$(\otimes, \mathbf{1}, \multimap)$ is a symmetric monoidal closed structure
$A \otimes B \multimap C$ iff $A \multimap(B \multimap C)$ iff $B \multimap(A \multimap C)$
$(A \otimes 1) \multimap A$ and $A \multimap(A \otimes 1)$
$(8,0)$ is a symmetric monoidal structure

$$
\begin{aligned}
& (A \times B) \multimap(B \times A) \\
& (A \times 0) \multimap A \text { and } A \multimap(A \times 8)
\end{aligned}
$$

interaction via either of
weak distributivity $(A \otimes(B \times C)) \multimap((A \otimes B) \ngtr C)$
Grishin $(\mathrm{b}) \quad((A \multimap B) \ngtr C) \multimap(A \multimap(B \ngtr C))$

Collapse to (classical) MLL: if we add converse of Grishin(b) Grishin $(\mathrm{a}) \quad(A \multimap(B \ngtr C)) \multimap((A \multimap B) \ngtr C)$

Display calculus for (an extension of) FILL

Structural Constant and Binary Connectives: $\Phi \quad, \quad<>$
Antecedent Structure: $X_{a} \quad Y_{a}::=A|\Phi| X_{a}, Y_{a} \mid X_{a}<Y_{s}$
Succcedent Structure: $X_{s} \quad Y_{s}::=A|\Phi| X_{s}, Y_{s} \mid X_{a}>Y_{s}$
Sequent: $X_{a} \vdash Y_{s}$
(drop subscripts to avoid clutter)
Display Postulates: reversible structural rules

$$
\xlongequal{\xlongequal[X_{a} \vdash Y_{a}>Z_{s}]{Y_{a}, Y_{a} \vdash Z_{s}}} \quad \begin{aligned}
& \frac{Z_{a}<Y_{s} \vdash X_{s}}{Z_{a} \vdash X_{s}, Y_{s}} \\
& \hline Z_{a}<X_{s} \vdash Y_{s}
\end{aligned}
$$

Display Property: For every antecedent (succedent) part Z of the sequent $X \vdash Y$, there is a sequent $Z \vdash Y^{\prime}\left(\right.$ resp. $\left.X^{\prime} \vdash Z\right)$ obtainable from $X \vdash Y$ using only the display postulates, thereby displaying the Z as the whole of one side

Remember: we need comma on the right to accommodate 8

Problem and existing solutions:
multiple conclusions single conclusion existing solutions

$$
\frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \multimap B, \Delta} \quad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B, \Delta} \quad \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \multimap B, \Delta}(\dagger)
$$

unsound no cut-elimination cut-elimination
\dagger : side-conditions which ensure that A is "independent" of Δ

Hyland, de Paiva 1993: type assignments to ensure that the variable typed by A not appear free in the terms typed by Δ

Bierman 1996: $\left(a^{8} b\right) 88 \vdash a,\left(\left(b^{8} c\right) \multimap d\right) 8\left(e \multimap\left(d^{88} e\right)\right)$ has no cut-free derivation in the Hyland and de Paiva calculus

Logical rules: introduced formula is always displayed
(id) $p \vdash p$
(cut) $\frac{X \vdash A \quad A \vdash Y}{X \vdash Y}$
$(\mathbf{1} \vdash) \frac{\Phi \vdash X}{1 \vdash X}$
$\mathbf{(0 \vdash)} \mathbf{0} \vdash \Phi$
$(\otimes \vdash) \frac{A, B \vdash X}{A \otimes B \vdash X}$
$(\mathcal{\gamma} \vdash) \frac{A \vdash X B \vdash Y}{A \ngtr B \vdash X, Y}$
$(\multimap \vdash) \frac{X \vdash A \quad B \vdash Y}{A \multimap B \vdash X>Y}$
$(-\vdash) \frac{A<B \vdash X}{A-B \vdash X}$
$(\vdash \mathbf{1}) \quad \Phi \vdash \mathbf{1}$
$(\vdash \mathbf{0}) \frac{X \vdash \Phi}{X \vdash \mathbf{0}}$
$(\vdash \otimes) \frac{X \vdash A \quad Y \vdash B}{X, Y \vdash A \otimes B}$
$(\vdash \mathcal{X}) \frac{X \vdash A, B}{X \vdash A \gamma B}$
$(\vdash \multimap) \frac{X \vdash A>B}{X \vdash A \multimap B}$
$(\vdash \prec) \frac{X \vdash A \quad B \vdash Y}{X<Y \vdash A-B}$
read upwards, one rule is a "rewrite" while other "constrains"

