Overview

From Display Calculi to Deep Nested Sequent Calculi: Formalised for Full Intuitionistic Linear Logic

Jeremy Dawson¹, Ranald Clouston², Rajeev Goré¹, Alwen Tiu³

Logic and Computation Group Research School of Computer Science The Australian National University jeremy.dawson@anu.edu.au

Department of Computer Science, Aarhus University

School of Computer Engineering, Nanyang Technological University

August 27, 2014

What is FILL? Existing sequent calculi A Display Calculus for FILL Nested Sequent Calculus for FILL Separation Further Work

- ▲ ロ ▶ ▲ 昼 ▶ ▲ 星 ▶ - 星 - 釣 � @

Categorial Semantics for FILL

 $(\otimes, \mathbf{1}, -\infty)$ is a symmetric monoidal closed structure $A \otimes B -\infty C$ iff $A -\infty (B -\infty C)$ iff $B -\infty (A -\infty C)$ $(A \otimes \mathbf{1}) -\infty A$ and $A -\infty (A \otimes \mathbf{1})$

 $(\mathcal{T}, \mathbf{0}) \text{ is a symmetric monoidal structure}$ $(A \mathcal{T} B) \longrightarrow (B \mathcal{T} A)$ $(A \mathcal{T} \mathbf{0}) \longrightarrow A \text{ and } A \longrightarrow (A \mathcal{T} \mathbf{0})$

interaction via either of

weak distributivity $(A \otimes (B \ \mathfrak{P} \ C)) \multimap ((A \otimes B) \ \mathfrak{P} \ C)$

Grishin(b) $((A \multimap B) \stackrel{\mathcal{D}}{\to} C) \multimap (A \multimap (B \stackrel{\mathcal{D}}{\to} C))$

Collapse to (classical) MLL: if we add converse of Grishin(b)Grishin(a) $(A \multimap (B \ \ensuremath{\mathfrak{I}} C)) \multimap ((A \multimap B) \ensuremath{\mathfrak{I}} C)$

Proof Theory of FILL: problem and solutions

Remember: we need comma on the right to accommodate \Im

Problem and existing solutions:

multiple conclusions single conclusion existing solutions

$$\frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \multimap B, \Delta} \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B, \Delta} \qquad \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \multimap B, \Delta} \quad \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \multimap B, \Delta} (\dagger)$$
unsound no cut-elimination cut-elimination

†: side-conditions which ensure that A is "independent" of Δ

Hyland, de Paiva 1993: type assignments to ensure that the variable typed by A not appear free in the terms typed by Δ

Bierman 1996: $(a \ \mathfrak{N} b) \ \mathfrak{N} c \vdash a, ((b \ \mathfrak{N} c) \multimap d) \ \mathfrak{N} (e \multimap (d \ \mathfrak{N} e))$ has no cut-free derivation in the Hyland and de Paiva calculus

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Display calculus for (an extension of) FILL

Display Postulates: reversible structural rules

$$\frac{X_a \vdash Y_a > Z_s}{X_a, Y_a \vdash Z_s} \qquad \qquad \frac{Z_a < Y_s \vdash X_s}{Z_a \vdash X_s, Y_s} \\
\overline{Y_a \vdash X_a > Z_s} \qquad \qquad \overline{Z_a < X_s \vdash Y_s}$$

Display Property: For every antecedent (succedent) part Z of the sequent $X \vdash Y$, there is a sequent $Z \vdash Y'$ (resp. $X' \vdash Z$) obtainable from $X \vdash Y$ using only the display postulates, thereby displaying the Z as the whole of one side

Structural rules: no occurrences of formula meta-variables

all sub-structural properties captured in a modular way

$$(\Phi \vdash) \frac{X, \Phi \vdash Y}{X \vdash Y} \qquad (\vdash \Phi) \frac{X \vdash \Phi, Y}{X \vdash Y}$$
$$(Ass \vdash) \frac{W, (X, Y) \vdash Z}{(W, X), Y \vdash Z} \qquad (\vdash Ass) \frac{W \vdash (X, Y), Z}{W \vdash X, (Y, Z)}$$
$$(Com \vdash) \frac{X, Y \vdash Z}{Y, X \vdash Z} \qquad (\vdash Com) \frac{Z \vdash Y, X}{Z \vdash X, Y}$$
$$(Grnb \vdash) \frac{W, (X < Y) \vdash Z}{(W, X) < Y \vdash Z} \qquad (\vdash Grnb) \frac{W \vdash (X > Y), Z}{W \vdash X > (Y, Z)}$$

$$((A \multimap B) \stackrel{\mathcal{R}}{\to} C) \multimap (A \multimap (B \stackrel{\mathcal{R}}{\to} C))$$

Logical rules: introduced formula is always displayed

(id)
$$p \vdash p$$
(cut) $\frac{X \vdash A \quad A \vdash Y}{X \vdash Y}$ $(1 \vdash) \frac{\Phi \vdash X}{1 \vdash X}$ $(\vdash 1) \quad \Phi \vdash 1$ $(0 \vdash) \quad 0 \vdash \Phi$ $(\vdash 0) \frac{X \vdash \Phi}{X \vdash 0}$ $(\otimes \vdash) \frac{A, B \vdash X}{A \otimes B \vdash X}$ $(\vdash \otimes) \frac{X \vdash A \quad Y \vdash B}{X, Y \vdash A \otimes B}$ $(\Im \vdash) \frac{A \vdash X \quad B \vdash Y}{A \cong B \vdash X, Y}$ $(\vdash \Im) \frac{X \vdash A, B}{X \vdash A \supseteq B}$ $(\neg \vdash) \frac{X \vdash A \quad B \vdash Y}{A \multimap B \vdash X > Y}$ $(\vdash \neg) \frac{X \vdash A \Rightarrow B}{X \vdash A \multimap B}$ $(\neg \vdash) \frac{A < B \vdash X}{A \multimap B \vdash X > Y}$ $(\vdash \neg) \frac{X \vdash A \Rightarrow B}{X \vdash A \multimap B}$ $(\neg \vdash) \frac{A < B \vdash X}{A \multimap B \vdash X}$ $(\vdash \neg) \frac{X \vdash A \Rightarrow B}{X \vdash A \multimap B}$

read upwards, one rule is a "rewrite" while other "constrains"

・ロト・日本・ キャー キャー ひゃく

Categorial semantics for bi-intuitionistic linear logic BiILL

$$(\otimes, \mathbf{1}, -\infty)$$
 is a symmetric monoidal closed structure
 $A \otimes B -\infty C$ iff $A -\infty (B -\infty C)$ iff $B -\infty (A -\infty C)$
 $(A \otimes \mathbf{1}) -\infty A$ and $A -\infty (A \otimes \mathbf{1})$

interaction via either of
Grishin(b) $((A \multimap B) \ \Im \ C) \multimap (A \multimap (B \ \Im \ C)))$ dualGrishin(b) $((A \otimes B) \multimap C) \multimap (A \otimes (B \multimap C)))$

Collapse to (classical) MLL: if we add converse of either

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで