
Categorial Semantics for FILL

(⊗, 1,() is a symmetric monoidal closed structure

A⊗ B ( C iff A ( (B ( C ) iff B ( (A ( C )

(A⊗ 1) ( A and A ( (A⊗ 1)

(`, 0) is a symmetric monoidal structure

(A` B) ( (B ` A)

(A` 0) ( A and A ( (A` 0)

interaction via either of

weak distributivity (A⊗ (B ` C )) ( ((A⊗ B)` C )

Grishin(b) ((A ( B)` C ) ( (A ( (B ` C ))

Collapse to (classical) MLL: if we add converse of Grishin(b)
Grishin(a) (A ( (B ` C )) ( ((A ( B)` C )

Proof Theory of FILL: problem and solutions

Remember: we need comma on the right to accommodate `

Problem and existing solutions:

multiple conclusions single conclusion existing solutions

Γ,A ` B,∆

Γ ` A ( B,∆

Γ,A ` B

Γ ` A ( B,∆

Γ,A ` B,∆
(†)

Γ ` A ( B,∆

unsound no cut-elimination cut-elimination

†: side-conditions which ensure that A is “independent” of ∆

Hyland, de Paiva 1993: type assignments to ensure that the
variable typed by A not appear free in the terms typed by ∆

Bierman 1996: (a` b)` c ` a, ((b ` c) ( d)` (e ( (d ` e))
has no cut-free derivation in the Hyland and de Paiva calculus

Display calculus for (an extension of) FILL

Structural Constant and Binary Connectives: Φ , < >

Antecedent Structure: Xa Ya ::= A | Φ | Xa,Ya | Xa < Ys

Succcedent Structure: Xs Ys ::= A | Φ | Xs ,Ys | Xa > Ys

Sequent: Xa ` Ys (drop subscripts to avoid clutter)

Display Postulates: reversible structural rules

Xa ` Ya > Zs

Xa,Ya ` Zs

Ya ` Xa > Zs

Za < Ys ` Xs

Za ` Xs ,Ys

Za < Xs ` Ys

Display Property: For every antecedent (succedent) part Z of the
sequent X ` Y , there is a sequent Z ` Y ′ (resp. X ′ ` Z )
obtainable from X ` Y using only the display postulates,
thereby displaying the Z as the whole of one side

Logical rules: introduced formula is always displayed

(id) p ` p
X ` A A ` Y(cut)

X ` Y

Φ ` X(1 `)
1 ` X

(` 1) Φ ` 1

(0 `) 0 ` Φ
X ` Φ(` 0)
X ` 0

A,B ` X
(⊗ `)

A⊗ B ` X
X ` A Y ` B(` ⊗)
X ,Y ` A⊗ B

A ` X B ` Y(` `)
A` B ` X ,Y

X ` A,B
(` `)

X ` A` B

X ` A B ` Y((`)
A ( B ` X > Y

X ` A > B
(`()

X ` A ( B

A < B ` X
(−< `)

A−<B ` X
X ` A B ` Y(` −<)
X < Y ` A−<B

read upwards, one rule is a “rewrite” while other “constrains”

Structural rules: no occurrences of formula meta-variables

all sub-structural properties captured in a modular way

X ,Φ ` Y
(Φ `)

X ` Y

X ` Φ,Y
(` Φ)

X ` Y

W , (X ,Y ) ` Z
(Ass `)

(W ,X ),Y ` Z

W ` (X ,Y ),Z
(` Ass)

W ` X , (Y ,Z )

X ,Y ` Z
(Com `)

Y ,X ` Z

Z ` Y ,X
(` Com)

Z ` X ,Y

W , (X < Y ) ` Z
(Grnb `)

(W ,X ) < Y ` Z

W ` (X > Y ),Z
(` Grnb)

W ` X > (Y ,Z )

((A ( B)` C ) ( (A ( (B ` C ))

Categorial semantics for bi-intuitionistic linear logic BiILL

(⊗, 1,() is a symmetric monoidal closed structure

A⊗ B ( C iff A ( (B ( C ) iff B ( (A ( C )

