml c &

distinct (seqSVs c) & seqIsLog c & Ball (set ps) seqIsLog &

(ALL p:set ps. distinct (seqSVs p) &

(ALL b. set (seqSVs’ b p) = set (seqSVs’ b c)));

Ball aidps C4; seqIsLog (?fml |- $?U);

ALL U. (map (%Y’. $Y’ |- $U) ?Ys, ?fml |- $U) : ?logI;

ALL Y:set ?Ys. strFVPPs Y <= fmlFVPPs ?fml;

?logI <= PC ‘ rulefs ?rules; aidps <= ?rules; rlscf <= ?rules |] ==>

ldi aidps ?rules (map (%Y’. $Y’ |- $?U) ?Ys, ?fml |- $?U)"

A.4 Isabelle text of lemmas for §5.1, Unit-Contraction and
Contraction

The set stars S is the set of all structures which consist of the structure S
preceded by any number of occurrences of Star (ie, of # symbols).

The relation seqdel (stars I) will be the relation used for unit-contraction,
where (p, c) ∈ seqdel Fs if p is obtained from c by deleting (in any number of
places) a structure in Fs.

ex_box_uc : "[| ?atom = I; (?C, ?Cd) : seqdel (stars ?atom);

?Cd : derivableR aidps {?Cd’} |] ==>

EX C’. (C’, ?Cd’) : seqdel (stars ?atom) &

C : derivableR aidps {?C’}"

The rules for replacing (∅, X) by X on the left and the right of the ⊢ are ila
and ils, and the left contraction rule is cA.

delI_der : "[| (?Y, ?Y’) : strdel (stars I); aidps <= ?rules;

{ila, ils} <= ?rules |] ==>

{([$?X |- $?Y], $?X |- $?Y’), ([$?Y |- $?X], $?Y’ |- $?X)} <=

derl (PC ‘ rulefs ?rules)"

ldi_ila : "[| aidps <= ?rules; {ila, ils} <= ?rules |] ==>

ldi aidps ?rules (PC ila)"

ctr_der : "[| (?Y, ?Y’) : mstrctr; aidps <= ?rules; {cA} <= ?rules |] ==>

{([$?X |- $?Y], $?X |- $?Y’), ([$?Y |- $?X], $?Y’ |- $?X)} <=

derl (PC ‘ rulefs ?rules)" :

ldi_cA : "[| aidps <= ?rules; {cA} <= ?rules |] ==> ldi aidps ?rules (PC cA)"

Note that the theorem ctr der needs to be applied twice (once for each side
of the ⊢) to give the result in the main text.

20

A.5 Isabelle text of lemmas for §5.2, the Deletion Lemma

The proof threw up a number of (logically) trivial cases which nonetheless needed
particular results to be included as lemmas to be used automatically in simpli-
fication, such as:

stars_Sf_not_Comma : "Comma ?X ?Y ~: stars (Structform ?fml)"

Stars_Sf_ne_Comma : "Comma ?X ?Y ~= funpow Star ?n (Structform ?fml)"

Stars_eq_Comma_iff : "(Comma ?X ?Y = funpow Star ?n (Comma ?U ?V)) =

(?n = 0 & ?X = ?U & ?Y = ?V)"

deletion :

"[| ?atom = Structform ?fml; (?C, ?Cd) : seqdel ?pn (stars ?atom);

?C’ : derivableR aidps {?C} |]

==> (EX Cd’.

(?C’, Cd’) : seqdel ?pn (stars ?atom) &

Cd’ : derivableR aidps {?Cd}) |

(EX n m Z1 Z2.