Categorial semantics for bi-intuitionistic linear logic BiILL

$(\otimes, 1, \multimap)$ is a symmetric monoidal closed structure
$A \otimes B \multimap C$ iff $A \multimap(B \multimap C)$ iff $B \multimap(A \multimap C)$
$(A \otimes 1) \multimap A$ and $A \multimap(A \otimes 1)$
$(<, \mathcal{P}, 0)$ is a symmetric monoidal co-closed structure

$$
\begin{aligned}
& A \multimap(B \ngtr C) \text { iff }(A \multimap B) \multimap C \text { iff }(A<C) \multimap B \\
& (A>0) \multimap A \text { and } A \multimap(A \ngtr \mathbf{0})
\end{aligned}
$$

interaction via either of
Grishin(b) $\quad((A \multimap B) \& C) \multimap(A \multimap(B \ngtr C))$ dualGrishin $(\mathrm{b}) \quad((A \otimes B)<C) \multimap(A \otimes(B<C))$

Collapse to (classical) MLL: if we add converse of either

From BiILL back to FILL

Problem: Nice Display Calculus for BiILL ... is it sound for FILL?
Display calculus: must create antecedent $<$ structures in its derivation of FILL-formulae in order to display and undisplay; and $<$ is structural equivalent to $<$, not in FILL
Question: is BiILL a conservative extension of FILL (that is, are BiILL-derivable FILL-formulae FILL-derivable?
we were not able to find a categorial proof
Compare: to tense logic Kt say where there is a simple semantic proof that Kt is a conservative extension of K (same frames)

FILL category	$\xrightarrow{1}$	BiILL category	$\stackrel{2}{\Longleftrightarrow}$	BiILLdc with cut	$\stackrel{3}{\Longleftrightarrow}$	BiILLdc no cut
$\Uparrow 7$						$\sqrt{ } 4$
FILLdn		$\stackrel{6}{\leftarrow}$	BiILLdn	$\stackrel{5}{\Longleftrightarrow}$		BiILLsn

Diagram showing the method
\Longrightarrow every valid formula in the source is also valid in the target $\longrightarrow \quad$ as above, but for FILL formulae only

FILL category	$\xrightarrow{1}$	BiILL category	$\stackrel{2}{\longrightarrow}$	BiILLdc with cut	$\stackrel{3}{\Longleftrightarrow}$	BiILLdc no cut
$\Uparrow 7$						$\downarrow 4$
FILLdn		$\stackrel{6}{\leftarrow}$	BiILLdn	$\stackrel{5}{\Longleftrightarrow}$		BiILLsn

1. because all FILL-category arrows are also in BiILL-categories
2. requires some translation between rules, not unduly difficult
3. Belnap's general cut-elimination theorem for Display Calculi
4. straightforward: the rule sets are almost equivalent
5. \Longrightarrow : some work; uses Lemmas in CSL2013 paper \Longleftarrow : this is the really difficult result, many cases
6. uses the key (easy) property of BiILLdn: that a BiILLdn derivation of a FILLdn sequent lies entirely within FILLdn
7. we have items 2 to 5 above for BiILL-category \Longleftrightarrow BiILLdn But we have to prove this separately for FILL.