(A⊗ 1) ( A and A ( (A⊗ 1)

(−<,`, 0) is a symmetric monoidal co-closed structure

A ( (B ` C ) iff (A−<B) ( C iff (A−<C ) ( B

(A` 0) ( A and A ( (A` 0)

interaction via either of

Grishin(b) ((A ( B)` C ) ( (A ( (B ` C ))

dualGrishin(b) ((A⊗ B)−<C ) ( (A⊗ (B−<C ))

Collapse to (classical) MLL: if we add converse of either

Soundness, completeness and cut-elimination

Thm: The sequent X ` Y is derivable iff the formula-translation
τa(X ) ( τs(Y ) is BiILL-valid

Proof: the display calculus proof rules and the arrows of the free
BiILL-category are inter-definable.

Thm: If X ` Y is derivable then it is cut-free derivable.

Proof: The rules obey conditions C1-C8 given by Belnap (1982),
hence the calculus enjoys cut-admissibility

So we have a Display Calculus for BiILL ... is it sound for FILL?

From BiILL back to FILL

Problem: Nice Display Calculus for BiILL ... is it sound for FILL?

Display calculus: must create antecedent < structures in its
derivation of FILL-formulae in order to display and undisplay;
and < is structural equivalent to −<, not in FILL

Question: is BiILL a conservative extension of FILL (that is, are
BiILL-derivable FILL-formulae FILL-derivable?

we were not able to find a categorial proof

Compare: to tense logic Kt say where there is a simple semantic
proof that Kt is a conservative extension of K (same frames)

FILL
category

1
=⇒ BiILL

category
2⇐⇒ BiILLdc

with cut
3⇐⇒ BiILLdc

no cut~ww7
~w�4

FILLdn
6←− BiILLdn

5⇐⇒ BiILLsn



Diagram showing the method
=⇒ every valid formula in the source is also valid in the target
−→ as above, but for FILL formulae only

FILL
category

1
=⇒ BiILL

category
2⇐⇒ BiILLdc

with cut
3⇐⇒ BiILLdc

no cut~ww7
~w�4

FILLdn
6←− BiILLdn

5⇐⇒ BiILLsn

1. because all FILL-category arrows are also in BiILL-categories

2. requires some translation between rules, not unduly difficult

3. Belnap’s general cut-elimination theorem for Display Calculi

4. straightforward: the rule sets are almost equivalent

5. =⇒: some work; uses Lemmas in CSL2013 paper
⇐=: this is the really difficult result, many cases

6. uses the key (easy) property of BiILLdn: that a BiILLdn

derivation of a FILLdn sequent lies entirely within FILLdn

7. we have items 2 to 5 above for BiILL-category ⇐⇒ BiILLdn

But we have to prove this separately for FILL.

Nested sequent calculi

Nested sequent: a formula or a multiset of nested sequents,

Shallow nested sequent calculus: Notational variant of display
calculi where ⇒ replaces all occurrences of ` and < and > ;
comma constructs multisets (so associative and commutative)

Turn Rules: reversible rules using multisets of nested sequents
and formulae, correspond to Display Calculus rules

S2 ⇒ (S1 ⇒ T )

S1,S2 ⇒ T
(S ⇒ T2)⇒ T1
S ⇒ (T1, T2)

Xa ` Ya > Zs

Xa,Ya ` Zs

Ya ` Xa > Zs

Za < Ys ` Xs

Za ` Xs ,Ys

Za < Xs ` Ys

Display Property: similar to Display Calculi: given a nested
sequent S ⇒ T , we can use only the structural turn rules above
to get any part of S or T alone on one side of outermost ⇒

Shallow nested sequent calculus for BiILL

Logical rules:

p ⇒ p id
S ⇒ S ′,A A, T ⇒ T ′

S, T ⇒ S ′, T ′ cut

0⇒ · 0l
S ⇒ T
S ⇒ T , 0 0r

S ⇒ T
S, 1⇒ T 1l · ⇒ 1

1r

S,A,B ⇒ T
S,A⊗ B ⇒ T ⊗l

S ⇒ A, T S ′ ⇒ B, T ′

S,S ′ ⇒ A⊗ B, T , T ′ ⊗r

S,A⇒ T S ′,B ⇒ T ′

S,S ′,A` B ⇒ T , T ′ `l
S ⇒ A,B, T
S ⇒ A` B, T `r

S ⇒ A, T S ′,B ⇒ T ′

S,S ′,A ( B ⇒ T , T ′ (l
S ⇒ T , (A⇒ B)