?C’ = ($(funpow Star n ?atom) |- $(funpow Star m (Comma Z1 Z2))) &

(if odd m then $Z1 |- * $Z2 else * $Z1 |- $Z2)

: derivableR aidps {?Cd} |

?C’ = ($(funpow Star m (Comma Z1 Z2)) |- $(funpow Star n ?atom)) &

(if even m then $Z1 |- * $Z2 else * $Z1 |- $Z2)

: derivableR aidps {?Cd})" : Thm.thm

A.6 Isabelle text of lemmas for §5.3, Unit-Weakening and
Weakening

ex_box_repI_atoms :

"[| (?C, ?Cd) : seqrepI str_atoms; ?C : derivableR aidps {?C’} |] ==>

EX Cd’. (?C’, Cd’) : seqrepI str_atoms & ?Cd : derivableR aidps {Cd’}"

seqrepI_der : "[| (?S’, ?S) : seqrepI ?Fs; aidps <= ?rules;

{ila, ils, mra} <= ?rules |] ==>

([?S], ?S’) : derl (PC ‘ rulefs ?rules)"

ldi_repI_atoms : "[| aidps <= ?rules; {ila, ils, mra} <= ?rules;

(?c, ?p) : seqrepI str_atoms |] ==>

ldi aidps ?rules ([?p], ?c)"

seqwk_der : "[| (?S’, ?S) : seqdel ?Fs;

aidps <= ?rules; {mra} <= ?rules |] ==>

([?S], ?S’) : derl (PC ‘ rulefs ?rules)"

ldi_wkI : "[| aidps <= ?rules; {mra, ila, ils, tS, fA} <= ?rules;

(?c, ?p) : seqdel (stars I) |] ==>

cldi aidps ?rules ([?p], ?c)"

21

A.7 Isabelle text of lemmas for §6, Binary Multiplicative Logical
Introduction rules

wkI_der : "[| (?Y’, ?Y) : strdel (stars I); aidps <= ?rules;

{iila, iils} <= ?rules |] ==>

{([$?X |- $?Y], $?X |- $?Y’), ([$?Y |- $?X], $?Y’ |- $?X)}

<= derl (PC ‘ rulefs ?rules)"

ldi_wkI_alt : "[| aidps <= ?drules;

{iila, iils, tS, fA, ila, ils, tA, fS} <= ?drules;

(?c, ?p) : seqdel (stars I) |] ==>

cldi aidps ?drules ([?p], ?c)"

The following result applies to display postulates satisfying a set of standard
set of display postulates properties.

dp_props_def : "dp_props (?ps, ?c) =

(length ?ps = 1 & ~ seqCtnsFml ?c & distinct (seqSVs ?c) & seqIsLog ?c &

(ALL p:set ?ps. seqIsLog p & distinct (seqSVs p) & ~ seqCtnsFml p &

(ALL b. set (seqSVs’ b p) = set (seqSVs’ b ?c))))"

repm_some1sub :

"[| ALL rule:?rules. dp_props (PC rule); ?As ~= [];

([?prem], ?concl) : derl (PC ‘ rulefs ?rules);

(?concl, ?sconcls) : lseqrepm ?rsa ?sa (Structform ?fml) ?As |]

==> EX sprems.

(?prem, sprems) : lseqrepm ?rsa ?sa (Structform ?fml) ?As &

(ALL k<length ?As.

([sprems ! k], ?sconcls ! k) : derl (PC ‘ rulefs ?rules))"

We mention that the proof of repm some1sub involved very considerable
effort; it used the following lemma (see the proofs of it in GRepm.ML)

repm_seq_sub :

"[| ~ seqCtnsFml ?pat; distinct (seqSVs ?pat);

(seqSubst ?suba ?pat, ?Ys) : lseqrepm ?rsa ?pn (Structform ?A) ?Xs |]

==> EX subys. map (%suby. seqSubst suby ?pat) subys = ?Ys"

ands_mix_gen :

"[| PC ‘ rulefs aidps <= ?rules; ands_rep <= ?rules;

PC ‘ rulefs ilrules <= ?rules;

(?Z, [?X, ?Y]) : lseqrepm repnI_atoms True (Structform (?A && ?B))

[Structform ?A, Structform ?B] |] ==> ?Z : derrec ?rules {?X, ?Y}"

lseqrepm_interp_andT :

"[| ands_rep <= ?rules; ora_rep <= ?rules;