Shallow nested sequent calculus for BiILL
Logical rules:

$$
\begin{aligned}
& \overline{p \Rightarrow p} \text { id } \\
& \frac{\mathcal{S} \Rightarrow \mathcal{S}^{\prime}, A \quad A, \mathcal{T} \Rightarrow \mathcal{T}^{\prime}}{\mathcal{S}, \mathcal{T} \Rightarrow \mathcal{S}^{\prime}, \mathcal{T}^{\prime}} \text { cut } \\
& \overline{\mathbf{0} \Rightarrow} \mathbf{0}_{l} \quad \frac{\mathcal{S} \Rightarrow \mathcal{T}}{\mathcal{S} \Rightarrow \mathcal{T}, \mathbf{0}} \mathbf{0}_{r} \quad \frac{\mathcal{S} \Rightarrow \mathcal{T}}{\mathcal{S}, \mathbf{1} \Rightarrow \mathcal{T}} \mathbf{1}_{I} \quad \underset{\quad 1}{ } \mathbf{1}_{r} \\
& \frac{\mathcal{S}, A, B \Rightarrow \mathcal{T}}{\mathcal{S}, A \otimes B \Rightarrow \mathcal{T}} \otimes_{l} \\
& \frac{\mathcal{S} \Rightarrow A, \mathcal{T} \quad \mathcal{S}^{\prime} \Rightarrow B, \mathcal{T}^{\prime}}{\mathcal{S}, \mathcal{S}^{\prime} \Rightarrow A \otimes B, \mathcal{T}, \mathcal{T}^{\prime}} \otimes_{r} \\
& \frac{\mathcal{S}, A \Rightarrow \mathcal{T} \quad \mathcal{S}^{\prime}, B \Rightarrow \mathcal{T}^{\prime}}{\mathcal{S}, \mathcal{S}^{\prime}, A \ngtr B \Rightarrow \mathcal{T}, \mathcal{T}^{\prime}}{ }^{\prime}, \\
& \frac{\mathcal{S} \Rightarrow A, \mathcal{T} \quad \mathcal{S}^{\prime}, B \Rightarrow \mathcal{T}^{\prime}}{\mathcal{S}, \mathcal{S}^{\prime}, A \multimap B \Rightarrow \mathcal{T}, \mathcal{T}^{\prime}} \multimap \text {, } \\
& \frac{\mathcal{S},(A \Rightarrow B) \Rightarrow \mathcal{T}}{\mathcal{S}, A<B \Rightarrow \mathcal{T}}<1 \\
& \frac{\mathcal{S} \Rightarrow A, B, \mathcal{T}}{\mathcal{S} \Rightarrow A \ngtr B, \mathcal{T}} \mathcal{Y}_{r} \\
& \frac{\mathcal{S} \Rightarrow \mathcal{T},(A \Rightarrow B)}{\mathcal{S} \Rightarrow \mathcal{T}, A \multimap B} \multimap_{r} \\
& \frac{\mathcal{S} \Rightarrow A, \mathcal{T} \quad \mathcal{S}^{\prime}, B \Rightarrow \mathcal{T}^{\prime}}{\mathcal{S}, \mathcal{S}^{\prime} \Rightarrow A<B, \mathcal{T}, \mathcal{T}^{\prime}} \prec_{r}
\end{aligned}
$$

Deep nested sequents: just apply the rules inside contexts

$$
\begin{aligned}
& \begin{array}{ll}
\frac{X[] \text { and } \mathcal{U} \text { and } \mathcal{V} \text { are hollow. }}{X[\mathcal{U}, p \Rightarrow p, \mathcal{V}]} \text { id }{ }^{d} & \text { similarly for units (no cut rule) } \\
\frac{X[\mathcal{S}, A, B \Rightarrow \mathcal{T}]}{X[\mathcal{S}, A \otimes B \Rightarrow \mathcal{T}]} \otimes_{l}^{d} & \frac{X_{1}\left[\mathcal{S}_{1} \Rightarrow A, \mathcal{T}_{1}\right] \quad X_{2}\left[\mathcal{S}_{2} \Rightarrow B, \mathcal{T}_{2}\right]}{X[\mathcal{S} \Rightarrow A \otimes B, \mathcal{T}]} \otimes_{r}^{d}
\end{array} \\
& \frac{X_{1}\left[\mathcal{S}_{1} \Rightarrow A, \mathcal{T}_{1}\right] \quad X_{2}\left[\mathcal{S}_{2}, B \Rightarrow \mathcal{T}_{2}\right]}{X[\mathcal{S}, A \multimap B \Rightarrow \mathcal{T}]} \multimap_{l}^{d} \quad \frac{X[\mathcal{S} \Rightarrow \mathcal{T},(A \Rightarrow B)]}{X[\mathcal{S} \Rightarrow \mathcal{T}, A \multimap B]} \multimap_{r}^{d} \\
& \frac{X_{1}\left[\mathcal{S}_{1}, A \Rightarrow \mathcal{T}_{1}\right] \quad X_{2}\left[\mathcal{S}_{2}, B \Rightarrow \mathcal{T}_{2}\right]}{X[\mathcal{S}, A \ngtr B \Rightarrow \mathcal{T}]} \not \chi_{I}^{d} \quad \frac{X[\mathcal{S} \Rightarrow A, B, \mathcal{T}]}{X[\mathcal{S} \Rightarrow A \ngtr B, \mathcal{T}]} \chi_{r}^{d} \\
& \frac{X[\mathcal{S},(A \Rightarrow B) \Rightarrow \mathcal{T}]}{X[\mathcal{S}, A<B \Rightarrow \mathcal{T}]} \prec_{1}^{d} \quad \frac{X_{1}\left[\mathcal{S}_{1} \Rightarrow A, \mathcal{T}_{1}\right] \quad X_{2}\left[\mathcal{S}_{2}, B \Rightarrow \mathcal{T}_{2}\right]}{X[\mathcal{S} \Rightarrow A<B, \mathcal{T}]} \prec_{r}^{d}
\end{aligned}
$$