S ⇒ T ,A ( B
(r

S, (A⇒ B)⇒ T
S,A−<B ⇒ T −<l

S ⇒ A, T S ′,B ⇒ T ′

S,S ′ ⇒ A−<B, T , T ′ −<r

Shallow nested sequent calculus for BiILL

Structural Rules: Grishin (b) analogues

T , (S ⇒ S ′)⇒ T ′

(S, T ⇒ S ′)⇒ T ′ gl
S ⇒ (S ′ ⇒ T ′), T
S ⇒ (S ′ ⇒ T ′, T )

gr

W , (X < Y ) ` Z
(Grnb `)

(W ,X ) < Y ` Z

W ` (X > Y ),Z
(` Grnb)

W ` X > (Y ,Z )

Thm: Every formula has a cut-free nested shallow sequent
derivation iff it has cut-free display calculus derivation

We use only the cut-free version of BiILLsn

Proof search issue: (as with Display Calculus):
how to absorb the turn and gl and gr rules ?

Deep nested sequents: just apply the rules inside contexts
X [ ] and U and V are hollow.

X [U , p ⇒ p,V]
idd similarly for units (no cut rule)

X [S,A,B ⇒ T ]

X [S,A⊗ B ⇒ T ]
⊗d

l

X1[S1 ⇒ A, T1] X2[S2 ⇒ B, T2]

X [S ⇒ A⊗ B, T ]
⊗d

r

X1[S1 ⇒ A, T1] X2[S2,B ⇒ T2]

X [S,A ( B ⇒ T ]
(d

l

X [S ⇒ T , (A⇒ B)]

X [S ⇒ T ,A ( B]
(d

r

X1[S1,A⇒ T1] X2[S2,B ⇒ T2]

X [S,A` B ⇒ T ]
`d

l

X [S ⇒ A,B, T ]

X [S ⇒ A` B, T ]
`d

r

X [S, (A⇒ B)⇒ T ]

X [S,A−<B ⇒ T ]
−<d

l

X1[S1 ⇒ A, T1] X2[S2,B ⇒ T2]

X [S ⇒ A−<B, T ]
−<d

r

Hollow: X [] contains no formulae (⇒-tree of empty nodes)

Merge: X [ ] ∈ X1[ ] • X2[ ] and S ∈ S1 • S2 and T ∈ T1 • T2

Deep nested sequents: just apply the rules inside contexts

Propagation rules: allow formulae to be moved in a context

X [S ⇒ (S ′,A⇒ T ′), T ]

X [S,A⇒ (S ′ ⇒ T ′), T ]
pl1

X [S ′, (S ⇒ A, T )⇒ T ′]

X [S ′, (S ⇒ T )⇒ A, T ′]
pr1

X [S, (S ′ ⇒ T ′),A⇒ T ]

X [S, (S ′,A⇒ T ′)⇒ T ]
pl2

X [S ⇒ A, (S ′ ⇒ T ′), T ]

X [S ⇒ (S ′ ⇒ A, T ′), T ]
pr2

Thm: the turn rules and rules gl and gr are (cut-free) admissible

Thm: if a nested sequent is (cut-free) derivable in the deep
calculus then it is cut-free derivable in the shallow calculus

Thm: if a nested sequent is cut-free derivable in the shallow
calculus then it is (cut-free) derivable in the deep calculus

Cor: the deep and shallow nested calculi derive the same sequents

From BiILL back to FILL

FILL
category

1
=⇒ BiILL

category
2⇐⇒ BiILLdc

with cut
3⇐⇒ BiILLdc

no cut~ww7
~w�4

FILLdn
6←− BiILLdn

5⇐⇒ BiILLsn

Nested FILL-sequent: nested sequent that has no nesting of
sequents on the left of ⇒ and no occurrences of −<

Why? entire BiILLdn-derivation of a nested FILL-sequent
contains only nested FILL-sequents (look at the rules!)