PC ‘ rulefs {anda} <= ?rules; PC ‘ rulefs {ors} <= ?rules;

PC ‘ rulefs aidps <= ?rules; PC ‘ rulefs ilrules <= ?rules;

22

(?WZ, [?pa, ?pb]) : lseqrepm repnI_atoms True

(Structform (?A && ?B)) [Structform ?A, Structform ?B];

ALL S:set [?pa, ?pb]. Ex (interpn ?rules S) |]

==> Ex (interpn ?rules ?WZ)"

ldin_ands_rep : "[| (?ps, ?WZ) : ands_rep; PC ‘ rulefs ilrules <= ?drules;

PC ‘ rulefs aidps <= ?drules; PC ‘ rulefs {ors} <= ?drules;

PC ‘ rulefs {anda} <= ?drules; ora_rep <= ?drules;

ands_rep <= ?drules; ?lrules <= aidps |] ==>

ldin ?lrules ?drules (?ps, ?WZ)"

ldi_add_equiv : "(?c : derrec ldi_add {}) = (?c : derivableR rlscf_nw {})"

ldi_add_cldin : "?rule : ldi_add ==> cldin aidps ldi_add ?rule"

ldi_add_interp : "Ball (derrec ldi_add {}) (edin aidps ldi_add)"

rlscf_nw_interp : "Ball (derivableR rlscf_nw {}) (edi aidps rlscf_nw)"

23

Display postulates:

X;Y ⊢ Z ⇄D X ⊢ ♯Y ;Z ⇄D Y ;X ⊢ Z

X ⊢ Y ;Z ⇄D X; ♯Y ⊢ Z ⇄D X ⊢ Z;Y

X ⊢ Y ⇄D ♯Y ⊢ ♯X ⇄D ♯♯X ⊢ Y

Identity rules:

(Id)
P ⊢ P

X
′ ⊢ Y

′

X ⊢ Y ≡D X ′ ⊢ Y ′ (≡D)
X ⊢ Y

Multiplicative logical rules:

∅ ⊢ X
(⊤L)

⊤ ⊢ X
(⊤R)

∅ ⊢ ⊤

F ;G ⊢ X
(&L)

F & G ⊢ X

X ⊢ F Y ⊢ G
(&R)

X ; Y ⊢ F & G

(⊥L)
⊥ ⊢ ∅

X ⊢ ∅
(⊥R)

X ⊢ ⊥

F ⊢ X G ⊢ Y
(∨L)

F ∨G ⊢ X ; Y

X ⊢ F ;G
(∨R)

X ⊢ F ∨G

♯F ⊢ X
(¬L)

¬F ⊢ X

X ⊢ ♯F
(¬R)

X ⊢ ¬F

X ⊢ F G ⊢ Y
(→L)

F → G ⊢ ♯X ; Y

X ; F ⊢ G
(→R)

X ⊢ F → G

Additive logical rules:

(⊥aL)
⊥a ⊢ X

Fi ⊢ X
i ∈ {1, 2} (&aL)

F1 &a F2 ⊢ X

F ⊢ X G ⊢ X
(∨aL)

F ∨a G ⊢ X

(⊤aR)
X ⊢ ⊤a

X ⊢ F X ⊢ G
(&aR)

X ⊢ F &a G

X ⊢ Fi

i ∈ {1, 2} (∨aR)
X ⊢ F1 ∨a F2

Structural rules:

∅;X ⊢ Y
(∅CL)

X ⊢ Y

X ⊢ Y ; ∅
(∅CR)

X ⊢ Y

X ⊢ Y
(∅WL)

∅;X ⊢ Y

X ⊢ Y
(∅WR)

X ⊢ Y ; ∅

(W ;X);Y ⊢ Z
(α)

W ; (X;Y) ⊢ Z

X ⊢ Z
(W)

X;Y ⊢ Z

X;X ⊢ Y
(C)

X ⊢ Y

Fig. 1. Display calculus proof rules In the display rule (≡D), the relation ≡D is the
least equivalence containing the relation ⇄D given by the display postulates.

24