Hollow: $X[]$ contains no formulae (\Rightarrow-tree of empty nodes)
Merge: $X[] \in X_{1}[] \bullet X_{2}[]$ and $\mathcal{S} \in \mathcal{S}_{1} \bullet \mathcal{S}_{2}$ and $\mathcal{T} \in \mathcal{T}_{1} \bullet \mathcal{T}_{2}$

From BiILL back to FILL

FILL category	$\xrightarrow{1}$	BiILL category	$\xrightarrow{2}$	BiILLdc with cut	$\stackrel{3}{\Longleftrightarrow}$	BiILLdc no cut
$\Uparrow 7$						$\Uparrow 4$
FILLdn		$\stackrel{6}{\leftarrow}$	BiILLdn	$\stackrel{5}{\Longleftrightarrow}$		BiILLsn

Nested FILL-sequent: nested sequent that has no nesting of sequents on the left of \Rightarrow and no occurrences of -
Why? entire BiILLdn-derivation of a nested FILL-sequent contains only nested FILL-sequents (look at the rules!)
FILLdn: remove $<_{l}^{d}, \prec_{r}^{d}, p l_{2}$ and $p r_{1}$ from BiILLdn
Separation Thm: nested FILL-sequents are derivable in FILLdn iff they are derivable in BiILLdn.
Thm: every rule of FILLdn preserves FILL-validity downwards
Cor: FILLdn is sound and complete for FILL-validity
Cor: BiILL is a conservative extension of FILL

Nested sequent calculi

Nested sequent: a formula or a multiset of nested sequents,
Shallow nested sequent calculus: Notational variant of display calculi where \Rightarrow replaces all occurrences of \vdash and $<$ and $>$; comma constructs multisets (so associative and commutative)
Turn Rules: reversible rules using multisets of nested sequents and formulae, correspond to Display Calculus rules

$$
\begin{array}{cc}
\begin{array}{cc}
\mathcal{S}_{2} \Rightarrow\left(\mathcal{S}_{1} \Rightarrow \mathcal{T}\right) \\
\mathcal{S}_{1}, \mathcal{S}_{2} \Rightarrow \mathcal{T} & \left(\mathcal{S} \Rightarrow \mathcal{T}_{2}\right) \Rightarrow \mathcal{T}_{1} \\
\frac{\mathcal{S} \Rightarrow\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)}{X_{a} \vdash Y_{a}>Z_{s}} & \frac{Z_{a}<Y_{s} \vdash X_{s}}{X_{a}, Y_{a} \vdash Z_{s}} \\
\hline Y_{a} \vdash X_{a}>Z_{s}
\end{array} & \frac{Z_{a} \vdash X_{s}, Y_{s}}{Z_{a}<X_{s} \vdash Y_{s}}
\end{array}
$$

Display Property: similar to Display Calculi: given a nested sequent $\mathcal{S} \Rightarrow \mathcal{T}$, we can use only the structural turn rules above to get any part of \mathcal{S} or \mathcal{T} alone on one side of outermost \Rightarrow