FILLdn: remove −<d
l , −<d

r , pl2 and pr1 from BiILLdn

Separation Thm: nested FILL-sequents are derivable in FILLdn iff
they are derivable in BiILLdn.

Thm: every rule of FILLdn preserves FILL-validity downwards

Cor: FILLdn is sound and complete for FILL-validity

Cor: BiILL is a conservative extension of FILL

Formalisation

use of Isabelle: work verified in Isabelle theorem prover

value of formal verification: an earlier proof was found to be
flawed (after some months’ work)

time taken: formal proof took about 1/2 year

most difficult: showing that shallow nested rules admissible in deep
nested calculus — many cases, since (eg) X [S ⇒ T ]
(S and T multisets!) can match given sequent Z in
many ways

programmed tactics: many programming of tactics and
combinations of them — SML progamming interface
invaluable



Formalisation: multisets in nested sequents

Display Calculus structure in Isabelle: involves (sub-)structures
(recursively), with binary operators, and formulae

nested sequents in Isabelle ??: would involve multisets of nested
sequents

Isabelle couldn’t do this: (lists — yes, multisets — no)
so we just used a ‘,’ operator, and defined an
equivalence relation (so, eg
A⇒ (B,B ′ ⇒ C ) ≡ A⇒ (B ′,B ⇒ C ))

consequential change: definition of merge, X1[ ] • X2[ ], becomes
much simpler

many lemmas: we needed many lemmas about using this ≡:
how much easier if we could use multisets directly ??

Isabelle developments: possibility to use multisets recently
introduced into Isabelle

this work is in Isabelle 2005: too much incompatible change in
Isabelle developments for me to change all my proofs

Cut-free derivation in our display calculus

a ` a b ` b
a` b ` a, b c ` c

(a` b)` c ` a, b, c

(a` b)` c < a ` b, c

(a` b)` c < a ` b ` c d ` d

b ` c ( d ` ((a` b)` c < a) > d e ` e

(b ` c ( d)` e ` (((a` b)` c < a) > d), e

(b ` c ( d)` e ` ((a` b)` c < a) > d , e

(b ` c ( d)` e, ((a` b)` c < a) ` d , e

(b ` c ( d)` e, ((a` b)` c < a) ` d ` e

(a` b)` c < a ` (b ` c ( d)` e > d ` e

(a` b)` c < a ` (b ` c ( d)` e ( d ` e

(a` b)` c ` a, (b ` c ( d)` e ( d ` e

No annotations, but many extra structural connectives

Cut-free derivation in the deep nested calculus

a⇒ a, (· ⇒ ·)
· ⇒ (b ⇒ b)

b ⇒ (· ⇒ b)

a` b ⇒ a, (· ⇒ b)

· ⇒ (c ⇒ c)

c ⇒ (· ⇒ c)

(a` b)` c ⇒ a, (· ⇒ b, c)

(a` b)` c ⇒ a, (· ⇒ b ` c) · ⇒ (d ⇒ d)

(a` b)` c ⇒ a, (b ` c ( d ⇒ d) · ⇒ (e ⇒ e)

(a` b)` c ⇒ a, ((b ` c ( d)` e ⇒ d , e)

(a` b)` c ⇒ a, ((b ` c ( d)` e ⇒ d ` e)

(a` b)` c ⇒ a, (b ` c ( d)` e ( d ` e

No annotations, only commas as structural connective, but
sequents are nested (· · · ⇒ · · · ) · · · ⇒ · · · (· · · ⇒ · · · )

Example derivation in our display calculus

a ` a b ` b
(` `)

a ` b ` a, b c ` c
(` `)

(a` b) ` c ` (a, b), c
(ass)

(a` b)` c ` a, (b, c)
(drp)

(a` b)` c < a ` b, c
(` `)

(a` b)` c < a ` b ` c d ` d
((`)

b ` c ( d ` ((a` b)` c < a) > d e ` e
(` `)

(b ` c ( d) ` e ` (((a` b)` c < a) > d), e
(` Grnb)

(b ` c ( d)` e ` ((a` b)` c < a) > (d , e)
(rp)

(b ` c ( d)` e,((a` b)` c < a) ` d , e
(` `)

(b ` c ( d)` e, ((a` b)` c < a) ` d ` e
(rp)

(a` b)` c < a ` (b ` c ( d)` e > (d ` e)
(`()

(a` b)` c < a ` (b ` c ( d)` e ( (d ` e)
(drp)

(a` b)` c ` a,(b ` c ( d)` e ( (d ` e)

But we implicitly created an occurrence of −< via <

Cut-free derivation in the deep nested calculus

a⇒ a, (· ⇒ ·)
· ⇒ (b ⇒ b)

b ⇒ (· ⇒ b)

a` b ⇒ a, (· ⇒ b)

· ⇒ (c ⇒ c)

c ⇒ (· ⇒ c)

(a` b)` c ⇒ a, (· ⇒ b, c)

(a` b)` c ⇒ a, (· ⇒ b ` c) · ⇒ (d ⇒ d)

(a` b)` c ⇒ a, (b ` c ( d ⇒ d) · ⇒ (e ⇒ e)

(a` b)` c ⇒ a, ((b ` c ( d)` e ⇒ d , e)

(a` b)` c ⇒ a, ((b ` c ( d)` e ⇒ d ` e)

(a` b)` c ⇒ a, (b ` c ( d)` e ( d ` e

No annotations, only commas as structural connective, but
sequents are nested

From BiILL back to FILL

a ` a b ` b
a ` b ` a, b c ` c

(a` b) ` c ` (a, b), c

(a` b)` c ` a, (b, c)
(?)

(a` b)` c < a ` b, c
(` `)

(a` b)` c < a ` b ` c d ` d
((`)

b ` c ( d ` ((a` b)` c < a) > d e ` e
(` `)

(b ` c ( d) ` e ` (((a` b)` c < a) > d), e
(?)

(b ` c ( d)` e ` ((a` b)` c < a) > (d , e)
(?)

(b ` c ( d)` e,((a` b)` c < a) ` d , e
(` `)

(b ` c ( d)` e, ((a` b)` c < a) ` d ` e
(?)

(a` b)` c < a ` (b ` c ( d)` e > (d ` e)
(`()

(a` b)` c < a ` (b ` c ( d)` e ( (d ` e)
(?)

(a` b)` c ` a,(b ` c ( d)` e ( (d ` e)

Belnap’s Eight Conditions a lá Kracht

(C1) Each formula variable occurring in some premise of a rule ρ is a
subformula of some formula in the conclusion of ρ.

(C2) Congruent parameters is a relation between parameters of the
identical structure variable occurring in the premise and conclusion

(C3) Each parameter is congruent to at most one structure variable in
the conclusion. Equivalently, no two structure variables in the
conclusion are congruent to each other.

(C4) Congruent parameters are either all antecedent or all succedent
parts of their respective sequent.

(C5) A formula in the conclusion of a rule ρ is either the entire
antecedent or the entire succedent. Such a formula is called a
principal formula of ρ.

(C6/7) Each rule is closed under simultaneous substitution of arbitrary
structures for congruent parameters.

Belnap’s Eight Conditions a lá Kracht

(C8) If there are rules ρ and σ with respective conclusions X ` A and
A ` Y with formula A principal in both inferences (in the sense of C5)
and if cut is applied to yield X ` Y , then either X ` Y is identical to
either X ` A or A ` Y ; or it is possible to pass from the premises of ρ
and σ to X ` Y by means of inferences falling under cut where the
cut-formula always is a proper subformula of A.

X ` C > D
X ` C ( D

U ` C D ` Z
C ( D ` U > Z

cut
X ` U > Z

U ` C

X ` C > D
X ,C ` D D ` Z

cut
X ,C ` Z

C ` X > Z
cut

U ` X > Z
X ,U ` Z

X ` U > Z