Shallow nested sequent calculus for BiILL

Structural Rules: Grishin (b) analogues

$$
\begin{array}{lc}
\frac{\mathcal{T},\left(\mathcal{S} \Rightarrow \mathcal{S}^{\prime}\right) \Rightarrow \mathcal{T}^{\prime}}{\left(\mathcal{S}, \mathcal{T} \Rightarrow \mathcal{S}^{\prime}\right) \Rightarrow \mathcal{T}^{\prime} g l} & \frac{\mathcal{S} \Rightarrow\left(\mathcal{S}^{\prime} \Rightarrow \mathcal{T}^{\prime}\right), \mathcal{T}}{\mathcal{S} \Rightarrow\left(\mathcal{S}^{\prime} \Rightarrow \mathcal{T}^{\prime}, \mathcal{T}\right)} g r \\
(\text { Grnb } \vdash) \frac{W,(X<Y) \vdash Z}{(W, X)<Y \vdash Z} & (\vdash \text { Grnb }) \frac{W \vdash(X>Y), Z}{W \vdash X>(Y, Z)}
\end{array}
$$

Thm: Every formula has a cut-free nested shallow sequent derivation iff it has cut-free display calculus derivation

We use only the cut-free version of BiILLsn

Proof search issue: (as with Display Calculus):
how to absorb the turn and $g /$ and $g r$ rules ?

Deep nested sequents: just apply the rules inside contexts

Propagation rules: allow formulae to be moved in a context

$$
\begin{array}{ll}
\frac{X\left[\mathcal{S} \Rightarrow\left(\mathcal{S}^{\prime}, A \Rightarrow \mathcal{T}^{\prime}\right), \mathcal{T}\right]}{X\left[\mathcal{S}, A \Rightarrow\left(\mathcal{S}^{\prime} \Rightarrow \mathcal{T}^{\prime}\right), \mathcal{T}\right]} p l_{1} & \frac{X\left[\mathcal{S}^{\prime},(\mathcal{S} \Rightarrow A, \mathcal{T}) \Rightarrow \mathcal{T}^{\prime}\right]}{X\left[\mathcal{S}^{\prime},(\mathcal{S} \Rightarrow \mathcal{T}) \Rightarrow A, \mathcal{T}^{\prime}\right]} p r_{1} \\
\frac{X\left[\mathcal{S},\left(\mathcal{S}^{\prime} \Rightarrow \mathcal{T}^{\prime}\right), A \Rightarrow \mathcal{T}\right]}{X\left[\mathcal{S},\left(\mathcal{S}^{\prime}, A \Rightarrow \mathcal{T}^{\prime}\right) \Rightarrow \mathcal{T}\right]} p l_{2} & \frac{X\left[\mathcal{S} \Rightarrow A,\left(\mathcal{S}^{\prime} \Rightarrow \mathcal{T}^{\prime}\right), \mathcal{T}\right]}{X\left[\mathcal{S} \Rightarrow\left(\mathcal{S}^{\prime} \Rightarrow A, \mathcal{T}^{\prime}\right), \mathcal{T}\right]} p r_{2}
\end{array}
$$

Thm: the turn rules and rules $g l$ and $g r$ are (cut-free) admissible
Thm: if a nested sequent is (cut-free) derivable in the deep calculus then it is cut-free derivable in the shallow calculus
Thm: if a nested sequent is cut-free derivable in the shallow calculus then it is (cut-free) derivable in the deep calculus
Cor: the deep and shallow nested calculi derive the same sequents

Formalisation

use of Isabelle: work verified in Isabelle theorem prover
value of formal verification: an earlier proof was found to be flawed (after some months' work)
time taken: formal proof took about $1 / 2$ year
most difficult: showing that shallow nested rules admissible in deep nested calculus - many cases, since (eg) $X[\mathcal{S} \Rightarrow \mathcal{T}]$ (\mathcal{S} and \mathcal{T} multisets!) can match given sequent Z in many ways
programmed tactics: many programming of tactics and combinations of them - SML progamming interface invaluable

Formalisation: multisets in nested sequents
Display Calculus structure in Isabelle: involves (sub-)structures (recursively), with binary operators, and formulae
nested sequents in Isabelle ??: would involve multisets of nested sequents
Isabelle couldn't do this: (lists - yes, multisets - no) so we just used a ',' operator, and defined an equivalence relation (so, eg $\left.A \Rightarrow\left(B, B^{\prime} \Rightarrow C\right) \equiv A \Rightarrow\left(B^{\prime}, B \Rightarrow C\right)\right)$
consequential change: definition of merge, $X_{1}[] \bullet X_{2}[]$, becomes much simpler
many lemmas: we needed many lemmas about using this \equiv : how much easier if we could use multisets directly ??
Isabelle developments: possibility to use multisets recently introduced into Isabelle
this work is in Isabelle 2005: too much incompatible change in Isabelle developments for me to change all my proofs

Cut-free derivation in the deep nested calculus

$$
\begin{aligned}
& a \times b \Rightarrow a,(\cdot \Rightarrow b) \quad c \Rightarrow(\cdot \Rightarrow c)
\end{aligned}
$$

No annotations, only commas as structural connective, but
sequents are nested $(\cdots \Rightarrow \cdots) \cdots \Rightarrow \cdots(\cdots \Rightarrow \cdots)$

Cut-free derivation in the deep nested calculus

$$
\begin{aligned}
& a \ngtr b \Rightarrow a,(\cdot \Rightarrow b) \quad \overline{c \Rightarrow(\cdot \Rightarrow c)}
\end{aligned}
$$

No annotations, only commas as structural connective, but sequents are nested

Belnap's Eight Conditions a lá Kracht

(C1) Each formula variable occurring in some premise of a rule ρ is a subformula of some formula in the conclusion of ρ.
(C2) Congruent parameters is a relation between parameters of the identical structure variable occurring in the premise and conclusion
(C3) Each parameter is congruent to at most one structure variable in the conclusion. Equivalently, no two structure variables in the conclusion are congruent to each other.
(C4) Congruent parameters are either all antecedent or all succedent parts of their respective sequent.
(C5) A formula in the conclusion of a rule ρ is either the entire antecedent or the entire succedent. Such a formula is called a principal formula of ρ.
(C6/7) Each rule is closed under simultaneous substitution of arbitrary structures for congruent parameters.

No annotations, but many extra structural connectives

Example derivation in our display calculus

$$
\begin{aligned}
& \underset{(8 \vdash) \frac{a \vdash a b \vdash b}{a \times b \vdash a, b}}{(a \vdash b) \times c \vdash(a, b), c} \\
& \begin{array}{l}
\text { (ass) } \frac{(a 8 b)-8 c \vdash(a, b), c}{(a 8 b) \gamma c \vdash a,(b, c)} \\
\text { (drp) } \left.\frac{(a \gamma b) \gamma c}{}\right)
\end{array} \\
& \text { (}\left(\stackrel{\text { drp })}{ } \frac{(a 8 b) 8 c<a \vdash b, c}{(a \times b) 8 c<a \vdash b^{8} c}\right. \\
& (\vdash \mathcal{P}) \frac{(a 8 b) 8 c<a \vdash b 8 c}{(-8 \vdash)} \frac{d \vdash d}{b^{88} c \multimap d \vdash((a 8 b) 8 c<a)>d} \quad e \vdash e
\end{aligned}
$$

But we implicitly created an occurrence of $<$ via $<$

From BiILL back to FILL

Belnap's Eight Conditions a lá Kracht

(C8) If there are rules ρ and σ with respective conclusions $X \vdash A$ and $A \vdash Y$ with formula A principal in both inferences (in the sense of C5) and if cut is applied to yield $X \vdash Y$, then either $X \vdash Y$ is identical to either $X \vdash A$ or $A \vdash Y$; or it is possible to pass from the premises of ρ and σ to $X \vdash Y$ by means of inferences falling under cut where the cut-formula always is a proper subformula of A.

$$
\frac{\frac{X \vdash C>D}{X \vdash C \multimap D} \quad \frac{U \vdash C \quad D \vdash Z}{C \rightarrow D \vdash U>Z}}{X \vdash U>Z} \text { cut }
$$

